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Abstract

Semantic typing aims at classifying tokens or
spans of interest in a textual context into seman-
tic categories such as relations, entity types,
and event types. The inferred labels of seman-
tic categories meaningfully interpret how ma-
chines understand components of text. In this
paper, we present UNIST, a unified framework
for semantic typing that captures label seman-
tics by projecting both inputs and labels into
a joint semantic embedding space. To formu-
late different lexical and relational semantic
typing tasks as a unified task, we incorporate
task descriptions to be jointly encoded with the
input, allowing UNIST to be adapted to dif-
ferent tasks without introducing task-specific
model components. UNIST optimizes a mar-
gin ranking loss such that the semantic related-
ness of the input and labels is reflected from
their embedding similarity. Our experiments
demonstrate that UNIST achieves strong perfor-
mance across three semantic typing tasks: en-
tity typing, relation classification and event typ-
ing. Meanwhile, UNIST effectively transfers
semantic knowledge of labels and substantially
improves generalizability on inferring rarely
seen and unseen types. In addition, multiple
semantic typing tasks can be jointly trained
within the unified framework, leading to a sin-
gle compact multi-tasking model that performs
comparably to dedicated single-task models,
while offering even better transferability.1

1 Introduction

Semantic typing is a group of fundamental natu-
ral language understanding problems that aim at
classifying tokens (or spans) of interest into se-
mantic categories. This includes a wide range of
long-standing NLP problems such as entity typing,
relation classification, and event typing. Inferring
the types of entities, relations or events mentioned

∗Equal contributions.
1Our code and pre-trained models are available at https:

//github.com/luka-group/UniST.

is not only crucial to the structural perception of
human language, but also plays an important role
in many downstream tasks such as entity linking
(Onoe and Durrett, 2020), information extraction
(Zhong and Chen, 2021) and question answering
(Yavuz et al., 2016).

Most traditional methods tackle semantic typing
problems by training task-specific multi-class clas-
sifiers with token or sentence representations from
language models to predict a probability distribu-
tion over a pre-defined set of classes (Dai et al.,
2021; Yamada et al., 2020). However, this ap-
proach comes with several limitations. First, these
models simply convert labels into indices, thus
completely ignoring the rich semantics carried by
the label text itself. For example, given “Currently
Ritek is the largest producer of OLEDs.”, know-
ing what the entity type company means would
naturally simplify the inference of “Ritek” is a com-
pany in this context. Second, models trained as
classifiers do not generalize well to class labels that
are rarely seen or unseen in the training data, as
these models rely on the abundance of annotated
examples to associate semantics to label indices.
In particular, since these classifiers are limited by
the pre-defined label set, they cannot infer any un-
seen labels unless being re-trained or incorporated
with label mapping rules. As a result, these models
struggle to handle more fine-grained semantic typ-
ing tasks in real-world scenarios (Choi et al., 2018;
Chen et al., 2020) where any free-form textual la-
bels may be used to represent the types, many of
which may also be unseen during training.

In contrast to the aforementioned traditional
paradigm for semantic typing, several studies have
explored alternative approaches such as prompt-
based learning (Schick and Schütze, 2021; Ding
et al., 2021) and indirect supervision from NLI
models (Yin et al., 2019; Sainz et al., 2021) to
make more efficient use of label semantics. How-
ever, these methods usually require hand-crafted
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Ranking 
Loss

Sixteen people were
killed and 27 <T>

injured </T>. Describe
the type of injured.

Semantic
Embedding Space bodily harm

arriving

Input Sentence
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Negative Label

(a) Training

competition

(b) Inference

social event

attack

0.83

0.39

Similarity Score

0.07

Candidate LabelsEight matches were
<T> contested </T> at
the event. Describe the

type of contested.

Input Sentence

Figure 1: UNIST projects the input sentence with task descriptions (in blue) and marked token span of interest (with
enclosing special tokens), and candidate labels into a shared semantic embedding space. In training, it optimizes a
margin ranking loss such that positive labels are closer to the input sentence than negative labels. During inference,
UNIST simply ranks candidate labels based on the similarity between input and label embeddings.

templates or mapping between labels and language
model vocabulary that do not scale well to diverse,
free-form labels across various semantic typing
tasks. Instead, we seek a generalizable approach
that captures label semantics while requiring mini-
mal effort to be adapted to a different task.

In this paper, we propose UNIST, a unified
framework for semantic typing that projects con-
text sentences and candidate labels into a shared
semantic embedding space. UNIST provides a uni-
fied solution to two major categories of semantic
typing tasks, namely lexical typing (e.g., entity typ-
ing, event typing) and relational typing (relation
classification). By optimizing a margin ranking
loss, our model captures label semantics such that
positive labels are encoded closer to their respec-
tive context sentences than negative labels by at
least a certain similarity margin. Depending on the
task requirement, either top-k candidate labels or
any candidate labels with similarity above a certain
threshold are given as the final predictions. Fur-
thermore, we add a task description to the end of
the context sentences to specify the task and to-
ken (spans) of interest, and use a single model for
encoding both context sentences and labels. This
simple technique allows us to unify different seman-
tic typing tasks without introducing separate task-
specific model components or learning objectives,
while differentiating among distinct task prediction
processes during inference. UNIST demonstrates
strong performance on three semantic typing bench-
marks: UFET (Choi et al., 2018) for (ultra-fine)
entity typing, TACRED (Zhang et al., 2017) for
relation classification, and MAVEN (Wang et al.,
2020) for event typing, even achieving comparable
performance with a single model trained to solve
all three tasks simultaneously.

The main contributions of this work are three-
fold. First, the proposed UNIST framework con-
verts distinct semantic typing tasks into a unified
formulation, where both input and label seman-
tics can be effectively captured in the same repre-
sentation space. Second, we incorporate a model-
agnostic task representation scheme to allow the
model to differentiate among distinct tasks in train-
ing and inference without introducing additional
task-specific model components. Third, UNIST
demonstrates substantial improvements in both ef-
fectiveness and generalizability on entity typing,
relation classification and event typing. In addition,
our unified framework makes it possible to learn
a single model for all three tasks, which performs
comparably to dedicated models trained separately
on each task.

2 Method

In this section, we present the technical details
of UNIST, our unified framework for semantic
typing. We first provide a general definition of
a semantic typing problem (§2.1), followed by a
detailed description of our model (§2.2), training
objective(§2.3), and inference (§2.4).

2.1 Problem Definition
Given an input sentence s and a set of one or more
token spans of interest E = {e1, ...en}, ei ⊂ s, the
goal of semantic typing is to assign a set of one or
more labels Y = {y1, ...yk}, Y ⊂ Y to E that best
describes the semantic category E belongs to in the
context of s. Y denotes the set of candidate labels,
which may include a large number of free-form
phrases (Choi et al., 2018) or ontological labels
(Zhang et al., 2017). In this paper, we consider
two categories of semantic typing tasks, lexical
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Task Input Format

Entity Typing Currently <E> Ritek </E> is the largest producer of OLEDs.
Describe the type of Ritek.

Relation Classification <SUBJ> Herrera </SUBJ> ’s wife <OBJ> Ramona </OBJ> died in 1991.
Describe the relationship between person Herrera and person Ramona.

Event Typing The siege <T> began </T> on 15 September.
Describe the type of began.

Table 1: Input formats for different semantic typing tasks. The four pairs of special tokens marks entities, subjects,
objects and triggers respectively.

typing of a single token span (e.g., entity or event
typing), and relational typing between two token
spans (relation classification).

2.2 Model

Overview. As illustrated in Fig. 1, UNIST lever-
ages a pre-trained language model (PLM) to project
both input sentences and the candidate labels into
a shared semantic embedding space, where the se-
mantic relatedness between the input and label is
reflected by their embedding similarity. This is ac-
complished by optimizing a margin ranking objec-
tive that pushes negative labels away from the input
sentence while pulling the positive labels towards
the input. This simple, unified paradigm allows our
model to rank candidate labels based on the affinity
of semantic representations with regard to the in-
put during inference. Meanwhile, our model is not
limited to a pre-defined label set, as any textual la-
bel, whether seen or unseen during training, can be
ranked accordingly as long as the model captures
its semantic representation. In order to specify the
task at hand along with the tokens (or spans) we
aim to classify, we add a task description to the end
of the input sentence. This allows our framework
to use unified representations from a single encoder
for both inputs and labels, as well as support the
inference of distinct semantic typing tasks without
introducing task-specific model components.

Task Description. To highlight the tokens (or
spans) we aim to type, we first enclose them with
special marker tokens indicating their roles (enti-
ties, subjects, objects, or triggers). Next, we lever-
age the existing semantic knowledge in PLMs and
add a natural language task description to the end
of the input sentence to specify the task at hand
along with tokens (or spans) of interest. The gen-
eral format for lexical semantic typing is

Describe the type of <tokens>.

and that of relational semantic typing is

Describe the relationship between <subject> and
<object>.

Examples of different input formats (including spe-
cial tokens and task descriptions) can be found in
Tab. 1. In addition, relational typing (relation clas-
sification) tasks may incorporate entity types from
NER models alongside input sentences. Entity type
information has been shown to benefit relation clas-
sification (Peng et al., 2020; Zhong and Chen, 2021;
Zhou and Chen, 2021a), and can be easily incor-
porated into our task description, as shown in the
given example.

Input Representation. We use a RoBERTa model
(Liu et al., 2019) to jointly encode the input sen-
tence and the task description. Given an input s
and its task description d, we concatenate s and d
into a single sequence, and obtain the hidden rep-
resentation of the <s> token as the input sentence
representation, denoted by u:

u = fencoder([s, d]).

A traditional approach to semantic typing is to
train classifiers on top of the representations of
specific tokens of interest (Wang et al., 2021a; Ya-
mada et al., 2020). In the case of relational typing
where two entities are involved, their representa-
tions are usually concatenated, leading to dimen-
sion mismatch with lexical typing tasks and requir-
ing a different task-specific module to handle. In-
stead, thanks to the introduction of task description,
UNIST always uses the universal <s> token rep-
resentation for both inputs and labels, and across
different semantic typing tasks.

Label Representation. Most semantic typing tasks
provide textual labels in natural language from
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which a language model can directly capture la-
bel semantics. Some relation classification datasets
such as TACRED use extra identifiers per: and org:
to distinguish same relation type with different sub-
ject types. For example, per:parent refers to the
parent of a person, while org:parent represents the
parent of an organization such as a company. In
this case, we simply replace per: and org: with
person and organization respectively. The label
text is encoded by the exact same model used to
encode the input sentence. Given the label y, we
again take the <s> token representation as the label
representation, denoted by v:

v = fencoder(y).

2.3 Learning Objective
Let Y be the set of all candidates labels for a se-
mantic typing task. Given an input [s, d] and the
positive label set Y ⊂ Y , we first randomly sam-
ple a negative label y′ ∈ Y\Y for each training
instance. Then, we encode the input [s, d], positive
label y and negative label y′ into their respective
semantic representations u, v, and v′. UNIST op-
timizes a margin ranking loss such that positive
labels, which are more semantically related to the
input than negative labels, are also closer to the
input in the embedding space. Specifically, the loss
function for a single training instance is defined as:

Ls,y,y′ = max{c(u,v′)− c(u,v) + γ, 0},

where c(·) denotes cosine similarity and γ is a non-
negative constant. The overall (single-task) training
objective is given by:

Lt =
1

Nt

∑

s∈St

∑

y∈Ys

Ls,y,y′ ,

where St is the set of training instances for task t,
Ys is the set of all positive labels of s, and Nt is the
number of distinct pairs of training sentence and
positive label. In addition to the single-task setting
which optimizes an individual task-specific loss
Lt, we also consider a multi-task setting of UNIST
where it is jointly trained on different semantic
typing tasks and optimizes the following objective:

L =
1

N

∑

t∈T

∑

s∈St

∑

y∈Ys

Ls,y,y′ .

where T is the set of semantic typing tasks UNIST
is trained on, and N is the total number of training
instances.

2.4 Inference

UNIST supports different strategies for inference
depending on the task requirement. If the number
of labels for each input is fixed, we simply retrieve
the top-k closest candidate labels to the input as the
final predictions. Otherwise, all candidate labels
with similarity above a certain threshold are given
as predictions. Note that UNIST is not restricted
to a pre-defined label set, as any textual label in
natural language can be encoded by UNIST into
its semantic representation and ranked accordingly
during inference.

3 Experiments

In this section, we evaluate UNIST on single-task
experiments on three semantic typing tasks: en-
tity typing (§3.1), relation classification (§3.2) and
event typing (§3.3). We then assess the general-
izability of UNIST by conducting zero-shot and
few-shot prediction, and study the effects of task
description (§3.4). Finally, we train UNIST under
multi-task setting to solve all three tasks simultane-
ously (§3.5).

3.1 Ultra-fine Entity Typing

We first conduct experiments on the ultra-fine entity
typing task, which aims at predicting fine-grained
free-form words or phrases that describe the appro-
priate types of entities mentioned in sentences.

Dataset. We use the Ultra-Fine Entity Typing
(UFET) benchmark (Choi et al., 2018), which in-
cludes 5,994 sentences split into 1,998 each for
train, dev and test. Each entity mention in UFET is
annotated with one or more free-form type labels,
covering a set of 2,519 distinct words and phrases.
Following the original evaluation protocol, we re-
port macro precision, recall and F1 score on the
UFET test set.

Model. Since the number of ground truth labels for
each entity is not fixed, all candidate labels with
similarity above a certain threshold is given as the
final predictions. We tune the hyperparameters, in-
cluding the threshold, on the UFET dev set. We use
base and large versions of RoBERTa as encoders
for UNISTBASE and UNISTLARGE respectively.

Baselines. UFET-biLSTM (Choi et al., 2018)
learns context and mention representations by
combining pre-trained word embeddings with a
character-level CNN and a bi-LSTM. LabelGCN
(Xiong et al., 2019) adds a graph propagation layer
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Model P R F1

UFET-biLSTM† (Choi et al., 2018) 48.1 23.3 31.3
LabelGCN† (Xiong et al., 2019) 50.3 29.2 36.9
LDET† (Onoe and Durrett, 2019) 51.5 33.0 40.1
Box4Types*† (Onoe et al., 2021) 52.8 38.8 44.8
LRN (Liu et al., 2021) 54.5 38.9 45.4
MLMET† (Dai et al., 2021) 53.6 45.3 49.1

UNISTBASE 49.2 49.4 49.3
UNISTLARGE* 50.2 49.6 49.9

Table 2: Results of entity typing on UFET. * marks mod-
els based on large versions of PLMs. † marks models
using augmented training data.

to capture label dependencies. LDET (Onoe and
Durrett, 2019) learns a denoising model that au-
tomatically filters and relabels distant supervision
data for training. Box4Types (Onoe et al., 2021)
introduces box embeddings to represent type hier-
archies and uses BERTLARGE as context and men-
tion encoder. LRN (Liu et al., 2021) uses an auto-
regressive LSTM to discover label structures, a
bipartite attribute graph to capture intrinsic label
dependencies, and a BERTBASE as sentence en-
coder. MLMET (Dai et al., 2021) generatively
augments the training data with a masked language
model, and fine-tunes BERTBASE on the augmented
training set.

Results. As shown in Tab. 2, UNISTBASE already
outperforms the SOTA baseline MLMET without
training on any augmented data by 0.2% in F1
score. With a larger language model, UNISTLARGE
further improves F1 score by another 0.6%. Since
UFET only provides a small set of human anno-
tated training data compared to its diverse label
set, all baselines except LRN incorporate distant
supervision data to alleviate data scarcity. UNIST’s
superior performance on UFET demonstrates the
importance of capturing label semantics as an aux-
iliary supervision signal that is not fully exploited
by previous methods. This is especially beneficial
when annotated data are limited, and can alleviate
the model’s reliance on augmenting training data.
In this way, UNIST also achieves better generaliz-
ability to unseen and rarely seen labels, for which
we conduct a more detailed analysis on few-shot
and zero-shot UFET labels in §3.4.

3.2 Relation Classification

The goal of relation classification is to determine
the relation between a subject entity and an object
entity mentioned in a sentence.

Model P R F1

SpanBERT* (Joshi et al., 2020) 70.8 70.9 70.8
MTB* (Baldini Soares et al., 2019) - - 71.5
TANL (Paolini et al., 2021) - - 71.9
K-Adapter* (Wang et al., 2021a) 70.1 74.0 72.0
LUKE* (Yamada et al., 2020) 70.4 75.1 72.7
BERT-CR* (Zhou and Chen, 2021b) - - 73.0
IBRE* (Zhou and Chen, 2021a) - - 74.6
SP* (Cohen et al., 2020) 74.6 75.2 74.8

UNISTBASE 73.6 75.0 74.3
UNISTLARGE* 78.0 73.1 75.5

Table 3: Results of relation classification on TACRED.
* marks models based on large versions of PLMs.

Dataset. We run the experiments on TACRED
(Zhang et al., 2017), a widely used benchmark for
this task that contains 106,264 sentences with en-
tity pairs labeled as one of the 41 relation types or
a no_relation type. TACRED provides 68,124 in-
stances for training, 22,631 for dev, and 15,509 for
testing. Following the original evaluation protocol,
we report micro precision, recall and F1 score on
the TACRED test set.

Model Configuration. UNIST retrieves the can-
didate label closest to the input in the embedding
space as the final prediction. Since entities in TA-
CRED are also annotated with entity types, we
place the entity type labels in front of their corre-
sponding entity mentions in the task description to
provide additional information for relation classi-
fication, as shown in Tab. 1. We tune the hyperpa-
rameters on the TACRED dev set.

Baselines. SpanBERT (Joshi et al., 2020) incor-
porates span prediction as an additional objective
for BERT pre-training. MTB (Baldini Soares et al.,
2019) introduces matching-the-blank training on
entity-linked text to connect relation representa-
tions among related instances. TANL (Paolini
et al., 2021) proposes a unified text-to-text frame-
work for structured prediction tasks based on T5
(Raffel et al., 2020). K-Adapter (Wang et al.,
2021a) learns adapter modules to infuse structured
knowledge into a RoBERTaLARGE model. LUKE
further trains RoBERTaLARGE on entity-annotated
corpus with an entity-aware self-attention mecha-
nism. BERT-CR (Zhou and Chen, 2021b) intro-
duces a co-regularization framework to improve
learning from noisy datasets with a BERTLARGE
model. IBRE (Zhou and Chen, 2021b) incorpo-
rates entity type information into mention mark-
ers in the sentence to boost the performance of
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RoBERTaLARGE. SP (Cohen et al., 2020) formu-
lates relation classification as a two-way span pre-
diction problem, and uses ALBERT (Lan et al.,
2020) as encoder2.

Results. As shown in Tab. 3, UNISTBASE
already outperforms several strong baselines
which are built on larger PLMs (BERTLARGE
or RoBERTaLARGE), except for SP and IBRE.
UNISTLARGE further improves the performance
and establishes new SOTA on TACRED, outper-
forming the best baseline SP by 0.7% in F1. While
SP also leverages label semantics by framing rela-
tion classification as a two-way question answer-
ing problem, it requires hand-crafted question tem-
plates for each relation label and more significant
computational cost for answer span prediction. In
comparison, UNIST directly captures label seman-
tics from the label text itself, while offering supe-
rior performance and inference efficiency as labels
can be retrieved by simply computing embedding
cosine similarity.

3.3 Event Typing

Event typing aims at assigning an event type to an
event trigger that clearly indicates an event.

Dataset. We conduct the evaluation using MAVEN
(Wang et al., 2020), a general-domain event extrac-
tion benchmark with 77,993/18,904/21,835 event
triggers for train/dev/test annotated with 168 dis-
tinct event types. MAVEN also provides a large
set of negative triggers, which includes all content
words (nouns, verbs, adjectives, and adverbs) la-
beled by a part-of-speech tagger but not annotated
as an event trigger. Since UNIST focuses on se-
mantic typing and does not handle mention span
prediction, we train a BERT-CRF model to first
identify trigger candidates following Wang et al.
(2020), and then predict an event type for each
trigger candidate using UNIST. Following the orig-
inal paper, we report micro precision, recall and F1
score on MAVEN test set.

Model Configuration. We retrieve the candidate
label with the highest similarity to the input as the
predicted event type. We tune the hyperparameters
on the MAVEN dev set.

2We were unable to reproduce the results of RECENT (Lyu
and Chen, 2021) due to an error in its evaluation process that
wrongly corrected all false positive predictions during testing.
After correcting that error, the performance of RECENT was
observed to be below the other baselines, and hence has not
been included in the result discussion.

Model P R F1

DMCNN (Chen et al., 2015) 66.3 55.9 60.6
MOGANED (Yan et al., 2019) 63.4 64.1 63.8
DMBERT (Wang et al., 2019) 62.7 72.3 67.1
BERT-CRF (Wang et al., 2020) 65.0 70.9 67.8
CLEVE* (Wang et al., 2021b) 64.9 72.6 68.5

UNISTBASE 66.7 69.9 68.3
UNISTLARGE* 66.5 69.7 68.1

Table 4: Results of event typing on MAVEN. * marks
models based on large versions of PLMs. All baseline
results except CLEVE are taken from Wang et al. (2020)

Baselines. DMCNN (Chen et al., 2015) uses a
CNN with dynamic multi-pooling to obtain trig-
ger representations for classification. MOGANED
(Yan et al., 2019) proposes a multi-order GCN to
capture interrelation between event trigger and ar-
gument representations based on dependency trees.
DMBERT (Wang et al., 2019) improves DMCNN
by training a BERTBASE model as sentence encoder
with dynamic multi-pooling. BERT-CRF stacks a
CRF layer on top of BERTBASE to model multiple
event correlations in a single sentence. CLEVE
(Wang et al., 2021b) proposes a contrastive learning
framework fine-tuned on large-scale corpus with
AMR structures obtained from AMR parsers, and
combines AMR graph representations from a GNN
and text representations from RoBERTaLARGE to
classify event types.

Results. As shown in Tab. 4, UNIST is able to
improve event typing over BERT-CRF, and outper-
form all baselines except CLEVE. Note that in ad-
dition to being initialized from the same RoBERTa
model as UNIST, CLEVE is further fine-tuned on
large-scale corpus with AMR structures obtained
from a separate parsing model (Xu et al., 2020) that
also requires large human-annotated data to train.
This indicates much more expensive supervision
signals used by CLEVE. In contrast, UNIST ef-
fectively captures the meaning of event types and
learns to classify event triggers by only fine-tuning
on MAVEN, while still achieving promising perfor-
mance without the need of any additional annotated
resources.

3.4 Analysis

In this section, we provide a detailed analysis to
better understand the generalizability of UNIST
and the effects of incorporating task description.
Specifically, we examine UNIST’s performance
on few-shot and zero-shot entity typing on UFET,
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Figure 2: Comparison between MLMET and UNIST
on few-shot and zero-shot prediction on UFET.

zero-shot relation classification on FewRel (Han
et al., 2018), and how UNIST performs without
task descriptions.

Few-shot & Zero-shot Entity Typing. A large
portion of UFET test set labels have very few or
even no training instances. We focus on entity types
with no more than 10 instances in the training set,
and compare the performance of UNISTBASE with
the previous SOTA model MLMET on these few-
shot and zero-shot labels.

As shown in Fig. 2, the advantage of UNIST over
MLMET becomes more evident for rarer labels.
For the most challenging zero-shot labels, UNIST
substantially outperforms MLMET by 7.2% in F1
score, suggesting that UNIST is better generalized
to infer low-resource and unseen entity types.

Zero-shot Relation Classification. We conduct
experiments on FewRel (Han et al., 2018), a widely
used benchmark for low-resource relation classifi-
cation. FewRel includes 64/16/20 non-overlapping
relation types for train/dev/test with 700 sentences
collected from Wikipedia for each relation type.
We evaluate UNIST under the N -way-0-shot set-
ting, where the goal is to predict the correct relation
among N candidate relations without seen train-
ing examples. Following previous studies (Cetoli,
2020; Dong et al., 2021), we report 5-way-0-shot
and 10-way-0-shot accuracy on the FewRel dev set.

We compare UNIST with following baselines:
REGRAB (Qu et al., 2020) proposes a bayesian
meta-learning method to infer the posterior distri-
bution of relation prototypes initialized with knowl-
edge graph embeddings. BERT-SQuAD (Cetoli,
2020) formulates zero-shot relation classification
as a question answering problem, and fine-tunes
a BERTLARGE QA model trained on SQuAD 1.1
(Rajpurkar et al., 2016) to predict relation types.
MapRE (Dong et al., 2021) proposes a contrastive

Model 5-way 10-way
0-shot 0-shot

REGRAB† (Qu et al., 2020) 52.5 37.5
BERT+SQuAD* (Cetoli, 2020) 86.0 76.2
MapRE (Dong et al., 2021) 90.7 81.5

UNISTBASE 91.2 82.9

Table 5: Accuracy results of zero-shot relation classi-
fication on FewRel. * marks models based on large
versions of PLMs. † Results for REGRAB are taken
from Dong et al. (2021).

Model UFET TACRED MAVEN

UNISTBASE 49.3 74.3 68.3
- without task description 49.2 72.9 68.2

Table 6: F1 results of ablation experiments without task
description on UFET, TACRED and MAVEN.

pre-training framework that learns input and re-
lation representations from large-scale relation-
annotated data. All baselines, as well as UNIST,
are fine-tuned on the FewRel training set, and then
evaluated on the FewRel dev set with a new set of
relation types completely disjoint from that of the
training set.

As shown in Tab. 5, UNIST outperforms the best
baseline MapRE by 0.5% and 1.4% in accuracy on
5-way-0-shot and 10-way-0-shot tasks without first
pre-training on any relation-annotated data. This
demonstrates that by effectively captures label se-
mantics, UNIST allows better knowledge transfer
to handle unseen relation types.

Effects of Task Description. We conduct an abla-
tion experiment on task descriptions using UNIST
to better understand their effects on downstream
tasks. As shown in Tab. 6, the performance on TA-
CRED degrades much more significantly compared
to that on UFET and MAVEN after removing task
description. In lexical typing, the token span to be
classified tend to share similar semantics with its
type, and in many cases can be easily matched to
its type label without explicitly specifying the task.
In contrast, relation types are usually not seman-
tically similar to its subject and object, and task
description helps bridge this gap.

3.5 Multi-task Learning

With a unified task formulation, UNIST facilities
learning a single model to jointly train on and si-
multaneously solve different semantic typing tasks.
For more balanced training, We train UNIST on
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Model U T M
FewRel

5-way 10-way
0-shot 0-shot

UNISTBASE,U 49.3 6.1 19.6 68.9 56.0
UNISTBASE,T 3.0 74.3 5.2 62.5 48.4
UNISTBASE,M 22.5 4.3 68.3 55.1 39.7

UNISTBASE,U+T+M 48.5 74.2 68.2 80.9 72.0

Table 7: F1 results by multi-task learning on UFET (U),
TACRED (T), MAVEN (M), and zero-shot transfer to
FewRel.

the combined training set of UFET, TACRED and
MAVEN, and report F1 performance on their re-
spective test sets by following their respective eval-
uation protocol. We also include performance of
single-task UNIST for comparison.

As shown in Tab. 7, our multi-task model ob-
tain generally comparable performance to dedi-
cated UNIST models trained separately on each
of the three semantic typing tasks. Despite a slight
decrease in performance on some of the tasks,
UNISTU+T+M is still able to outperform several
strong baselines discussed earlier. Hence, UNIST
provides a possible solution for learning a compact,
unified model with a joint semantic embedding
space across different semantic typing tasks. More-
over, this leads to a well-structured embedding
space that better allows zero-shot transfer to new
semantic typing tasks. To provide a preliminary
analysis on the potential of UNIST on cross-task
transfer, we evaluate both single-task and multi-
task UNIST models on FewRel dev set without
training on any FewRel data. While FewRel is also
a relation classification dataset like TACRED, 75%
of the relation types in FewRel dev set do not exist
in TACRED. Results in Tab. 7 show that by jointly
training on different semantic typing tasks within
a unified framework, UNIST demonstrate signifi-
cantly stronger transferability to the unseen FewRel
task compared to single-task variants. It would be
meaningful to see if incorporating more datasets
and tasks into UNIST would further benefit cross-
task transfer, especially to tasks with limited data
available for training. We leave this as a direction
for further investigation.

4 Related Works

We present two lines of relevant research topics.
Each has a large body of work which we can only
provide as a highly selected summary.

Semantic Typing. Semantic typing tasks can be

generally categorized into lexical typing (e.g., en-
tity typing, event typing) and relational typing (or
classification). A large number of specialized ap-
proaches have been developed for individual se-
mantic typing tasks. For example, prior studies on
entity typing have exploited label dependencies and
hierarchies (Xu and Barbosa, 2018; Xiong et al.,
2019), capturing label relations with knowledge
bases (Dai et al., 2019; Jin et al., 2019), as well as
automatic data augmentation and denoising tech-
niques (Onoe and Durrett, 2019; Dai et al., 2021) to
deal with fine-grained type vocabularies. Relation
classification has been tackled by modeling depen-
dency structures (Zhang et al., 2018), learning span
representations (Joshi et al., 2020), entity represen-
tations (Yamada et al., 2020), and injecting external
knowledge into pre-trained language models (Pe-
ters et al., 2019; Zhang et al., 2019; Wang et al.,
2021a). Nevertheless, most previous methods have
formulated semantic typing as a multi-class classi-
fication problem without capturing label semantics.

Learning Label Semantics. Previous studies have
attempted formulating typing tasks into other tasks
that allow more effective learning of label seman-
tics. Following this idea, semantic typing tasks
have been reformulated as prompt-based learning
(Ding et al., 2021; Han et al., 2021), natural lan-
guage inference (Yin et al., 2019; Sainz et al.,
2021), question answering (Levy et al., 2017; Li
et al., 2019; Du and Cardie, 2020), and translation
(Paolini et al., 2021). Another line of research that
is more relevant to our approach focuses on learn-
ing semantic label embeddings such that candidate
labels can be ranked based on their affinity with
the input in the embedding space. Semantic label
embeddings have been successfully applied to a
variety of tasks such as hierarchical text classifi-
cation (Chen et al., 2021; Shen et al., 2021) and
intent detection (Xia et al., 2018). In the context of
semantic typing tasks, Chen et al. (2020) propose
a learning-to-rank framework for multi-axis event
process typing with indirect supervision from la-
bel glosses. Chen and Li (2021) use a pre-trained
sentence embedding model to learn relation label
embeddings from label descriptions. Dong et al.
(2021) propose a contrastive pre-training frame-
work to learn input and relation representations
from large-scale relation-annotated data. Unlike
previous approaches, UNIST does not rely on exter-
nal label knowledge, training data or task-specific
model components. Instead, UNIST effectively
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captures label semantics solely from label names,
and unify different semantic typing tasks into a sin-
gle framework by incorporating task descriptions
to be jointly encoded with the input.

5 Conclusion

We propose UNIST, a unified framework for se-
mantic typing that exploits label semantics to learn
a joint semantic embedding space for both inputs
and labels. By incorporating model-agnostic task
descriptions, UNIST can be easily adapted to differ-
ent semantic typing tasks without introducing task-
specific model components. Experimental results
show that UNIST offers both strong performance
and generalizability on entity typing, relation clas-
sification, and event typing. Our unified framework
also facilitates learning a single model to solve dif-
ferent semantic typing tasks simultaneously, with
performance on par with dedicated models trained
on individual tasks.
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Appendices

A Experiment Details

We run all single-task UNISTBASE experiments on
NVIDIA RTX 2080Ti GPUs, and all UNISTLARGE
and multi-task experiments on NVIDIA RTX
A5000 GPUs. UNISTBASE and UNISTLARGE use
base and large versions of RoBERTa as encoders
with 125M and 355M parameters respectively. We
conduct hyperparameter search within the follow-
ing range:

• learning rate: {3e-6, 5e-6, 1e-5, 2e-5}

• Batch size: {32, 64, 128}

• Number of training epochs: {50, 100, 200, 500,
1000}

• Ranking loss margin γ:{ 0.1, 0.2, 0.3}

Learning rate 5e-6
Dropout rate 0.1
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Gradient clipping 1.0
Warmup ratio 0.1
Ranking loss margin 0.1

Table 8: Common hyperparameters used in all experi-
ments.

We optimize our models using AdamW
(Loshchilov and Hutter, 2019) with linear
learning rate decay. The best model checkpoints
are selected based on dev set performance. Tab. 8
lists common hyperparameters used across all
experiments. All datasets used in our experiments
are in English. More details of individual tasks and
experiments are provided below.

A.1 UFET
The UFET dataset is publicly available on its offi-
cial website 3. Tab. 9 shows the hyperparameters
and dev F1 score for UFET experiments.

Name UNISTBASE UNISTLARGE

Batch size 64 64
Number of training epochs 1000 1000
Dev F1 49.2 49.5

Table 9: Hyperparameters and dev F1 score for UFET
experiments.

3https://www.cs.utexas.edu/~eunsol/
html_pages/open_entity.html
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A.2 TACRED
The TACRED dataset we use is licensed by LDC
4. Tab. 10 shows the hyperparameters and dev F1
score for TACRED experiments.

Name UNISTBASE UNISTLARGE

Batch size 64 64
Number of training epochs 100 100
Dev F1 73.9 75.3

Table 10: Hyperparameters and dev F1 score for TA-
CRED experiments.

A.3 MAVEN
The MAVEN dataset is publicly available via its
official github repository 5. Tab. 11 shows the hy-
perparameters and dev F1 score for MAVEN exper-
iments.

Name UNISTBASE UNISTLARGE

Batch size 64 64
Number of training epochs 100 100
Dev F1 68.4 68.5

Table 11: Hyperparameters and dev F1 score for
MAVEN experiments.

A.4 FewRel
The FewRel dataset is publicly available via its
official github repository 6. We report the average
accuracy of 10 runs on the dev set during evaluation.
Tab. 12 shows the hyperparameters for FewRel
experiments.

Name UNISTBASE

Batch size 64
Number of training epochs 50

Table 12: Hyperparameters for FewRel experiments.

A.5 Multi-task Experiments
We conduct multi-task experiments on the com-
bined UFET, TACRED, and MAVEN training sets.
We up-sample UFET training set by a factor of
10 for more balanced training. Tab. 13 shows the
hyperparameters and dev set F1 for multi-task ex-
periments.

4https://catalog.ldc.upenn.edu/
LDC2018T24

5https://github.com/THU-KEG/
MAVEN-dataset

6https://github.com/thunlp/FewRel

Name UNISTBASE

Batch size 128
Number of training epochs 100

Dev F1
47.5 (UFET)

72.9 (TACRED)
68.3 (MAVEN)

Table 13: Hyperparameters and dev F1 score for multi-
task experiments.

B Ethics Considerations

Our experiments are all conducted on openly avail-
able and widely used datasets. We do not augment
any information to those data in this research, hence
this research is not expected to introduce any addi-
tional biased information to existing information
in those data. However, the model may potentially
capture biases reflective of the pre-trained language
models and datasets we use for our experiments,
in such biases have pre-existed in these pre-trained
models or datasets. This is a common problem for
models trained on large-scale data, and therefore
we suggest conducting a thorough bias analysis
before deploying our model in any real-world ap-
plications.
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