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Abstract

Training mixed-domain translation models is
a complex task that demands tailored architec-
tures and costly data preparation techniques. In
this work, we leverage federated learning (FL)
in order to tackle the problem. Our investiga-
tion demonstrates that with slight modifications
in the training process, neural machine trans-
lation (NMT) engines can be easily adapted
when an FL-based aggregation is applied to
fuse different domains. Experimental results
also show that engines built via FL are able to
perform on par with state-of-the-art baselines
that rely on centralized training techniques.

We evaluate our hypothesis in the presence of
five datasets with different sizes, from different
domains, to translate from German into English
and discuss how FL and NMT can mutually
benefit from each other. In addition to provid-
ing benchmarking results on the union of FL
and NMT, we also propose a novel technique to
dynamically control the communication band-
width by selecting impactful parameters during
FL updates. This is a significant achievement
considering the large size of NMT engines that
need to be exchanged between FL parties.

1 Introduction

Federated learning (FL) is a rapidly growing field
in the machine learning community. The reason for
this popularity is because of its decentralized and
private nature. Model training in FL is distributed
over multiple nodes where each node could be an
independent piece of hardware with its own iso-
lated data. This unique feature enables building
high-quality models that benefit from external re-
sources without requiring access to them.
Although FL is a relatively new field (McMa-
han et al., 2017), it has drawn researchers’ atten-
tion and the community has witnessed a rapid
growth. Fields such as computer vision have
adapted quickly to the FL framework (Geyer et al.,
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2017; Lin et al., 2018; Hardy et al., 2019; Geiping
et al., 2020; Ren et al., 2021), but others, such as
natural language processing (NLP), have not been
as quick and only recently have begun to explore
(Wu et al., 2020).

We believe that the reason for this slow(er) in-
tegration of NLP and FL is because representa-
tion learning in NLP is complicated and down-
stream tasks require large and data-hungry models.
These requirements are heavy-handed for any FL
model and slow down the unification. However,
real-world NLP problems necessitate the use of
distributed solutions with privacy-preserving char-
acteristics (Li et al., 2020). Our work is an effort
towards leveraging FL-based solutions in NLP.

In this paper, we focus on NMT to combine it
with FL. A review of the NLP literature shows
that almost all recent groundbreaking architectures
have been first proposed, or at least evaluated, for
translation (Bahdanau et al., 2014; Sutskever et al.,
2014; Gehring et al., 2017; Vaswani et al., 2017).
This is an indication of the intricacy of the NMT
task. Therefore, it is fair to claim that any FL tech-
nique that is capable of training high-quality NMT
models could also be considered as a trustworthy al-
ternative for other NLP tasks. Thus, NMT could be
a strong candidate for FL. benchmarking purposes.

NMT also has other unique features that can
directly benefit FL.. One key factor in a fair simu-
lation of FL is to mimic data heterogeneity (also
referred to as non-I1IDness) in experimental environ-
ments (Kim et al., 2020). Different sampling tech-
niques have been proposed to model such data dis-
tribution processes (Ji et al., 2020; Li et al., 2021;
Wang et al., 2021), however there is no guaran-
tee that what we simulate is what we encounter
in real-world applications. NMT, to some extent,
solves this problem since parallel datasets by na-
ture have such heterogeneity. There are only a few
NLP tasks that can provide as large and diverse
training corpora as NMT. For some language pairs,
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there exist multiple datasets with hundreds of thou-
sands or even millions of parallel sentences.! This
means, we should have enough data for each FL
node. Moreover, each node can naturally pick one
dataset/language, so we do not have to artificially
distribute data. NMT, together with offering rich
training data, also has a bi-lingual setting which is
a compelling testbed for FL. Coping with the com-
plexity of not only different domains, but also dif-
ferent languages, at the same time in a distributed
platform is worth investigating.

While NMT offers a natural testbed for FL, we
argue that the task itself benefits from the offer-
ings of FL. Training a mixed-domain translation
model is a challenging task. We show that the ag-
gregation phase of FL can greatly help with this
challenge, as it efficiently fuses information from
different domains. From the privacy perspective,
NMT can also benefit from FL. In fact, the neces-
sity of having a private training pipeline is relatively
understudied in NMT. It is mostly assumed that all
training datasets are available in a homogeneous
and compatible format through a central reposi-
tory, which is usually not attainable in real world.
All these reasons make NMT a compelling case to
study in the context of FL.

1.1 Research Scope

The goal of this paper is to provide preliminary
results on the combination of FL. and NMT, as op-
posed to running a comprehensive FL research or
comparing different algorithms. We are also inter-
ested in studying the feasibility of training complex
and deep NMT models in decentralized and private
settings. Besides providing a set of benchmarking
results, this paper’s other two contributions can be
summarized as follows:

* We show that FL aggregation techniques are
reasonable alternatives to fuse information
from multiple domains, thus FL-based train-
ing could be considered as an approach to
build mixed-domain NMT engines.

* We show that large NMT models are hard to
distribute within the FL network. Therefore,
we propose a novel and cost-efficient solution
to reduce the communication bandwidth.

'https://opus.nlpl.eu/

2 Federated Learning

FL is an approach to train models in a distributed
fashion where nodes do not (and are not allowed
to) access each other’s data (Yang et al., 2019; Li
et al., 2020). Any node by itself is not powerful
enough to deliver high-quality services due to the
small size of its local data. It can perform well on
in-domain instances, but it might fail to respond to
requests from other domains. FL establishes a com-
munication methodology and a platform that allows
participating nodes to exchange parameters (but not
data) to help boost each other’s performance.

In this work, we follow the cross-silo FL set-
ting as outlined in Li et al. (2019). Algorithm 1
summarizes the entire model training pipeline and
explains what we mean by being cross-silo.

Algorithm 1: Cross-Silo FL

1 for r < 0 to rounds by 1 do
2 updates = Pull (C)

3 for upd in updates do

4 L S = aggregate (S,upd)

5 C=Push (S)

In this setup, there is a central node S that or-
chestrates training. In each round 7, the server pulls
local updates (i.e. a set of parameters) from differ-
ent nodes (also known as clients) and updates the
parameters of the central model. C = {cy, ...,cx }
indicates the set of K clients. Once all information
is aggregated, parameters of the central model are
pushed back to clients so that they can also benefit
from global/community knowledge.

One key factor in FL is communication, which
is defined by the Pull and Push steps in this al-
gorithm. Due to the distributed nature of FL, nodes
need to connect and exchange information and this
needs to be carried out in an efficient fashion. The
communication cost becomes even more critical
when exchanging large models, such as in NMT.
In the next sections, we discuss how communica-
tion directly affect the feasibility and performance
of any FL setting, and how we improve it by our
dynamic pulling technique.

Algorithm 1 only shows the computation that
occurs on the server side. It should be noted that
each client is an independent silo that updates its
internal model with local data. This algorithm only
illustrates the main skeleton of the cross-silo setting
and does not entail all the details of each step.
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In our experiments, we use the well-known
FedAVG algorithm (McMahan et al., 2017) for
aggregation. Therefor, Line 4 can be formulated as
in Equation 1:

K n
k
wy § —ak (1)
n
k=1

where w, is the set of all parameters of the cen-
tral model in the r-th round, n; is the number of
data points in the k-th client’s dataset, and n is
the total number of all training samples. There
exist multiple extensions to FedAVG, but since it
is a widely-acceptable baseline for benchmarking
purposes we also use it in our experiments. This
choice allows us to minimize the impact of differ-
ent factors introduced by other FL algorithms and
only focus on the relation between NMT and FL
and their mutual impact on each other.

3 Federated Learning for NLP

There are several models in the field that have been
proposed to leverage FL for NLP. Hartmann et al.
(2019) studied whether they could improve the
ranking of suggestions in the Firefox URL bar and
train a model on user interactions without violating
user privacy. They incorporated feedback received
from different clients using FedAVG which re-
sulted in significant improvements. Ji et al. (2019)
suggested that the simple averaging strategy used
in FedAVG might not be sufficient enough, so they
improved the aggregation phase by incorporating
the significance of each client by using an attention
mask to weigh clients. Chen et al. (2019) focused
on language modelling and addressed the problem
of out-of-vocabulary entries when working with
different clients.

Bui et al. (2019) investigated the effect of FL
in training better and more personalized user/data
representations. Their results show that when ag-
gregating information via FL, the model quality in-
creases significantly; at the same time, the training
pipeline is distributed and private. We also make a
similar observation in our experiments, though not
at the representation level, but in terms of the final
translation quality.

Ge et al. (2020) proposed a named-entity recog-
nition (NER) model that is trained with FL to work
on medical data. Their results demonstrate that not
only FL preserves privacy, but also outperforms
models trained in a centralized fashion. Apart from

NER, models with similar concerns have been pro-
posed for mobile keyword prediction (Hard et al.,
2018), keyword spotting (Leroy et al., 2019), and
next word prediction (Stremmel and Singh, 2020).
Liu and Miller (2020) utilized FL to pre-train
and/or fine-tune BERT models (Devlin et al., 2018).
From a research standpoint, it is worthwhile to un-
derstand if it is even feasible to handle such deep
models in an FL framework, and whether a simple
averaging-based aggregation is enough. They at-
tempted to address these questions and provided
supporting results. In that sense, our work is simi-
lar to theirs as we also work with complex models.
In addition, we also discuss the bandwidth problem
to facilitate exchanging large sets of parameters.

3.1 Domain Adaptation

Domain adaptation covers a wide range of prob-
lems from adjusting a model to work in a new
domain/genre (Chu and Wang, 2018) to fine-tuning
for noisier conditions (Passban et al., 2020), or even
transferring a model to a different environment for
a different task (Zhu et al., 2020). Domain adap-
tation has recently attracted more attention due to
advances introduced by models such as ELMO (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018).
These models provide general-purpose representa-
tions which are easily adaptable to other tasks. In
these models, all network parameters are fine-tuned
during adaptation, which might not be necessary.
Houlsby et al. (2019), Pfeiffer et al. (2020), and
Riicklé et al. (2020) proposed a new set of architec-
tures, known as Adapters, to tackle this problem.
Adapters are low-cost plug-ins that are mounted on
pre-trained models, so when adapting the model
only these small sets of parameters are updated.

Bapna et al. (2019) proposed an NMT variation
of Adapters. In their model, a dedicated compo-
nent is added inside each layer that is responsible
for transitioning in-between domains. However,
all these solutions perform in centralized settings.
Roosta et al. (2021) studied this problem in the
context of FL and showed that Adapters might not
be aligned well with the distributed nature of FL.
As they reported, Adapters seem to be suitable to
connect two domains but when exposed to several
domains in FL, they diverge too much from their
main distribution, such that using them in the body
of clients drastically downgrades performance.

To address the problem, they introduced addi-
tional and dedicated layers (as opposed to intra-
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layer modules in Adapters), called Controllers,
that are designed to be exchanged between the
server and clients. These new layers are placed
in-between client model’s original layers and deal
with external information sent/received to/from the
server. Since they only exchange Controllers, they
are able to reduce the communication bandwidth.
This work is the closest to ours so we use it as our
main baseline.

The model proposed by Roosta et al. (2021) suf-
fers from two issues. They randomly introduce
new layers (Controllers) but there is no mechanism
defined to determine the number those layers, i.e.
it is not investigated that how many Controllers are
required under different conditions. It is also not
clear where these layers need to be placed, and it is
only discovered through experimental explorations.
On the contrary, we introduce a simple yet effective
heuristic to select a subset of impactful parameters
during communication. In our solution, we do not
need to deal with the aforementioned issues.

4 Low-Cost Domain Adaptation in FL.

In our FL setting, we initialize each client with a
high-quality but generic NMT engine. Clients use
local data to fine-tune their internal model and the
combination of a pre-loaded model with local data
should lead to better quality. Clients also connect
with the server regularly to transfer local knowl-
edge and contribute to the aggregation phase. In
such a process, domain adaptation happens natu-
rally. Inspired by Roosta et al. (2021), we imple-
mented this idea and observed a substantial boost
in our translation engines. Not only are we able to
deliver better results but also we train NMT models
in a distributed and private fashion. However, we
noticed that communication could be quite costly.
In the default configuration, for every Pull (in
Algorithm 1) a large NMT engine has to be ex-
changed, which might not be necessary. In order
to clarify why, we designed an experiment whose
information is illustrated in Figure 1. In this ex-
periment, we pick three of our engines and train
them for 120K steps within the FL pipeline. For
each model, we compare tensors from the 120K
checkpoint to their 110K peers and measure how
much they changed in-between these two check-
points. More specifically, for a given tensor w, we
compute the pair-wise difference between values
from the two checkpoints (wg = wi20x — W110K),
then compute the absolute-value norm of the dif-

ference tensor (||wg||). The norm value indicates
the shift of each tensor during FL rounds. Figure 1
provides a histograms of norm values that belong
to different tensors from the encoders and decoders
of our translation engines (for more information
about the engines and datasets see Section 5).
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Figure 1: The histograms of the norm values of the
difference tensors computed for the 110K and 120K
checkpoints. The x and y axes show the norm and the
number of tensors, respectively. Information related to
encoder tensors is visualized in the upper half and the
bottom sub-figure consists of decoder tensors’ informa-
tion. The first blue bar of the encoder sub-figure indi-
cates that around 40 tensors in the WMT encoder only
changed slightly from the checkpoint 110K to 120K as
their norm is in the range [0,5], whereas the last bar on
the other end of the same sub-figure shows that around
2 tensors in the WMT model changed drastically as the
norm of their difference tensors is close to 175.

Results from Figure 1, together with our other
observations, show that a small subset of tensors di-
verge substantially (mostly shown in the right half
of the figures), but for the rest, there is a heavy con-
centration around small norms. More interestingly,
we realized that this is a pattern that consistently
occurs from one round to the next in our FL experi-
ments, namely each tensor either belongs to a set
of highly-fluctuating parameters or it only changes
marginally and lies in the less active set. The fluc-
tuation threshold can change but tensors almost
always stay in their respective clusters between
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rounds. We used this finding as a basis of our de-
sign to improve bandwidth consumption, such that
we decided to focus on either highly fluctuating
tensors or those in the other cluster and only Pull
one type of tensors during communication. The
strategy is simple but has led to promising results.

More formally, a variation of the aforementioned
idea can be simply formulated as shown in Equa-
tion 2:

DPj = {wy; |wp —wy 4[| >0} ()

DP; in the r-th round consists of all tensors (w?)
that deviate from their previous values in the pre-
vious round by 6. DP stands for Dynamic Pulling
and g indicates that the difference norm of candi-
date tensors should be greater than or equal to the
threshold. DP is exclusively computed for each
client which is specified with the ¢ superscript.
Moreover, the DP sets for decoders and encoders
are calculated separately as they vary at different
scales. Based on Equation 2, we do not need to
Pull all tensors but each client decides what to
share with S (only highly-fluctuating tensors in this
case). Figure 2 visualizes this concept.

et B
gy

Figure 2: DP-based communication in our FL setting.

Gy

As shown in the figure, C'; computes the differ-
ence between tensors from rounds 7 and » — 1 and
decides to only share two tensors (vertices in dia-
grams) that have the highest norms. In this scenario,
the communication cost between C' and S is ap-
proximately reduced by 78% for the pulling phase
as only 2 out of 9 tensors (22%) are transferred.
The exact percentage of the bandwidth saved in
this communication protocol directly depends on
the client’s architecture and 6, but the figure uses an
imaginary scenario to explain the reduction mecha-
nism.

The intuition behind D Py is that only highly-
fluctuating tensors should be involved in the com-
munication process. It assumes that the main adap-
tation (or out-domain) knowledge lies in those ten-
sors and what each client needs to learn about its
external world is only communicated through such
active tensors. Therefore, clients only need to ex-
change them with the server. This is an assumption
that might either result in effective communication
or conversely hurt the client. Because, if by any
chance local (or in-domain) knowledge is stored
in such tensors, D P manipulates the most impor-
tant parameters and overwrites them with external
domains’ information. In other words, there is a
possibility that the reason for observing high fluc-
tuations in active tensors is not because they carry
the community knowledge but because they are
responsible to learn local data, so they have to vary
frequently to adjust and learn local data.

If this second assumption is correct, modifying
the active set can easily delay the convergence of lo-
cal models, and thus deteriorate their quality. Due
to this concern, we propose another alternative,
D Pf, which relies on less active tensors for com-
munications. The pulling condition for D Pf is as
in Equation 3:

Jwy. —w) || < 6 3)

which means, unlike the previous case, highly-
active tensors are protected from external updates
and only modified using local data. The less active
tensors are assumed to be the representatives of ex-
ternal domains, so they are shared with the server
and co-trained with other tensors. Both types of
tensors contribute to the local training process, but
this time the less active group is responsible for
bringing the community knowledge to the client.
In the next section, we compare D P and D Py and
show which strategy is more impactful.

S Experimental Study

5.1 Hyper-Parameters and Datasets

Since our main baseline is the model proposed in
Roosta et al. (2021), we follow their setting in the
interest of fair comparisons. For our translation
engines, we use Transformers with their base con-
figuration (Vaswani et al., 2017). Encoders and
decoders have six layers (each), attention modules
have eight heads, word embeddings and internal
projection layers are 512-dimensional vectors, and
the inner layer in the position-wise feed-forward
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Corpus Source (De) Target (En) Sentences
Words Tokens ‘Words Tokens

WMT 119,920,225 1,529,872 126,731,132 691,150 4,468,841

oS 33,502,036 339,627 37,373,751 174,670 4,500,000

TED 2,710,904 99,221 2,861,006 45,364 143,837

PHP 322,546 13,001 318,788 8,521 39,708

UB 96,355 13,515 90,839 9,234 13,246

Table 1: Statistics of the training datasets. The second and third columns show the number of all words and unique
tokens for the source and target languages, respectively, and the last column is the number of parallel sentences. OS
is a large collection, so we randomly selected a subset of it for our experiments. As the statistics show, we have
different sets with different sizes from different domains which helps us have a fair and realistic simulation.

module has 2024 dimensions. All other hyper-
parameters/variables such as the training algorithm
and scheduling are the same as the base configura-
tion unless they are clearly indicated in the paper.
We used four NVIDIA V100 GPUs for all experi-
ments.

Similar to Roosta et al. (2021), we work on the
the German—English direction. To train/test the
models, we use five datasets of WMT,? OpenSub-
title or OS (Lison and Tiedemann, 2016), PHP,
Ubuntu or UB, and TED (Tiedemann, 2012) where
all corpora are normalized and fokenized with the
scripts provided by Moses.> Table 1 provides the
statistics of the training datasets.

For the test and development sets of the WMT
model, we use newstest-14 and newstest-13, re-
spectively. For others, we randomly select 4,000
sentences: 2,000 for the test and 2,000 for the de-
velopment sets.* We also pre-processed datasets to
segment words into sub-words by BPE (Sennrich
et al., 2016). This helps create a shared vocabulary
for source and target languages of all models and
avoid out-of-vocabulary entries. Our BPE setting
extracts 30K unique tokens for each of the source
and target sides.

One critical hyper-parameter in our model is 6.
Considering the selection criterion in Equation 2, a
small value of 6 allows the majority of tensors to
be transferred and hence leads to a minimal reduc-
tion in bandwidth. A very large value is also not
plausible as it filters lots of tensors and prevents
the client from receiving external knowledge. One
solution is to run an exhaustive search to find the

http://statmt.org/wmtl4/
translation-task.html

*https://github.com/moses—smt/
mosesdecoder

“The same sets used in Roosta et al. (2021)

best value, which clearly is an expensive process
and sometimes impossible in the case of FL. Vacil-
lating between different options to set up € requires
the engagement of both client and server and could
in fact be more costly than simply pulling all ten-
sors. To cope with this and also make our results
easily reproducible, we simply consider the median
of the differences for #, meaning we only transfer
half (50%) of the tensors and ignore the rest. The
selection criterion determines which half. In Dch,
we consider the active half and in D P the less
active half is exchanged. Our results show that this
simple strategy leads to effective communication
without compromising much on quality.

5.2 Centralized Model Training

Our baseline results are summarized in Table 2.
The evaluation metric used in all experiments is
BLEU (Papineni et al., 2002) computed by Sacre-
BLEU (Post, 2018).° As expected, models work
accurately on in-domain data but perform poorly
on other domains, specially if the domain is sig-
nificantly different from training samples, e.g. the
PHP model’s BLEU score is zero when translating
WMT test sentences.

In order to remedy the poor quality for out-
domain data, we train a central model and adapt it
to all other domains with two techniques of data
combination and chained fine-tuning. In data com-
bination, we simply concatenate all corpora to cre-
ate a much larger training set. We initialize the
central model with WMT parameters and retrain
it for extra 50K steps with the new dataset. In
chained fine-tuning, we do not combine datasets
but instead fine-tune the central model sequentially
using each domain’s training set for additional 50K

Shttps://github.com/mjpost/sacrebleu
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WMT  OS TED PHP UB
WMT 33.66 18.57 2922 8.04 1241
(0N 13.66 23.58 2422 7.84 13.83
TED 12.09 13.59 2932 6.67 10.15
PHP 0.00 026 026 3448 0.00
UB 028 078 075 230 30.15

Table 2: Baseline results for the De—En direction.
Models are trained for 100K steps. The first column
indicates which training set is used to train the engine
and other columns show models’ performance on dif-
ferent test sets, e.g. [OS][TED] = 24.22 indicates the
BLEU score of a model trained on the OS training set
and tested on the TED test set. The best BLEU score for
each test set is bold-faced.

steps (10K for each), i.e. we start from the WMT
model, then sequentially fine-tune it over UB, OS,
and other datasets one after another. This sort of
fine-tuning could suffer from catastrophic forget-
ting, so we ran different experiments to figure out
the best order of fine-tuning.

The chained fine-tuning strategy could provide
relevant baselines for FLL experiments. Imagine
a scenario where the central model is shipped to
a client environment and it is updated there with
multiple local datasets. In data combination, we
assume that all data is accessible at training time
(a fully-observable environment with full access to
all domains’ data) whereas chained fine-tuning pic-
tures a more realistic scenario by forcing to update
the central model gradually on the client side.

Table 3 summarizes results for these two fine-
tuning methods. Exposing the central model to
other domains’ data yields much better quality.
Data combination clearly outperforms and it shows
the impact of having direct access to data; the privi-
lege that we do not have in settings such as chained
training and FL.

Technique @ WMT OS TED PHP UB
chained 18.26 23.51 28.19 16.14 23.05
combination 33.50 21.82 31.51 37.56 35.61

Table 3: Domain adaptation results in centralized set-
tings.

5.3 Federated Learning Results

Models reported in the previous section (specially
in Table 3) are high-quality engines that are trained

in a centralized fashion and provide acceptable per-
formance for all domains. Fine-tuning addressed
the problem of poor quality for out-domain data,
but as discussed previously, centralized fine-tuning
and having access to out-domain data might not be
always possible. Therefor, in this section we try to
train comparable alternatives in an FL setting.

Our setting has one server and five clients (one
for each dataset). In the interest of fair compar-
ison between the FL and centralized approaches,
we initialize all the clients with WMT parameters.
Each client updates its model with local data and
shares it with the server in each round. We Pull
client updates after 10K steps of fine-tuning for
aggregation and repeat this process for 5 rounds.
In total, each model is fine-tuned for 50K steps
which is identical to the setting we used for cen-
tralized training. Results for this experiment are
summarized in Table 4.

WMT OS TED PHP UB

S 33.97 19.17 30.8 37.32 47.9
WMT¢ 32.07 18.28 29.55 9.55 13.75
oS¢ 19.05 23.39 27.85 13.57 18.58
TED® 17.37 16.05 34.30 11.83 17.05
PHP® 407 433 748 45.07 10.90
UuBc 077 427 5.66 1498 49.51

Table 4: FL results with 1 server (S) and 5 clients
(indicated with the c superscript), e.g. OS¢ is a client
initialized with WMT parameters and updated with its
own data (OS training samples).

The first row in Table 4 belongs to the server.
FL affects model training quite positively and pro-
vides significantly better BLEU scores, specially
for those low-performing models such as PHP. The
average BLEU score of the server over different
domains is 33.83, which is 1.83 points higher than
that of the best model reported in Table 3. This
means, even though FL does not access clients’
data, it is more impactful in fusing information and
training mixed-domain engines. This outcome for
a complex task such as NMT was unexpected.

After the final FL round, the server parameters
are pushed back to clients so they can also bene-
fit from the result of aggregation. At this point,
each client can decide to run another phase of fine-
tuning with local data over the server parameters.
This is a trade-off between being domain specific
and remaining generic. Results for this process
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are listed from the second to last rows in Table 4,
e.g. PHP after the last Push step has access to all
server parameters so its BLEU score on in-domain
data is 37.32, similar to that of the server. It is also
able to translate other domains with the average
BLEU score of 32.96. However, as the fifth row
shows, if it decides to fine-tune the last parameter
set it received from the server with its own local
data, its BLEU score increases from 37.32 to 45.07
on the in-domain test set, but at the same time it
loses its generalization over other domains.

We also ran an ablation study to evaluate how the
number of FL rounds impact model quality. Two
important factors in FL settings are the number
of clients and training rounds. We can pass over
the first one as we have a cross-silo setting with a
limited number of clients, but Table 5 and Figure 3
provide additional information on the second hyper-
parameter.

WMT OS TED PHP UB

Ss 3397 19.17 30.8 37.32 479
S0 31.90 19.63 31.04 38.33 48.63
S50 31.05 20.83 32.27 43.99 51.07

Table 5: FL results for rounds € {5,10,50}. rounds =
50 means aggregation occurs 50 times between check-
points 100K (where FL training starts) and 150K (where
FL training ends).

50

0 48

[o]

(9]

wn 46

o

4 a4 —— 5 rounds, UB

© 2 10 rounds, UB

50 rounds, UB

40

110 120 130 140 150
Checkpoint

Figure 3: The learning curve of the UB model for rounds
€ {5,10,50}.

Results from the figure/table above show that
the number of rounds and model performance in-
crease proportionally in low-quality clients such
as UB or PHP. This was expected since with a
higher number of rounds clients are updated more
frequently with rich information from the central
server. However, it comes at a price as it increases
communication load. It also delays local model

training, because in each round the client has to
suspend training to read server values and updates
its internal model. For other high-quality clients
such as WMT, higher rounds lead to some degrada-
tion since they receive external updates from less-
accurate peers and have to compensate for their low
quality. The choice of the number of rounds is a
trade-off between quality and bandwidth.

5.4 Dynamic Pulling Results

We proposed a novel technique for better pulling
and mentioned that it is able to reduce the commu-
nication load yet maintain model quality. Table 6
reports related results to support our claims.

WMT OS TED PHP UB
default 3397 19.17 30.8 37.32 47.90
DPf 2928 19.17 30.88 36.33 45.74
DpP;  30.74 18.28 27.61 13.69 32.16
random 24.58 19.16 30.57 35.33 42.50

Table 6: The impact of different communication tech-
niques on model quality. The first row is copied from
Table 4 for easier comparison. The bold-faced numbers
are the best results obtained by DP-based techniques.

The average BLEU scores for the default, D PF,
and DP; methods on different domains are 33.83,
32.28, and 24.49, respectively. This means the
assumption that less active tensors are responsi-
ble for domain adaption could be true and highly-
fluctuating tensors should only be kept for learn-
ing in-domain knowledge. We also provide results
from our random configuration, in which we ex-
change the same number of parameters as in D P/
and DP7 but those parameters are selected ran-
domly. The comparison between random and other
alternatives shows that the selection criterion di-
rectly affects model quality.

Although there is a gap by 1.55 points between
default and D Pf (which is meaningful in NMT),
D Pf could still be a strong candidate when training
large models in the context of FL, because the num-
ber of parameters exchanged in each pulling step is
45,724,160 for default whereas this number is only
22,863,104 (50% less) for D Pf. It should also be
noted that pulling occurs not once but for multiple
rounds and saving 50% each time is a significant
gain. Moreover, DPf still performs on par with
data combination which is a strong but centralized
and not private baseline.
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5.5 Comparison to Controllers

As previously discussed in Section 3.1, Controllers
(Roosta et al., 2021) only exchange 4 layers (2
from the encoder and 2 from the decoder in a 12-
layer Transformer) with the server in the Push and
Pull phases, which means the communication
bandwidth they reduce is around 66% (% ~ 33%
of the layers are only exchanged between the server
and clients). In our case, DP only affects Pull
which leads to 25% bandwidth reduction in client-
to-server exchanges.®

We challenged our model to see if we can also
save 66% in bandwidth by sending/receiving the
same number of parameters as in Controllers. More
precisely, we applied our threshold-based strategy
in both Push and Pull and modified the value of
the threshold such that it only accepts 33% of the
parameters to exchange with the server. Table 7
summarizes results of this experiment.

WMT OS TED PHP UB
DP; 29.52 19.25 31.53 36.19 45.40
DPy 29.09 19.07 30.93 34.47 41.57

6E6D (0-3) 31.13 19.19 30.95 33.79 32.85
8E8D (0-6) 31.79 20.02 30.6 32.43 33.41

Table 7: Dynamic parameter selection versus Con-
trollers.

In our comparison, we selected the two best per-
forming Controller models reported in Roosta et al.
(2021). The 6E6D (0-3) configuration is a Trans-
former with a 6-layer encoder and 6-layer decoder
whose first and fourth layers are selected to act as
Controllers. In the 8E8D (0-6) configuration, in-
stead of using the original encoder/decode layers
as Controllers four additional layers (two for the
encoder and two for the decoder) are defined which
are placed after layers O and 6. This means, in an
8-layer encoder/decoder the first and seventh layers
are Controllers and the rest are ordinary layers.

Results show that our model could be a reliable
alternative for communication-efficient FL, even
though we aggressively limited the number of pa-
rameters exchanged in this new setting. Moreover,
in our model we do not need to define additional
layers. Unlike Controllers, we also do not have to
deal with finding the correct position to place Con-

pul1 is only 50% of the communication where we ex-
cluding half the parameters using the threshold, so 50% x
50% = 25%.

troller layers. According to Roosta et al. (2021),
the final model performance is directly impacted
by misplacing Controllers and our solution solves
that problem.

6 Conclusion and Future Work

In this paper, we reported a set of benchmarking
result for NMT in the context of FL. We also pro-
posed an effective technique to reduce the com-
munication bandwidth. Our solution tries to deter-
mine a subset of parameters that are responsible
for learning out-domain knowledge and only ex-
changes them with the server.

In future work, we are interested in i) adding
more languages to train multilingual engines, if)
improving communication protocols even further,
iii) comparing other FL algorithms in the presence
of DP, and iv) investigating NMT in cross-device
settings.
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