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Abstract

This paper describes a method to quantify the
amount of information H (¢|s) added by the tar-
get sentence ¢ that is not present in the source
s in a neural machine translation system. We
do this by providing the model the target sen-
tence in a highly compressed form (a “cheat
code”), and exploring the effect of the size of
the cheat code. We find that the model is able
to capture extra information from just a single
float representation of the target and nearly re-
produces the target with two 32-bit floats per
target token.

1 Introduction

Given a sentence s in the source language, a ma-
chine translation system generates a translation ¢
in the target language. However, for any sentence
of non-trivial complexity, the translation ¢ is not
unique. Therefore, to reproduce a reference trans-
lation, a model requires some amount of extra in-
formation. The aim of this work is to quantify the
amount of information that is missing in the source
s that is required to generate the translation t.

To quantify this information, we modify the
model architecture to provide the target sentence
to the model as an auxiliary input, and observe the
effect of varying the size of the representation of
the target sentence from the minimum that provides
any useful information to the decoder to the size
that enables a near-perfect reproduction of the tar-
get. Since the model seeing the target as an input is
a form of “cheating”, we refer to these compressed
representations of the target as “cheat codes”.

2 Related Work

Zoph and Knight (2016) use multiple encoders to
provide input in multiple languages to machine
translation models to improve translation quality.
Dual encoder networks have been used in lan-
guage generation tasks to inject extra information

(Sharath T et al., 2017), encode input at different
levels of granularity (Yao et al., 2020), or for con-
text awareness (Li et al., 2020). Junczys-Dowmunt
and Grundkiewicz (2017) use very similar dual-
encoder architectures for automatic post-editing,
but without bottlenecking the second encoder out-
put, and the second input in that case is machine
translation output instead of a reference. Dinu et al.
(2019) train models to inject custom terminology
by providing an additional input, but instead of
using a second encoder, this is done using inline
annotations for the terms to be generated and using
factors to demarcate these annotations.

3 Method

3.1 Architecture

We use the Marian framework (Junczys-Dowmunt
etal., 2018) to implement' a modified dual-encoder
transformer architecture (Zoph and Knight, 2016)
similar to the one used by Junczys-Dowmunt and
Grundkiewicz (2018), but without the tied encoder
parameters.

The first encoder is a standard transformer-base
encoder (Vaswani et al., 2017) which takes the
source sentence as input, while the second encoder
generates a highly compressed representation of the
second input. The decoder attends to both encoder
contexts — each decoder layer has a multi-head at-
tention block for each encoder and these blocks
are stacked (see Figure 1 in Junczys-Dowmunt
and Grundkiewicz (2018)). Figure 1 shows our
model architecture along with the separate inputs
and cheat codes.

For the second encoder, we use a GRU (Cho
et al., 2014) with hidden size 256, optionally av-
erage its outputs over all the states to get a fixed-
length representation, and apply a linear bottleneck

"https://github.com/Proyag/marian-dev/
tree/cheat-codes
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Figure 1: Model architecture with inputs and cheat
codes

layer. This generates the highly compressed rep-
resentation of the second input that the decoder
attends to.

3.2 Cheat Codes

At training time, we provide the target sentence as
the second input to the model, so the model essen-
tially cheats by seeing the translation it is supposed
to generate. At inference time, we can provide the
reference translation or any other sentence as the
second input, which should guide the generation
towards this provided input.

Alternatively, this second encoder can be by-
passed to directly provide context vectors for the
decoder to attend to. As an example, we can use
this feature to interpolate between the representa-
tion of two different references and provide that as
a cheat code, and thus explore whether we can ob-
tain alternative translations in some semantic space
between the two references (Section 4.4).

We vary the size of the cheat codes and observe
their effect on the output translations. The size is
varied in three different ways:

* Using fixed-length representations of n

floating-point numbers, where we can vary
n, by averaging over all the output states of
the second encoder, and then applying the bot-
tleneck layer to project the result down to n
dimensions.

» Using variable-length representations of n
floating-point numbers per token, which is
simply the output of the second encoder, with
the bottleneck layer applied on each output
state.

* Using representations smaller than one

floating-point number by applying quantiza-
tion on a one-dimensional representation. We
do this using a simple linear quantization
scheme similar to Miyashita et al. (2016) and
Hubara et al. (2017). To quantize a scalar  to
k bits:

r = round(z * m)
¢ = clip(r,—2"71 2571 — 1)
Quant,(x) = ¢/m

where m is a multiplier chosen to ensure the
quantized scalar covers the full range of the
k-bit number after quantization. We observe
that our single float32 cheat codes are in [-2,
2], so we use m = 2F72 so that r is spread
over [—2F~1 2*F=1] without getting clipped.

4 Experiments

All our experiments use Chen et al. (2021)’s
cleaned version of the WMT21 German—English
dataset (Akhbardeh et al., 2021). We do not use
back-translated data since we observed no improve-
ment in quality upon adding it, consistent with
Chen et al. (2021)’s findings. We evaluate on both
references A and B in the test set using BLEU? and
ChrF? metrics from SacreBLEU (Post, 2018), and
COMET and COMET-QE* (Rei et al., 2020).

Table 1 shows the results for our different mod-
els with references A or B provided as cheat codes
and being evaluated on both references. We see that
the models can score higher than the transformer
baseline on a given reference when the same refer-
ence is supplied as a second input, which indicates
that the model is able to “cheat” and capture useful
extra information from just a single floating-point
representation of the target sentence.

4.1 Increasing bottleneck size

As we increase the size of the bottleneck layer, we
see that the model captures more information from
the larger cheat codes and the outputs approach the
reference translations, as shown by much higher
BLEU and ChrF compared to the baseline. How-
ever, this is not always reflected in the COMET
and COMET-QE scores and we suspect this is due
to how COMET is trained. This issue is further
discussed in Section 4.5.
ZBLEU#: 1lc:mixedle:noltok: 13als:explv:2.0.0

3chrF2H#: 1lc:mixedle:yesinc:6inw:Ols:nolv:2.0.0
*wmt20-comet-da and wmt20-comet-ge-da in COMET
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Score on Reference A Score on Reference B

Model/input
BLEU ChrF COMET BLEU ChrfF COMET COMET-QE
Transformer baseline 322 603 0.5565 363 626 0.5640 0.3472
References scored against each other / with COMET-QE:
Reference A 100 100 0.9934 29.5 585 0.5316 0.3265
Reference B 29.5 577 0.5643 100 100 1.0015 0.3829
Reference A as second input, fixed-length cheat codes:
1 X int4 31.1 589 0.4781 31.8 590 0.4610 0.2924
1 x int8 31.3  59.1 0.4885 31.0 58.8 0.4707 0.3067
1 X intl6 320 597 0.5320 312 592 0.4913 0.3107
1 x float32 323  59.6 0.5153 31.6  59.2 0.4917 0.3092
2 x float32 33,5 60.3 0.5177 29.6 58.2 0.4602 0.2979
4 x float32 36.7 61.6 0.4935 27.0 563 0.3893 0.2558
8 x float32 40.7  63.7 0.5023 25.1 549 0.3206 0.2235
12 x float32 470 674 0.5202 23.7 539 0.2790 0.2245
16 x float32 572 733 0.6553 244 540 0.3100 0.2404
25 x float32 67.0 80.0 0.7333 24.6 544 0.3191 0.2561
Reference A as second input, variable-length cheat codes:
1 x float32 / token 40.1 642 0.5962 28.7 578 0.4587 0.2948
2 x float32 / token 924  96.1 0.9148 284 576 0.4473 0.2778
4 x float32 / token 912 952 0.9017 28.5 57.6 0.4434 0.2773
8 x float32 / token 89.7 94.1 0.8877 28.6 576 0.4438 0.2810
12 x float32 / token 941 974 0.9377 28.6 578 0.4750 0.2971
16 x float32 / token 95.8 98.6 0.9779 28.7 579 0.5107 0.3152
25 x float32 / token 939 96.8 0.9211 28.6 575 0.4526 0.2888
32 x float32 / token 96.6 98.7 0.9593 28.7 579 0.4720 0.2920
Reference B as second input, fixed-length cheat codes:
1 x int4 29.8 58.0 0.4624 345 605 0.4735 0.2981
1 x int8 289 579 0.4824 349 60.6 0.5147 0.3121
1 x intl6 29.1 579 0.4942 363 61.7 0.5375 0.3145
1 x float32 29.3 582 0.4865 364 619 0.5153 0.3111
2 x float32 275 570 0.4706 383 629 0.5249 0.3056
4 x float32 25.7 556 0.4210 41.8 644 0.5344 0.2827
8 x float32 246 543 0.3677 46.6 67.1 0.5500 0.2621
12 x float32 24.1 538 0.3354 543 715 0.6147 0.2562
16 x float32 243 536 0.3510 62.8 763 0.6995 0.2771
25 x float32 249 539 0.3657 70.7 81.8 0.7734 0.2899
Reference B as second input, variable-length cheat codes:
1 x float32 / token 26.9 56.6 0.4725 46.0 67.0 0.6275 0.3125
2 x float32 / token 284  56.7 0.4785 925 955 0.9130 0.3234
4 x float32 / token 28.7 570 0.4959 92.0 953 0.9156 0.3303
8 x float32 / token 28.6  56.8 0.4919 90.6 944 0.8997 0.3320
12 x float32 / token 28.7 570 0.5123 94.0 969 0.9514 0.3439
16 x float32 / token 28.7 570 0.5349 95.6 98.0 0.9783 0.3599
25 x float32 / token 28.8 570 0.5082 93.8 964 0.9331 0.3438
32 x float32 / token 28.7 570 0.5097 96.1 98.0 0.9576 0.3468

Table 1: Evaluation with references A and B as second input
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4.2 Minimizing bottleneck size

We have already observed that the model is able
to capture useful information from a single 32-bit
float. To find the lower bound of the cheat code
size that is still useful to the model, we reduce it
to less than one float, for which we quantize the
32-bit representations from the second encoder to
16, 8, or 4 bits. We see that the 16-bit cheat codes
work almost as well as the 32-bit ones. With less
than 16 bits, it appears that the model is unable to
capture any extra information from the target.

4.3 Variable-length cheat codes

Since the amount of information contained in sen-
tences can vary widely, it makes sense that the size
of cheat codes required to encode them can vary.
To this end, we also train models where the size of
the cheat code is proportional to sentence length.

For these models, we observe that due to the in-
creased capacity of the second encoder, training a
model to “cheat” from the start makes it too depen-
dent on the target, i.e. it does not learn to use the
source fully, resulting in the cheat code estimating
H(t) instead of H (t|s) as intended. Therefore, we
first train with a blank second input for the model
to learn to use the source, then we continue training
with both inputs to train the second encoder.

As expected, we observe a similar pattern of
more information being captured as we make the
cheat codes larger. At just 2 floats per token, the
model scores 92.4 BLEU/96.1 ChrF on reference
A with the same reference as input, and likewise
92.5 BLEU/95.5 ChrF on reference B. At 16 floats
per token, it scores more than 98 ChrF, which is
very close to perfectly reproducing the references.

4.4 Interpolating between references

For models which use fixed-length representations
of the second input, we can directly feed the de-
coder a cheat code instead of an actual input sen-
tence. We use this to interpolate between the en-
coded forms of the two references. Figure 2 shows
the performance of the model with single float32
cheat codes while providing \-enc(refA)+(1—\)-
enc(refB) as the cheat code. We can see the emer-
gence of a continuous space of cheat codes such
that codes close to reference A result in outputs
closer to reference A and moving towards refer-
ence B moves the output closer to reference B.

4.5 Evaluating with COMET-QE

BLEU and ChrF, along with most commonly used
machine translation metrics, are reference-based
metrics. This automatically makes it more likely
that the model will score highest on a reference
when given that exact reference as the cheat code.
In Figure 2, for example, we see how the perfor-
mance on each reference peaks exactly when we
provide that reference as input. Since the two ref-
erences are quite different from each other — they
only score 29.5 BLEU when they are scored against
each other — using one as the cheat code does not
produce good results on the other.

We expected to see COMET-QE scores in-
crease with cheat code size, similar to BLEU and
ChrF scores. However, we see that COMET-QE
scores remain below the baseline even for most
models with large cheat codes and near-perfect
BLEU/ChrF scores. We even observe that COMET-
QE scores Reference A lower than the baseline
output. We conclude that since COMET-QE is a
metric trained on machine translation outputs and
their human evaluation scores, it does not work
well for near-perfect translations and is unable to
score them higher than the best MT output. For the
same reason, even though COMET scores (with ref-
erence) increase for large cheat codes, the pattern
is less clear than for the string-matching metrics.

x  Ref ABLEU
Ref B BLEU
-—- Baseline Ref A BLEU
Baseline Ref B BLEU
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Figure 2: Interpolating between representations of refer-
ences A and B.

5 Conclusions and Future Work

This paper has shown that by letting machine trans-
lation models use a highly compressed represen-
tation of the target sentence as an auxiliary input,
we can estimate the amount of information missing
from the source that the model captures from the
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target. By varying the size of these representations
(cheat codes), we see that the model can capture
useful information from as little as a 16- or 32-bit
scalar representation of the target. We also see that
the model approaches perfect reproduction of the
target (>92BLEU/95ChrF) from as little as 2 floats
per target token.

A limitation of our method is that it can only
estimate the amount of missing information from
the source based on the size of cheat code, but we
do not get any insight into what this information
actually is. In future work, this method can be ex-
tended to qualitatively analyze what the missing
information is, and how it can possibly be provided
to the model in other ways to improve translation
quality without “cheating”. Another limitation is
that the model, if not trained carefully for larger
cheat codes, can learn to copy the target without us-
ing the source. This is countered by careful training
regimes as discussed in Section 4.3.

Since the model is able to capture extra informa-
tion from the second input, it could be possible to
use this to guide the output in other ways than just
to reproduce the references. For example, given
a small enough representation, we could sweep
through the entire range of cheat codes and pro-
duce diverse high-quality translations (He et al.,
2018; Roberts et al., 2020).
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