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Abstract

Dense retrievers for open-domain question an-
swering (ODQA) have been shown to achieve
impressive performance by training on large
datasets of question-passage pairs. In this
work we ask whether this dependence on la-
beled data can be reduced via unsupervised
pretraining that is geared towards ODQA. We
show this is in fact possible, via a novel pre-
training scheme designed for retrieval. Our
“recurring span retrieval” approach uses recur-
ring spans across passages in a document to
create pseudo examples for contrastive learn-
ing. Our pretraining scheme directly controls
for term overlap across pseudo queries and rel-
evant passages, thus allowing to model both
lexical and semantic relations between them.
The resulting model, named Spider, performs
surprisingly well without any labeled training
examples on a wide range of ODQA datasets.
Specifically, it significantly outperforms all
other pretrained baselines in a zero-shot set-
ting, and is competitive with BM25, a strong
sparse baseline. Moreover, a hybrid retriever
over Spider and BM25 improves over both,
and is often competitive with DPR models,
which are trained on tens of thousands of ex-
amples. Last, notable gains are observed when
using Spider as an initialization for supervised
training.!

1 Introduction

State-of-the-art models for retrieval in open domain
question answering are based on learning dense text
representations (Lee et al., 2019; Karpukhin et al.,
2020; Qu et al., 2021). However, such models rely
on large datasets of question-passage pairs for train-
ing. These datasets are expensive and sometimes
even impractical to collect (e.g., for new languages
or domains), and models trained on them often fail

'Our code and models are publicly available:
https://github.com/oriram/spider, and:
https://huggingface.co/tau/spider
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Figure 1: Top-k retrieval accuracy of various unsuper-
vised methods (solid lines) on the test set of Natural
Questions (NQ). DPR (dotted) is supervised (trained
on NQ) and given for reference.

to generalize to new question distributions (Sci-
avolino et al., 2021; Reddy et al., 2021).

The above difficulty motivates the development
of retrieval models that do not rely on large an-
notated training sets, but are instead trained only
on unlabeled text. Indeed, self-supervision for re-
trieval has gained considerable attention recently
(Lee et al., 2019; Guu et al., 2020; Sachan et al.,
2021a; Fan et al., 2021). However, when applied in
a “zero-shot” manner, such models are still outper-
formed by sparse retrievers like BM25 (Robertson
and Zaragoza, 2009) and by supervised models
(see Sachan et al. 2021a). Moreover, models like
REALM (Guu et al., 2020) and MSS (Sachan et al.,
2021a,b) that train a retriever and a reader jointly
(i.e. in an end-to-end fashion), treating retrieval
as a latent variable, outperform contrastive mod-
els like ICT (Lee et al., 2019), but are much more
computationally-intensive.

In this work we introduce Spider (Span-based
unsupervised dense retriever), a dense model
pretrained in a contrastive fashion from self-
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High Priest of the Israelites.
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... During the journey in the wilderness, Aaron was not pl
always prominent or active ..
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Figure 2: An example of our pretraining approach: Given a document D (e.g. the article

___________________________________

:Imagine (John Lennon Song) F—
. Imagine was written during the Let It Be session. ! p2
lLemnon finished composing "Imagine" one morning ... !

in Wikipedia),

we take two passages that contain a recurring span .S. One of them is transformed into a short query (left) ¢’ using
a random window surrounding .S, in which S is either kept (top) or removed (bottom). The second passage is then
considered the target for retrieval p*, while a random passage from D that does not contain S is considered the
negative p~ (right). Each batch is comprised of multiple such examples, and the pretraining task is to select the
passage pj for each query ¢/ (solid line) from the passages of all examples (in-batch negatives; dashed lines).

supervision only (Bhattacharjee et al., 2022), which
achieves retrieval accuracy that significantly im-
proves over unsupervised methods (both con-
trastive and end-to-end), and is much cheaper to
train compared to end-to-end models.

Spider is based on a novel self-supervised
scheme: recurring span retrieval. We leverage re-
curring spans in different passages of the same
document (e.g. “Yoko Ono” in Figure 2) to create
pseudo examples for self-supervised contrastive
learning, where one of the passages containing the
span is transformed into a short query that (dis-
tantly) resembles a natural question, and the other
is the target for retrieval. Additionally, we ran-
domly choose whether to keep or remove the re-
curring span from the query to explicitly model
cases where there is substantial overlap between
a question and its target passage, as well as cases
where such overlap is small.

We evaluate Spider on several ODQA bench-
marks. Spider narrows the gap between unsuper-
vised dense retrievers and DPR on all benchmarks
(Figure 1, Table 1), outperforming all contrastive
and end-to-end unsupervised models in top-5 &
top-20 accuracy consistently across datasets. Fur-
thermore, we demonstrate that Spider and BM25
are complementary, and that applying their simple
combination (Ma et al., 2021) improves retrieval
accuracy over both, sometimes outperforming a
supervised DPR model.

We further demonstrate the utility of Spider as an
off-the-shelf retriever via cross-dataset evaluation
(i.e., when supervised models are tested against
datasets which they were not trained on), a setting
that often challenges dense retrievers (Sciavolino
etal., 2021; Reddy et al., 2021). In this setting, Spi-
der is competitive with supervised dense retrievers
trained on an abundance of training examples.

Last, Spider significantly outperforms other pre-
trained models when used as an initialization to-
wards DPR training, and also shows strong cross-
dataset generalization. For example, Spider fine-
tuned on TriviaQA is, to the best of our knowledge,
the first dense model to outperform BM25 on the
challenging EntityQuestions dataset (Sciavolino
etal., 2021).

Taken together, our results demonstrate the po-
tential of pretraining for reducing the reliance of
ODQA models on training data.

2 Background

In open-domain question answering (ODQA), the
goal is to find the answer to a given question over
a large corpus, e.g. Wikipedia (Voorhees and Tice,
2000; Chen et al., 2017; Chen and Yih, 2020). This
task has gained considerable attention following
recent advancement in machine reading compre-
hension, where models reached human parity in
extracting an answer from a paragraph given a ques-
tion (Devlin et al., 2019; Raffel et al., 2020).
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Due to the high cost of applying such reading
comprehension models, or readers, over the entire
corpus, state-of-the-art systems for ODQA first ap-
ply an efficient retriever — either sparse (Robertson
and Zaragoza, 2009; Chen et al., 2017) or dense
(Lee et al., 2019; Karpukhin et al., 2020) — in order
to reduce the search space of the reader.

Recently, dense retrieval models have shown
promising results on ODQA, even outperform-
ing strong sparse methods that operate on the
lexical-level, e.g. BM25. Specifically, the dom-
inant approach employs a dual-encoder architec-
ture, where documents and questions are mapped
to a shared continuous space such that proxim-
ity in that space represents the relevance between
pairs of documents and questions. Formally, let
C = {p1,...,pm} be a corpus of passages. Each
passage p € C is fed to a passage encoder Ep,
such that Ep(p) € RY. Similarly, the question en-
coder Eg is defined such that the representation of
a question ¢ is given by Eg(q) € R%. Then, the
relevance of a passage p for g is given by:

s(¢,p) = Eq(q) " Ep(p).

Given a question ¢, the retriever finds the
top-k candidates with respect to s(q,-), i.e.
top-kpec s(q, p). In order to perform this operation
efficiently at test time, a maximum-inner product
search (MIPS) index (Johnson et al., 2021) is built
over the encoded passages { Ep(p1), ..., Ep(pm)}-

While considerable work has been devoted to
create pretraining schemes for dense retrieval (Lee
et al. 2019; Guu et al. 2020; inter alia), it gener-
ally assumed access to large training datasets after
pretraining. In contrast, we seek to improve dense
retrieval in the challenging unsupervised setting.

Our contribution towards this goal is twofold.
First, we construct a self-supervised pretraining
method based on recurring spans across passages
in a document to emulate the training process of
dual-encoders for dense retrieval. Our pretrain-
ing is simpler and cheaper in terms of compute
than end-to-end models like REALM (Guu et al.,
2020) and MSS (Sachan et al., 2021a). Second, we
demonstrate that a simple combination of BM25
with our models leads to a strong hybrid retriever
that rivals the performance of models trained with
tens of thousands of examples.

3  Our Model: Spider

We now describe our approach for pretraining
dense retrievers, which is based on a new self-
supervised task (Section 3.1). Our pretraining is
based on the notion of recurring spans (Ram et al.,
2021) within a document: given two paragraphs
with the same recurring span, we construct a query
from one of the paragraphs, while the other is taken
as the target for retrieval (Figure 2). Other para-
graphs in the document that do not contain the
recurring span are used as negative examples. We
train a model from this self-supervision in a con-
trastive fashion.

Since sparse lexical methods are known to com-
plement dense retrieval (Luan et al., 2021; Maet al.,
2021), we also incorporate a simple hybrid retriever
(combining BM25 and Spider) in our experiments
(Section 3.2).

3.1 Pretraining: Recurring Span Retrieval

Given a document D C C with multiple passages
(e.g. an article in Wikipedia), we define cross-
passage recurring spans in D as arbitrary n-grams
that appear more than once and in more than one
passage in D. Let S be a cross-passage recurring
spanin D, and Dg C D be the set of passages in the
document that contain S, so |Dg| > 1 by definition.
First, we randomly choose a query passage ¢ € Dg.
In order to resemble a natural language question,
we apply a heuristic query transformation I', which
takes a short random window from ¢ surrounding
S to get ¢ = T'(q) (described in detail below).

Similar to DPR, each query has one correspond-
ing positive passage p™ and one corresponding
negative passage p—. For p', we sample an-
other random passage from D that contains S (i.e.
pt € Dg\{q}). For p~, we choose a passage from
D that does not contain S (i.e. p~ € D\ Dg). The
article title is prepended to both passages (bot not
to the query).

Figure 2 illustrates this process. We focus on the
first example (in orange), which is comprised of
three passages from the Wikipedia article
The span

appears in two passages in the article.
One of the passages was transformed into a query
(denoted by ¢}), while the other (pf) is taken as
a positive passage. Another random passage from
the article (p; ) is considered its negative.

As the example demonstrates, existence of recur-
ring spans in two different passages often implies
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semantic similarity between their contexts.

Query Transformation As discussed above, af-
ter we randomly choose a query passage g (with a
recurring span .S), we apply a query transformation
on ¢q. The main goal is to make the queries more
“similar” to open-domain questions (e.g. in terms
of lengths).

First, we define the context to keep from g. Since
passages are much longer than typical natural ques-
tions,> we take a random window containing S.
The window length ¢ is chosen uniformly between
5 and 30 to resemble questions of different lengths.
The actual window is then chosen at random from
all possible windows of length ¢ that contain S.

Second, we randomly choose whether to keep S
in ¢’ or remove it. This choice reflects two comple-
mentary skills for retrieval — the former requires
lexical matching (as S appears in both ¢’ and p™),
while the latter intuitively encourages semantic con-
textual representations.

The queries in Figure 2 (left) demonstrate this
process. In the top query, the recurring span

was kept as is. In the bottom query, the span “Yoko
Ono” was removed.

Span Filtering To focus on meaningful spans
with semantically similar contexts, we apply sev-
eral filters on recurring spans. First, we adopt the
filters from Ram et al. (2021): (1) spans only in-
clude whole words, (2) only maximal spans are
considered, (3) spans that contain only stop words
are filtered out, (4) spans contain up to 10 tokens.
In addition, we add another filter: (5) spans should
contain at least 2 tokens. Note that in contrast to
methods based on salient spans (Glass et al., 2020;
Guu et al., 2020; Roberts et al., 2020; Sachan et al.,
2021a,b), our filters do not require a trained model.

Training At each time step of pretraining, we
take a batch of m examples {(q/, p;",p; )}™,, and
optimize the cross-entropy loss with respect to the
positive passage pj for each query ¢ in a con-
trastive fashion (i.e., with in-batch negatives), simi-
lar to Karpukhin et al. (2020):

exp (s(q},p}"))

S, (exp (s(afp))) + exp (S(q&pj‘)))

*In our case, passages contain 100 words, while Joshi et al.
(2017) report an average length of 14 words for questions.

—log

3.2 Hybrid Dense-Sparse Retrieval

It is well established that the strong lexical match-
ing skills of sparse models such as BM25 (Robert-
son and Zaragoza, 2009) are complementary to
dense representation models. Ma et al. (2021)
demonstrated strong improvements by using hy-
brid dense-sparse retrieval, based on BM25 and
DPR. Specifically, they define the joint score of
a hybrid retriever via a linear combination of the
scores given by the two models, i.e. Shybria(¢, ) =
s(q,p) + a - BM25(q, p). They tune « on a valida-
tion set of each of the datasets. A similar approach
was considered by Luan et al. (2021). Since tuning
hyperparameters is unrealistic in our settings, we
simply set o = 1.0 for all hybrid models. Thus, we
define:

Shybrid (¢, p) = s(q, p) + BM25(q, p)

We adopt the normalization technique from Ma
et al. (2021). We begin by fetching the top-%’
(where k' > k) passages from each of the mod-
els. If a passage p is found in the top-%" of a dense
retriever but not of BM25, then BM25(q, p) is set
to the minimum value from the top-k’ results of
BM25 (and vice versa).

4 Experimental Setup

To evaluate how different retrievers work on dif-
ferent settings and given different amounts of su-
pervision, we simulate various scenarios by using
existing datasets, with an emphasis on the unsuper-
vised setting.

4.1 Datasets

We evaluate our method on six datasets commonly
used in prior work, all over Wikipedia: Natural
Questions (NQ; Kwiatkowski et al. 2019), Trivi-
aQA (Joshi et al., 2017), WebQuestions (WQ; Be-
rant et al. 2013), CuratedTREC (TREC; Baudis and
Sedivy 2015), SQuAD (Rajpurkar et al., 2016) and
EntityQuestions (EntityQs; Sciavolino et al. 2021).
The datasets vary significantly in the distribution
of questions and the size of training data.

Lewis et al. (2021a) showed that there exists
a significant overlap between train and test ques-
tions in ODQA datasets, which poses an issue in
our case: supervised models can memorize train-
ing questions while unsupervised methods cannot.
Thus, we also report the results on the “no answer
overlap” portion of the test sets created by Lewis
et al. (2021a) for NQ, TriviaQA and WQ.
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4.2 Baselines

We consider a variety of baselines, including su-
pervised and self-supervised dense models, as well
as sparse methods. All dense models share the
architecture of BERT-base (namely a transformer
encoder; Vaswani et al. 2017), including the num-
ber of parameters (110M) and uncased vocabulary.
In addition, all pretrained dense models use weight
sharing between query and passage encoders (only
during pretraining). Fg(q) and Ep(p) are defined
as the representation of the [CLS] token. Similar
to Gao and Callan (2021a), we do not consider the
models trained in Chang et al. (2020), as they rely
on Wikipedia links, and were not made public.

We now list our baselines (see App. A for fur-
ther details). As a sparse baseline model, we fol-
low prior work and take BM25 (Robertson and
Zaragoza, 2009). We consider several unsuper-
vised dense retrieval models: ICT (Lee et al., 2019;
Sachan et al., 2021a), Condenser and CoCondenser
(Gao and Callan, 2021a,b). We also compare our
approach with an unsupervised model trained in
an end-to-end fashion (i.e. jointly with a reader):
Masked Salient Spans (MSS; Sachan et al. 2021a,b).
In addition, we add the results of the unsuper-
vised Contriever model (Izacard et al., 2021), a
contemporary work. Last, we add results of DPR
(Karpukhin et al., 2020), a supervised model, for
reference.

4.3 Evaluation Settings

We evaluate our method and baselines in a broad
range of scenarios. We report top-k retrieval accu-
racy, i.e. the percentage of questions for which the
answer span is found in the top-k passages.

Unsupervised Setting Models are trained only
on unlabeled data, and evaluated on all datasets
without using any labeled examples (i.e. in a zero-
shot mode). As a reference point, we also compare
to DPR, which is supervised.

Cross-Dataset Generalization To test the ro-
bustness of different models across datasets, we
compare Spider to DPR models tested on datasets
they were not trained on.> The motivation behind
these experiments is to determine the quality of
all models as “off-the-shelf” retrievers, namely on
data from unseen distributions of questions.

3For unsupervised models, this is essentially equivalent to
the unsupervised setting.

Supervised Setting We compare Spider to other
pretrained models for retrieval when fine-tuned on
different amounts of training examples, similar to
Karpukhin et al. (2020). Specifically, we consider
the settings where 128 examples, 1024 examples
and full datasets are available. We restrict these
experiments to NQ and TriviaQA due to the high
cost of running them for all datasets and baselines.

4.4 Implementation Details

We base our implementation on the official code
of DPR (Karpukhin et al., 2020), which is built on
Hugging Face Transformers (Wolf et al., 2020).

Passage Corpus We adopt the same corpus and
preprocessing as Karpukhin et al. (2020), namely
the English Wikipedia dump from Dec. 20, 2018
(following Lee et al. 2019) with blocks of 100
words as retrieval units. Preprocessing (Chen et al.,
2017) removes semi-structured data (e.g., lists, in-
foboxes, tables, and disambiguation pages), result-
ing in roughly 21 million passages. This corpus
is used for both pretraining and all downstream
experiments.

Pretraining We train Spider for 200,000 steps,
using batches of size 1024. similar to ICT and Con-
denser, the model is initialized from the uncased
BERT-base model, and weight sharing between
the passage and query encoders is applied. Each
pseudo-query has one corresponding positive ex-
ample and one negative example.* Overall, the
model is expected to predict the positive passage
out of a total of 2048 passages.”> The learning rate
is warmed up along the first 1% of the training
steps to a maximum value of 2 - 107>, after which
linear decay is applied. We use Adam (Kingma
and Ba, 2015) with its default hyperparameters as
our optimizer, and apply a dropout rate of 0.1 to
all layers. We utilize eight 0GB A100 GPUs for
pretraining, which takes roughly two days. In our
ablation study (see Section 5.4), we lower the learn-
ing rate to 107> and the batch size to 512 in order
to fit in eight Quadro RTX 8000 GPUs.® Each
ablation takes two days.

Fine-Tuning For fine-tuning, we use the hyper-
parameters from Karpukhin et al. (2020), and do

“We perform an ablation on this choice in Section 5.4.

>In-batch negatives are taken across all GPUs, as suggested
in Qu et al. (2021).

®One ablation does involve a batch size of 1,024, and was
trained using A100 GPUs as well.
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Model NQ TriviaQA wWQ
ode
Top-5 Top-20 Top-100 Top-5 Top-20 Top-100 Top-5 Top-20 Top-100
Supervised Models
DPR-Single 68.3 80.1 86.1 71.2 79.7 85.1 62.8 74.3 82.2
DPR-Multi 67.1 79.5 86.1 69.8 78.9 84.8 64.0 75.1 83.0
DPR-Single + BM25  72.2 82.9 88.3 75.4 824 86.5 64.4 75.1 83.1
DPR-Mutli + BM25 71.9 82.6 88.2 76.1 82.6 86.5 67.3 77.2 84.5
Unsupervised Models
BM25 43.8 62.9 78.3 66.3 76.4 83.2 41.8 62.4 75.5
ICT* 32.3 50.6 66.8 40.2 57.5 73.6 25.2 434 65.7
Condenser 13.0 25.5 434 4.5 9.6 18.5 20.3 35.8 51.9
CoCondenser 28.9 46.8 63.5 7.5 13.8 243 30.2 50.7 68.7
MSS* 41.7 59.8 74.9 53.3 68.2 79.4 29.0 49.2 68.4
Contriever™* 472 67.2 81.3 59.5 74.2 83.2 - - -
Spider 49.6 68.3 81.2 63.6 75.8 83.5 46.8 65.9 79.7
Spider + BM25 55.1 72.1 84.1 71.7 80.0 85.5 51.0 69.1 81.1

Table 1: Top-k retrieval accuracy (i.e., the percentage of questions for which the answer is present in the top-k
passages) on the test sets of three datasets for supervised and unsupervised approaches. DPR-Single is trained on
the corresponding dataset only. We mark in bold the best unsupervised method for each dataset. Further results
are given in Tables 5&6. *Results reported in Sachan et al. (2021a,b); **Results reported in [zacard et al. (2021).

not perform any hyperparameter tuning. Specifi-
cally, we train using Adam (Kingma and Ba, 2015)
with bias-corrected moment estimates (Zhang et al.,
2021), and a learning rate of 10~ with warmup
and linear decay. We use batch size of 128 for
40 epochs with two exceptions. First, when fine-
tuning DPR-WQ and DPR-TREC, we run for 100
epochs for consistency with the original paper. Sec-
ond, when fine-tuning on 128 examples only, we
lower the batch size to 32 and run for 80 epochs.’
We use BM25 negatives produced by Karpukhin
et al. (2020), and do not create hard negatives by
the model itself (Xiong et al., 2021).

Retrieval When performing dense retrieval, we
apply exact search using FAISS (Johnson et al.,
2021). This is done due to the high memory de-
mand of creating an HNSW index for each experi-
ment (Karpukhin et al., 2020). For sparse retrieval
(i.e. BM25), we utilize the Pyserini library (Lin
et al., 2021), built on top of Anserini (Yang et al.,
2017, 2018). For hybrid retrieval, we set ¥ = 1000
similar to Ma et al. (2021).

5 Results

Our experiments show that Spider significantly im-
proves performance in the challenging unsuper-
vised retrieval setting, even outperforming strong
supervised models in many cases. Thus, it enables

"This is done to avoid running on all examples in each step,
which might lead to overfitting. However, we did not test this
hypothesis.

the use of such retrievers when no examples are
available. When used for supervised DPR train-
ing, we observe significant improvements over the
baselines as well. We perform ablation studies that
demonstrate the importance of our pretraining de-
sign choices.

5.1 Unsupervised Setting

Table 1 shows the performance of Spider (measured
by top-k retrieval accuracy) compared to other un-
supervised baselines on three datasets, without ad-
ditional fine-tuning. Results for remaining datasets
are given in Table 5 and Table 6. Supervised base-
lines (i.e. DPR) are given for reference. Results
demonstrate the effectiveness of Spider w.r.t. other
dense pretrained models, across all datasets. For ex-
ample, the average margin between Spider and ICT
is more than 15 points. Moreover, Spider outper-
forms DPR-Single on three of the datasets (TREC,
SQuAD and EntityQs). When DPR is better than
our model, the gap narrows for higher values of
k. In addition, it is evident that Spider is able to
outperform BM25 in some datasets (NQ, WQ and
TREC), while the opposite is true for others (Trivi-
aQA, SQuAD and EntityQuestions). However, our
hybrid retriever is able to combine the merits of
each of them into a stronger model, significantly
improving over both across all datasets. For exam-
ple, on TriviaQA, Spider and BM25 achieve 75.8%
and 76.4% top-20 retrieval accuracy, respectively.
The hybrid model significantly improves over both
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Model # Examples NQ TriviaQA WQ TREC SQuAD EntityQs
DPR-NQ 58,880 - 69.0 68.8 85.9 48.9 49.7
DPR-TriviaQA 60,413 675 - 71.4 87.9 55.8 62.7
DPR-WQ 2474 594 66.7 - 82.0 523 58.3
DPR-TREC 1,125 579 64.0 61.7 - 49.4 46.9
DPR-SQuAD 70,096 47.0 60.0 56.0 77.2 - 30.9
DPR-Multi 122,892 - - - - 52.0 56.7
BM25 None 629 76.4 62.4 81.1 71.2 71.4
ICT None 50.6 57.5 434 - 45.1 -
Spider None 68.3 75.8 65.9 82.6 61.0 66.3
Spider-NQ 58,880 - 77.2 74.2 89.9 57.7 61.9
Spider-TriviaQA 60,413 75.5 - 73.7 91.2 68.1 72.9

Table 2: Top-20 retrieval accuracy in a cross-dataset “zero-shot” setting, where models are evaluated against
datasets not seen during their training. DPR-z and Spider-x are models trained on the full dataset x, initialized
from BERT and Spider, respectively. DPR-Multi was trained on NQ, TriviaQA, WQ and TREC. # Examples is the
number of labeled examples used to train the model. Top-100 retrieval accuracy results are given in Table 7.

models and obtains 80.0%, better than DPR-Single
and DPR-Multi (79.7% and 78.9%, respectively).

Moreover, we observe that Spider consistently
surpasses Contriever, with substantial gains for
lower values of k.

5.2 Cross-Dataset Generalization

An important merit of Spider is the fact that a single
model can obtain good results across many datasets,
i.e. in a “zero-shot” setting. Table 2 demonstrates
the results of supervised models in these scenar-
i0s, where DPR models are tested on datasets they
were not trained on. Spider outperforms four of
the six DPR models (DPR-WQ, DPR-TREC, DPR-
SQuAD and DPR-Multi) across all datasets. In ad-
dition, it significantly outperforms DPR-NQ, which
is a widely-used retriever,® on three datasets out
of five. Finally, DPR-TriviaQA outperforms Spi-
der on three datasets.

When fine-tuning Spider on NQ and TriviaQA
(see Sections 4.3;5.3), the resulting models show
strong generalization to other datasets. For exam-
ple, Spider-NQ outperforms DPR-NQ (initialized
from BERT) by 4-12 points. Similar trends are ob-
served for the models trained on TriviaQA. Specifi-
cally, Spider-TriviaQA is able to outperform BM25
on EntityQuestions, that is known to challenge
dense retrievers (Sciavolino et al., 2021).

5.3 Supervised Setting

Table 3 shows the performance when fine-tuning
pretrained models on 128 examples, 1024 exam-
ples and full datasets from NQ and TriviaQA. Spi-
der establishes notable gains compared to all other

8The model was downloaded from Hugging Face model
hub 200,000 times during December 2021.

dense baselines on both datasets and for all training
data sizes. When only 128 examples are available,
Spider significantly outperforms all other models,
with absolute gaps of 3-11% on both datasets. On
TriviaQA, Spider fine-tuned on 128 examples is
able to outperform all other baselines when they
are trained on 1024 examples. Similar trends are
observed for the 1024-example setting (absolute
gaps of 1.7-6.2%).

Even though Spider was mainly designed for un-
supervised settings, it outperforms other pretrained
models in the full dataset as well. On both datasets,
Spider obtains the best results, improving over DPR
models (initialized from BERT) by 1.9-6.5%.

5.4 Ablation Study

We perform an ablation study on the query trans-
formation applied on the query passage q. We then
test the contribution of the negative passage p~ to
the performance of our model. Last, we scale up
both the batch size and the number of pretraining
steps.

Choice of Query Transformation During pre-
training, we apply a query transformation on the
query q. We sample a random window containing
the recurring span S and either remove or keep
S. We now test the effect of these choices on our
model. We consider two more options for the con-
text taken from g: (1) the whole passage, for which
we replace S with a [MASK] token (as the context
is very long, it makes sense to provide the retriever
with a signal on what span is sought in the answer),
and (2) a prefix of random length preceding S, for
which we always remove S from the context (as it
is in any case, by definition, in the end of ¢’). The
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NQ TriviaQA
Model
Top-1 Top-5 Top-20 Top-100 Top-1 Top-5 Top-20 Top-100
BM25 22.1 43.8 62.9 78.3 46.3 66.3 76.4 83.2
128 examples
BERT 12.7 27.3 435 60.6 16.7 334 494 65.4
ICT 22.8 455 64.1 78.3 32.7 54.5 68.9 79.5
Condenser 17.6 36.8 52.7 68.6 26.1 459 60.2 73.7
CoCondenser 23.2 479 65.2 79.2 36.3 60.1 72.8 81.6
Spider 31.7 57.7 74.3 84.6 47.5 68.5 78.5 85.1
1024 examples
BERT 26.6 49.6 65.3 78.1 32.6 52.7 66.1 77.9
ICT 304 55.8 72.4 83.4 38.8 60.0 72.8 82.3
Condenser 30.8 55.1 71.7 82.2 40.7 61.1 72.4 81.2
CoCondenser 32.7 60.1 75.6 84.8 433 65.4 76.2 83.6
Spider 37.0 63.0 77.9 86.5 49.5 69.5 79.3 85.5
Full Dataset

BERT 46.3 68.3 80.1 86.1 53.7 71.2 79.7 85.1
ICT 46.4 69.6 80.9 87.6 55.1 72.3 80.4 85.8
Condenser 47.0 70.1 81.4 87.0 57.4 73.4 81.1 86.1
CoCondenser 47.8 70.1 80.9 87.5 58.7 75.0 82.2 86.5
Spider 494 72.2 824 88.0 60.2 76.1 83.1 87.2

Table 3: Top-k retrieval accuracy of different pretrained models on the test sets of Natural Questions and TriviaQA,
after fine-tuning on various sizes of training data: 128 examples, 1024 examples and the full datasets. All models
are fine-tuned using the data produced by Karpukhin et al. (2020), i.e., BM25-based negative examples.

top two rows in Table 4 correspond to these abla-
tions. Indeed, both are inferior to taking a random
window surrounding S (one before the last row).

In addition, we test whether alternating between
keeping and removing S is indeed better than ap-
plying only one of them consistently. The third,
fourth and fifth rows of Table 4 verify that our mo-
tivation was indeed correct: Alternating between
the two is superior to each of them on its own.

Effect of Negative Passages During pretraining,
each query ¢, has one positive passage pj and one
negative passage p; . We pretrain a model without
negative passages at all, i.e. the target is to select
the positive p;r, given the positive passages of all
other examples {pj }21. This model corresponds
to the row with # negatives = 0 (i.e. the sixth
row in Table 4). As expected, the top-k retrieval
accuracy of the model drops significantly (2-6% for
different k values) with respect to the same model
with # negatives = 1 as a result of this choice,
which is consistent with Karpukhin et al. (2020).

Scaling up Batch Size and Training Steps We
scale up the batch size and observe improvements
of 0.6-1.2%. We train our model for longer (200K
steps instead of 100K), which leads to additional
1.1-1.8% improvements (last two rows in Table 4).

6 Related Work

Pretraining for dense retrieval has recently gained
considerable attention, following the success of
self-supervised models in many tasks (Devlin et al.,
2019; Liu et al., 2019; Brown et al., 2020). While
most works focus on fine-tuning such retrievers on
large datasets after pretraining (Lee et al., 2019;
Chang et al., 2020; Guu et al., 2020; Sachan et al.,
2021a; Gao and Callan, 2021a), we attempt to
bridge the gap between unsupervised dense mod-
els and strong sparse (e.g. BM25; Robertson and
Zaragoza 2009) or supervised dense baselines (e.g.
DPR; Karpukhin et al. 2020). A concurrent work
by Oguz et al. (2021) presented DPR-PAQ, which
shows strong results on NQ after pretraining. How-
ever, their approach utilizes PAQ (Lewis et al.,
2021b), a dataset which was generated using mod-
els trained on NQ, and is therefore not unsuper-
vised.

Leveraging recurring spans for self-supervised
pretraining has previously been considered for nu-
merous tasks, e.g. coreference resolution and coref-
erential reasoning (Kocijan et al., 2019; Varkel and
Globerson, 2020; Ye et al., 2020) and question an-
swering (Ram et al., 2021; Bian et al., 2021; Castel
et al., 2021). Glass et al. (2020) utilize recurring
spans across documents to create pseudo-examples

2694



Query Transformation

NQ (Dev Set)

Batch
Context Recurring Span # Negs  Size #Steps Top-1 Top-5 Top-20 Top-100
Whole passage Replace with a [MASK] 1 512 100,000 17.5 36.8 52.7 67.3
Prefix Remove 1 512 100,000 18.9 39.7 58.0 72.4
Random window Remove 1 512 100,000 18.6 39.2 56.8 71.7
Random window  Keep 1 512 100,000  20.3 42.0 61.1 759
Random window  Remove / Keep 1 512 100,000  21.5 44.5 62.3 76.2
Random window  Remove / Keep 0 512 100,000  16.3 38.8 58.1 74.1
Random window Remove / Keep 1 1,024 100,000 22.1 45.4 63.5 77.0
Random window Remove / Keep 1 1,024 200,000 234 46.5 65.3 78.2

Table 4: Ablation study on the development set of Natural Questions. The top rows of the table describe ablations
on the query transformation: We first determine the context to take from the query passage, and then decide what
operation will be applied on the recurring span. The bottom rows of the table study the contribution of the negative
passage p~ (# Negs = 0 stands for no negative examples), as well as scaling up the batch size (i.e. the number of
queries at each batch) and the total number of training steps. The last row corresponds to our model Spider.

for QA.

While we focus in this work on dual-encoder
architectures, other architectures for dense retrieval
have been introduced recently. Luan et al. (2021)
showed that replacing a single representation with
multiple vectors per document enjoys favorable
theoretical and empirical properties. Khattab and
Zaharia (2020) introduced late-interaction models,
where contextualized representations of query and
document tokens are first computed, and a cheap
interaction step that models their fine-grained rele-
vance is then applied. Phrase-based retrieval (Seo
et al., 2018, 2019) eliminates the need for a reader
during inference, as it directly retrieves the answer
span given a query. Lee et al. (2021a) demon-
strated strong end-to-end ODQA results with this
approach, and Lee et al. (2021b) showed that it is
also effective for passage retrieval. Our pretraining
scheme can be seamlessly used for those architec-
tures as well.

7 Conclusion

In this work, we explore learning dense retrievers
from unlabeled data. Our results demonstrate that
existing models struggle in this setup. We introduce
a new pretraining scheme for dual-encoders that
dramatically improves performance, reaching good
results without any labeled examples. Our results
suggest that careful design of a pretraining task is
important for learning unsupervised models that
are effective retrievers for ODQA.
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A Baselines: Further Details

BM25 (Robertson and Zaragoza, 2009) A sparse
bag-of-words model that extends TF-IDF (i.e. re-
ward rare terms that appear in both ¢ and p) by ac-
counting for document length and term frequency
saturation.

BERT (Devlin et al., 2019) was pretrained on
two self-supervised tasks: Masked Language Mod-
eling (MLM) and Next Sentence Prediction (NSP).
We evaluate BERT only in the supervised setting,
namely as a backbone for fine-tuning, similar to
DPR.

ICT (Lee et al., 2019) A dual-encoder model
which was pretrained on the Inverse Cloze Task.
Given a batch of passages, ICT masks a sentence
from each passage, and trains to predict what is the
source passage for each sentence. ICT encourages
lexical matching by keeping the sentence in the
original passage with low probability. Note that
unlike our approach, ICT is trained to produce rep-
resentations to corrupted passages. In addition, we
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Model CuratedTREC SQuAD EntityQuestions
ode
Top-5 Top-20 Top-100 Top-5 Top-20 Top-100 Top-5 Top-20 Top-100
Supervised Models
DPR-Single 66.6 81.7 89.9 40.8 584 74.9 38.1 49.7 63.2
DPR-Multi 80.0 89.2 93.9 35.6 52.0 67.8 447 56.7 70.0
DPR-Single + BM25  75.8 87.0 93.8 66.9 77.9 86.3 61.1 71.7 81.3
DPR-Mutli + BM25 84.7 90.3 95.4 58.5 72.1 83.0 63.2 73.3 82.6
Unsupervised Models

BM25 64.6 81.1 90.3 57.5 71.2 82.0 61.0 71.4 80.0
ICT* - - - 26.5 45.1 65.2 - - -
Condenser 9.9 20.2 344 6.1 13.2 25.3 1.0 2.7 7.6
CoCondenser 11.7 22.5 39.3 8.5 16.5 28.8 0.5 1.4 8.7
MSS* - - - 33.9 51.3 68.4 - - -
Spider 65.9 82.6 92.8 43.6 61.0 76.0 54.5 66.3 77.4
Spider + BM25 74.5 86.5 93.9 60.9 74.6 84.5 65.4 75.0 82.6

Table 5: Results for an evaluation setup as in Table 1 for the remaining datasets. Top-k retrieval accuracy (i.e., the
percentage of questions for which the answer is present in the top-k passages) for supervised and unsupervised
approaches. DPR-Single is trained on the corresponding dataset only. We mark in bold the best unsupervised
method for each dataset. *Results shared with us by the authors of Sachan et al. (2021a,b).

encourage lexical matching of individual terms in
the query, rather than the entire query as ICT.
Sachan et al. (2021a) trained their own ICT
model, which shows stronger performance than
Lee et al. (2019). The authors shared new results

with us, in which TREC and EntityQs are missing.

Since their model is not public, for fine-tuning we
use the model trained by Lee et al. (2019).

Condenser & CoCondenser (Gao and Callan,
2021a,b) Condenser is an architecture that aims
to produce dense sequence-level (i.e. sentences
and passages) representations via a variant of the
MLM pretraining task. Specifically, to predict a
masked token x4, they condition the prediction on
two representations: (1) a representation of x; from
an earlier layer in the encoder, and (2) a dense
sequence-level representation of the [CLS] token
at the last layer of the network. CoCondenser adds
a “corpus-aware” loss alongside MLM to create
better embeddings by sampling two sub-spans from
each sequence and train in a contrastive fashion.

MSS (Sachan et al., 2021a,b) An unsupervised
model in which a dense retriever and a reader are

trained jointly end-to-end. First, salient spans (e.g.

entities) are identified using a NER model. Then,
some of them are masked. The training objective is
to predict these missing spans while using retrieved
documents as evidence. Due to the latent nature
of the retrieval process in this model, its training
is substantially more expensive than contrastive
learning. In addition, it requires frequent updates

of the encoded evidence corpus.

Contriever (Izacard et al., 2021) A contempo-
rary work. Contriever is an unsupervised dense
model trained in a contrastive fashion, using ran-
dom cropping to generate two views of a given
input.

DPR (Karpukhin et al., 2020) A supervised
model for ODQA based on dual-encoders and
trained in a contrastive fashion (see Section 2). All
DPR models considered in the paper are initial-
ized with a BERT-base encoder, and trained on
full datasets: DPR-Single models are trained on a
single dataset, and are also referred to as DPR-z,
where x is the name of the dataset. DPR-Multi
was trained onNQ, TriviaQA, WQ and TREC. For
DPR-NQ and DPR-Multi, we use the checkpoints
released by the authors. We re-train the other DPR-
Single models (which were not made public) us-
ing the same hyper-parameters as Karpukhin et al.
(2020). We do not train a DPR model on Enti-
tyQs. The models we trained are consistent with
the results of Karpukhin et al. (2020), except for
DPR-SQuAD, where we did not manage to repro-
duce the original results.

B Further Results

Table 5 and Table 6 show the top-k accuracy for
the unsupervised setting (complements Table 1)
for additional datasets. Table 7 shows the top-100
accuracy for the cross-dataset setting (complements
Table 2).
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Model NQ (No Overlap) TriviaQA (No Overlap) WQ (No Overlap)
ode
Top-5 Top-20 Top-100 Top-5 Top-20 Top-100 Top-5 Top-20 Top-100
Supervised Models
DPR-Single 54.5 68.7 76.8 48.0 56.4 62.6 47.2 60.0 71.1
DPR-Multi 54.2 68.8 77.1 46.9 55.8 62.4 48.0 60.5 70.4
DPR-Single + BM25  60.9 74.0 81.1 534 60.2 64.9 50.5 62.4 72.8
DPR-Mutli + BM25 61.7 73.7 80.9 54.6 60.9 65.2 53.3 63.8 73.0
Unsupervised Models

BM25 38.8 55.5 70.1 47.3 56.0 62.4 354 53.6 66.4
ICT* 27.6 441 58.8 26.2 38.5 51.5 194 332 52.5
Condenser 6.5 133 26.6 1.8 42 9.1 9.0 19.3 30.8
CoCondenser 23.8 36.8 524 4.6 8.0 13.8 21.3 38.3 54.2
MSS* 332 49.7 66.1 36.2 479 58.0 19.7 36.9 54.1
Spider 443 60.7 73.7 452 55.6 62.7 38.1 54.8 69.7
Spider + BM25 49.3 65.2 77.6 51.9 59.4 64.6 42.9 58.4 72.0

Table 6: Top-k retrieval accuracy (i.e., the percentage of questions for which the answer is present in the top-k
passages) on the “no-answer-overlap” portion of the test sets of three datasets (Lewis et al., 2021a) for supervised
and unsupervised approaches. DPR-Single is trained on the corresponding dataset only. We mark in bold the best

unsupervised method for each dataset. *Results shared with us by the authors of Sachan et al. (2021a,b).

Model # Examples NQ TriviaQA WQ TREC SQuAD EntityQs
DPR-NQ 58,880 - 78.7 78.3 92.1 65.2 63.2
DPR-TriviaQA 60,413  79.7 - 81.2 93.7 71.1 74.6
DPR-WQ 2474 72.6 77.9 - 90.8 67.6 70.2
DPR-TREC 1,125 71.0 76.0 74.6 - 65.3 61.1
DPR-SQuAD 70,096 65.1 75.6 72.9 89.5 - 49.3
DPR-Multi 122,892 - - - - 67.8 70.0
BM25 None 78.3 83.2 75.5 90.3 82.0 80.0
ICT None 66.8 73.6 65.7 - 65.2 -
Spider None 81.2 83.5 79.7 92.8 76.0 774
Spider-NQ 58,880 - 83.7 82.5 94.1 72.8 74.1
Spider-TriviaQA 60,413  85.0 - 83.3 954 80.6 814

Table 7: Results for an evaluation setup as in Table 2, measured by top-100 retrieval accuracy in a cross-dataset
“zero-shot” setting, where models are evaluated against datasets not seen during their training. DPR-z is a model
trained on the full dataset z, and DPR-Multi was trained on NQ, TriviaQA, WQ and TREC. # Examples is the

number of labeled examples used to train the model.

C Limitations & Risks Dataset Train Test

. C . e Natural Questions 58,880 3,610

We. point Fo several 1'1m1t.at10ns an.d potential risks of TriviaQA 60413 11313

Spider. First, there is still a gap in performance be- WebQuestions 2474 2,032

tween supervised and unsupervised models, as can ggfa:STREC 7(1)(1)52 0 g%
K . u A E

be observed in Table 1. Second, self-supervised EntityQs - 22,075

pretraining is heavier in terms of compute than
standard supervised training like DPR. Third, Spi-

No (Answer) Overlap Datasets

. -y . Natural Questions - 1,313
der. was .tramed 01.1 data solely from Wlklpe(.ha, TriviaQA _ 3001
which might hurt its performance when applied WebQuestions - 856

to other domains. Last, our model may introduce
biases as other pretrained language models, e.g.
against under-represented groups.

D Dataset Statistics

Table 8 shows the number of examples in each of
the datasets used in our evaluation suite.

Table 8: Dataset statistics: number of training and test

examples in each dataset.
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