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Abstract
In this paper, we advocate for using large pre-
trained monolingual language models in cross
lingual zero-shot word sense disambiguation
(WSD) coupled with a contextualized mapping
mechanism. We also report rigorous experi-
ments that illustrate the effectiveness of em-
ploying sparse contextualized word representa-
tions obtained via a dictionary learning proce-
dure. Our experimental results demonstrate
that the above modifications yield a signifi-
cant improvement of nearly 6.5 points of in-
crease in the average F-score (from 62.0 to
68.5) over a collection of 17 typologically
diverse set of target languages. We release
our source code for replicating our experi-
ments at https://github.com/begab/
sparsity_makes_sense.

1 Introduction

Word sense disambiguation (WSD) is a long-
standing and fundamental problem of Natural
Language Processing, known to be affected by
the knowledge acquisition bottleneck (Gale et al.,
1992). Large pre-trained neural language models
are known to effectively mitigate the problems re-
lated to the paucity of high quality, large-coverage
sense annotated training data for WSD (Loureiro
and Jorge, 2019; Loureiro et al., 2021b; inter alia).

Most recently, the knowledge acquisition bottle-
neck has been identified as an immense problem in
the cross-lingual setting as well (Pasini, 2020). A
straightforward solution for handling this problem
is to apply large multilingual pre-trained language
models in a zero-shot setting, however, this ap-
proach has a potential limitation owing to the curse
of multilinguality (Conneau et al., 2020a), i.e., the
inability of such models to handle the large number
of languages involved during training such models
to an equally good quality.

The research community replied to the limita-
tions of large massively multilingual models by de-
veloping language-specific monolingual language

ISO Huggingface model identifier

bg DeepPavlov/bert-base-bg-cs-pl-ru-cased (Arkhipov et al., 2019)
ca PlanTL-GOB-ES/roberta-base-ca (Armengol-Estapé et al., 2021)
da Maltehb/danish-bert-botxo
de bert-base-german-cased
es dccuchile/bert-base-spanish-wwm-cased (Cañete et al., 2020)
et EMBEDDIA/finest-BERT (Ulčar and Robnik-Šikonja, 2020)
eu ixa-ehu/berteus-base-cased (Agerri et al., 2020)
fr camembert-base (Martin et al., 2020)
gl dvilares/bertinho-gl-base-cased (Vilares et al., 2021)
hr EMBEDDIA/crosloengual-bert (Ulčar and Robnik-Šikonja, 2020)
hu SZTAKI-HLT/hubert-base-cc (Nemeskey, 2021)
it Musixmatch/umberto-commoncrawl-cased-v1
ja cl-tohoku/bert-base-japanese-whole-word-masking

ko snunlp/KR-BERT-char16424
nl GroNLP/bert-base-dutch-cased (de Vries et al., 2019)
sl EMBEDDIA/sloberta

zh bert-base-chinese

Table 1: Monolingual models from the
transformers library (Wolf et al., 2020) cov-
ering all the (non-English) languages of the XL-WSD
dataset (Pasini et al., 2021).

models.1 Table 1 provides a shortlist of recently
published monolingual large pre-trained language
models, related to the languages involved in the
cross-lingual WSD test suit, XL-WSD (Pasini et al.,
2021).

With the prevalence of large monolingual pre-
trained models, the important research question
arises if their language-specific nature can be suc-
cessfully exploited during zero-shot learning. Our
research provides a thorough comparison of the
application of large multilingual and monolingual
pre-trained language models for zero-shot WSD.

Another crucial aspect that we carefully investi-
gate in this paper is the integration of sparse con-
textualized word representations into cross-lingual
zero-shot WSD. Sparse word representations have
a demonstrated ability to align with word senses
(Balogh et al., 2020; Yun et al., 2021). While the
benefits of employing sparsity has been shown for
WSD in English (Berend, 2020a), its viability in
the cross-lingual setting has not yet been verified.

1With a slight abuse of notation, we also refer to models
that support a handful of (related) languages (e.g. Slovenian
and Croatian) as language-specific monolingual ones.
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In order to conduct such an analysis, we propose an
algorithm for obtaining cross-lingual sparse contex-
tualized word representations from independently
trained monolingual language models.

2 Related work

The analysis and the investigation of the transfer
capabilities of large pre-trained language models
(such as mBERT or XLM) across languages has
spurred significant research interest (Pires et al.,
2019; Wu and Dredze, 2019, 2020; K et al., 2020).
In contrast to the availability of multilingual neural
language models, a series of recent papers have
argued for the creation of dedicated neural lan-
guage models for different languages (see e.g. Ta-
ble 1). While monolingual neural language models
can more accurately model the distinct languages,
models that are trained in isolation of other lan-
guages cannot directly benefit from downstream
application-specific annotated training data avail-
able in different languages.

Artetxe et al. (2020) proposed an approach for
making monolingual models compatible with each
other by first pre-training a masked language model
on a source language, then freezing its parame-
ters apart from its embedding layer that get re-
placed and trained for additional target languages
using a standard masked language modeling ob-
jective. Note that this approach is complementary
and strictly more resource intensive to ours, as it
involves the pre-training of a (freezed) transformer
model with respect its embedding layer for a target
language. In contrast, our approach can operate on
monolingual language models fully pre-trained in
total isolation from the source language encoder.
Also, our approach learns substantially fewer pa-
rameters in the form of an alignment matrix be-
tween the hidden representations of the contextual-
ized target and source language spaces.

Conneau et al. (2020b) analyzed the multilingual
patterns emerging in large pre-trained language
models. The authors found that “language univer-
sal representations emerge in pre-trained models
without the requirement of any shared vocabulary
or domain similarity”. That work have demon-
strated that monolingual BERT models can be ef-
fectively mapped for performing zero-shot cross-
lingual named entity recognition and syntactic pars-
ing. Similarly, Wang et al. (2019); Schuster et al.
(2019) also illustrated the efficacy of linear trans-
formations for using BERT-derived representations

in cross-lingual dependency parsing.

WSD has been a fundamental and challenging
problem in NLP for many decades, dating back to
(Weaver, 1949/1955). The utilization of contextu-
alized word representations was first advocated by
Peters et al. (2018), later popularized by (Loureiro
and Jorge, 2019; Loureiro et al., 2021a). Bevilac-
qua et al. (2021) offers a survey of the recent ap-
proaches.

Most recently, Rezaee et al. (2021) have ex-
plored the usage of multilingual language models
(XLM) in zero-shot WSD. While the experiments
in (Rezaee et al., 2021) cover four related target lan-
guages (German, Spanish, French and Italian), our
investigation involves a typologically diverse set of
17 target languages (beyond English) from (Pasini
et al., 2021). Our work also extends that line of
research in important aspects, as we show that the
application of monolingual neural language mod-
els can vastly improve the performance of cross-
lingual zero-shot WSD. Additionally, we also pro-
vide a careful evaluation of sparse contextualized
word representations in zero-shot WSD.

Berend (2020a) introduced sparse contextual-
ized word representations via the application of
dictionary learning, and showed that sense repre-
sentations that are obtained from the co-occurrence
statistics of the sparsity structure of the contex-
tualized word representations and their sense an-
notations can provide significant improvement in
monolingual WSD. Our work relates to that line of
research by providing a mapping-based procedure,
which enables the usage of such sense represen-
tations created in some source language to be ap-
plied in other target languages as well. The kind of
mapping we employ can be viewed as a generaliza-
tion of the approach introduced in (Berend, 2020b)
with the notable exception that in this work, we ob-
tain sparse word representations for contextualized
models as opposed to static word embeddings.

3 Methodology

In order to allow for zero-shot transfer between
monolingual language models pre-trained in iso-
lation from each other, we need to determine a
mapping between their hidden representations. We
first introduce our methodology for doing so, then
we integrate this to the creation of sparse contextu-
alized word representations.
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3.1 Mapping hidden representations
The alignment of word representations between in-
dependently constructed semantic spaces can be
conveniently and efficiently performed via linear
transformations. This has been a standard approach
for non-contextualized word embeddings (Mikolov
et al., 2013; Xing et al., 2015; Smith et al., 2017),
but it has been shown to be useful in the contextu-
alized case as well (Conneau et al., 2020b).

The standard approach is to obtain a collection of
pairs of anchor points {xi,yi}ni=1 with xi and yi

denoting the representation of semantically equiv-
alent words in the target and source languages, re-
spectively. The mapping W is then obtained as

min
W

n∑

i=1

∥Wxi − yi∥22. (1)

As we deal with contextualized models, we can
obtain various representations for a word even in
the same context, by considering the hidden rep-
resentations from different layers of the neural
language models employed. Additionally, as con-
straining the mapping matrix to be an isometric one
have proven to be a useful requirement, we define
our learning task to be of the form

min
W s.t. W ⊺W=I

n∑

i=1

∥Wx
(lt)
i − y

(ls)
i ∥22, (2)

with I denoting the identity matrix, x(lt)
i and y

(ls)
i

denoting the hidden representations obtained from
the lt

th and ls
th layers of the target and source lan-

guage neural language models, respectively.
Finding the optimal isometric W can be viewed

as an instance of the orthogonal Procrustes prob-
lem (Schönemann, 1966) which can be solved by
W⊥ = UV , with U and V originating from the
singular value decomposition of the matrix product
Y ⊺X , where X and Y include the stacked target
and source language contextual representations of
pairs of semantically equivalent words.

As words of the input sequences to the neural
language models can be split into multiple subto-
kens, we followed the common practice of obtain-
ing word-level neural representations by perform-
ing mean pooling of the subword representations.
Throughout our experiments, we also relied on the
RCSLS criterion (Joulin et al., 2018), which offers
a retrieval-based alternative of obtaining a mapping
from the target to the source language representa-
tions.

3.2 Cross-lingual sparse contextualized word
representations

Our approach extends the information theoretic al-
gorithm introduced in (Berend, 2020a) for its appli-
cation in the cross-lingual zero-shot WSD setting.
In order to obtain sparse contextualized represen-
tations for the source language, we first populate
Y ∈ Rd×N with d-dimensional contextualized rep-
resentations of words determined for texts in the
source language, and minimize the objective

min
D∈C,αi∈Rk

≥0

N∑

i=1

1

2
∥yi −Dαi∥22 + λ∥αi∥1, (3)

where C denotes the convex set of d× k matrices
with column norm at most 1, λ is a regularization
coefficient and the sparse coefficients in α are re-
quired to be non-negative. We used the SPAMS li-
brary (Mairal et al., 2009) for calculating D and α.

Having obtained D for the source language, we
determine a sparse contextualized word representa-
tion for a target language word with dense contex-
tualized representation xi as

min
αi∈Rk

≥0

1

2
∥Wxi −Dαi∥22 + λ∥αi∥1, (4)

where W is the alignment transformation as de-
scribed earlier in Section 3.1. Eq. (4) reveals that
the cross-lingual applicability of the sparse codes
are assured by the mapping transformation W and
the fact that the sparse target language representa-
tions are also using the same D that was determined
for the source language, which also ensures the ef-
ficient calculation of sparse representations during
inference time.

Apart from these crucial extensions we made for
providing the use of contextualized sparse repre-
sentations in the cross-lingual setting, the way we
utilized them for the determination of sense rep-
resentation and inference is identical to (Berend,
2020a). That is, for all sense-annotated words in
the training corpus, we calculated a weighted co-
occurrence statistics between a word pertaining to a
specific semantic category and having non-zero co-
ordinates along a specific dimension in their sparse
contextualied word representations. These statis-
tics are then transformed into pointwise mutual
information (PMI) scores, resulting in a sense rep-
resentation for all the senses in the training sense
inventory.

Sense representations obtained that way measure
the strength of the relation of the senses to the
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different (sparse) coordinates. Inference for a word
with sparse representation α is simply taken as
argmaxsΦα

⊺, where Φ is the previously defined
matrix of PMI values and s corresponds to the
sense at which position the above matrix–vector
products takes its largest value.

4 Experimental results

All the neural language models that we relied on
during our experiments were obtained from the
transformers library (Wolf et al., 2020). We
used four NVIDIA Titan 2080 GPUs for our exper-
iments.

As the multilingual language model, we used the
24-layer transformer architecture, XLM-RoBERTa
(XLM-R for short) (Conneau et al., 2020a). We
chose the cased BERT (Devlin et al., 2019) large
model as the monolingual model for encoding En-
glish text. As for the rest of the monolingual lan-
guage models involved in our experiments, we re-
lied on the models listed in Table 1. These monolin-
gual models have the same size as the BERT-base
model, i.e., they consist of 12 transformer blocks
and employ hidden representations of 768 dimen-
sions.

For evaluation purposes, we used the extra-large
cross-lingual evaluation benchmark XL-WSD, re-
cently proposed in (Pasini et al., 2021). The
database contains a high-quality sense annotated
corpus for English as the concatenation of the Sem-
Cor dataset (Miller et al., 1994) and the sense
definitions and example sentences from WordNet
(Fellbaum, 1998). XL-WSD uses the unified cross-
lingual sense inventory of BabelNet (Navigli and
Ponzetto, 2012).

The dataset contains 17 additional typologically
diverse languages besides English (that we listed
in Table 1). The authors also released machine
translated silver standard sense annotated training
corpora for all the languages, which makes the
language-specific fine-tuning of monolingual mod-
els possible, however, as shown in (Pasini et al.,
2021), that approach resulted in inferior results
compared to the application of multilingual models
in the zero-shot setting.

Throughout the application of sparse contextu-
alized representations, we employ the same set of
hyperparameters that were used in (Berend, 2020a),
i.e., we set the number of the regularization coef-
ficient to λ = 0.05 and the number of (sparse)
coordinates to k = 3000. There made one optional

change, i.e., we decided whether to use the nor-
malization of PMI values (Bouma, 2009) during
the calculation of the sense representation matrix
Φ on a per language basis based on development
set performances. An ablation study related to the
(optional) normalization of PMI scores is reported
in Table 5, Appendix B.

When we do not employ the sparsification of
the contextualized word representations for deter-
mining the sense representations, we follow the
approach introduced in (Loureiro and Jorge, 2019).
That is, we take the centroid of word vectors be-
longing to a particular sense as the representation
of that sense, and perform a nearest neighbor search
during inference.

4.1 Alignment of contextualized
representations

As the different layers of neural language mod-
els have been shown to provide different levels of
utility towards different tasks, we experimented
with mappings between different combinations of
layers from the target and source language neu-
ral language models. Since the last few layers
of the neural models are generally agreed to be
the most useful for semantics-related tasks (Peters
et al., 2018; Tenney et al., 2019; Reif et al., 2019),
we decided to learn mappings between the hidden
representations of any of the last four layers of the
target and source language encoders.

We used BERT as the language specific encoder
for the source language texts in English, but we
also investigated the application of XLM-R, so that
we can see the effects of replacing it by an encoder
especially tailored for English. As for the target
languages, we used the respective models for each
language as listed in Table 1. Similar to the source
language, we also investigated the case when target
languages were encoded by the multilingual model.

In what follows, we label the different experi-
mental settings according to the followings:

• multi→multi means that we map the target
language representations obtained by the mul-
tilingual (XLM-R) model to the representation
space of the source language also obtained by
the multilingual (XLM-R) encoder,

• multi→mono, means that we map the target
language representations obtained by the mul-
tilingual (XLM-R) model to the representation
space of the source language obtained by the
monolingual (English BERT) encoder,
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• mono→multi, means that we map the target
language representations obtained by their re-
spective monolingual language model to the
representation space of the source language
obtained by the multilingual (XLM-R) en-
coder,

• mono→mono, means that we map the target
language representations obtained by their re-
spective monolingual language model to the
representation space of the source language
obtained by the monolingual (English BERT)
encoder.

In order to obtain the cross-representational map-
pings, we accessed the Tatoeba corpus (Tiedemann,
2012) through the datasets library (Lhoest
et al., 2021). The Tatoeba corpus contains trans-
lated sentence pairs for several hundreds of lan-
guages which we used for obtaining the pivot word
mention pairs together with their contexts.

In addition to the Tatoeba corpus, we used the
word2word library (Choe et al., 2020) contain-
ing word translation pairs between more than 3,500
language pairs. By denoting (Ssi , Sti) the ith trans-
lated sentence pair from the Tatoeba corpus, we
treated those (ws ∈ Ssi , wt ∈ Sti) word oc-
currences as being semantically equivalent, for
which the wt ∈ TranslationOf(ws) and the
ws ∈ TranslationOf(wt) relations simultane-
ously held according to the translation list provided
by word2word.

As an example, given the German-English trans-
lation pair from Tatoeba, {’de:’ ’Es steht ein Glas
auf dem Tisch.’, ’en’: ’There is a glass on the
table.}, underlined pairs of words with the same
color would be treated as contextualized translation
pairs of each other.

One benefit of our approach for determining con-
textual alignment of word pairs is that it does not re-
quire word level alignment of the parallel sentences,
hence it suits such lower resource scenarios better,
when only parallel sentences (without word level
alignments) and a list of word translation pairs are
provided. Naturally, different contextual alignment
approaches could be integrated into our approach
at this point, and this is something that we regard
as potential future extension of our work.

We evaluated the quality of the mapping learned
between the target and the source language repre-
sentations by defining a contextualized translation
retrieval task and evaluating it on its accuracy@1

Language #sentences Train Test

bg Bulgarian 17,797 14,212 3,554
ca Catalan 1,663 3,912 979
da Danish 30,089 20,000 5,000
de German 299,769 20,000 5,000
es Spanish 207,517 20,000 5,000
et Estonian 2,428 2,365 592
eu Basque 2,062 3,956 990
fr French 262,078 20,000 5,000
gl Galician 1,013 2,356 590
hr Croatian 2,420 1,946 487
hu Hungarian 107,133 20,000 5,000
it Italian 482,948 20,000 5,000
ja Japanese 204,893 20,000 5,000
ko Korean 3,434 5,632 1,408
nl Dutch 72,391 20,000 5,000
sl Slovenian 3,210 1,285 322
zh Chinese 46,114 20,000 5,000

Table 2: The number of sentence pairs included in the
Tatoeba corpus between English and a target language
and the number of contextualized translation pairs ex-
tracted for training and testing the mappings.

metric, i.e., for what fraction of the contextualized
translation pairs – not seen during the determina-
tion of the mapping between the two representation
spaces – are we able to rank the original translated
context as the highest.

In the multi→multi case, i.e., when both the
target and source languages are encoded by the
same multilingual model (XLM-R), it also makes
sense to use the identity matrix as the mapping
operator for mapping the target language contextual
text representations to the semantic space of the
source language (as long as the target and source
language texts are obtained from the same layer of
the multilingual encoder). We also evaluated the
quality of this approach in our experiments that we
refer to as the identity approach.

We list the statistics of the Tatoeba corpus and
the size of the training and test contextualized trans-
lation pairs in Table 2. Our results on the top-1 con-
textualized translation retrieval accuracies along
the different languages and combination of target
and source encoder usage are reported in Figure 1.
The quality of the combination which uses mono-
lingual encoders for both the target and source lan-
guages (mono→mono) performed the best.
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(b) Mapping accuracies aggregated over languages.

Figure 1: The results of translation retrieval over the test sets of the different languages and different combinations
of transformers used for the (English) source and the target languages.

BERT XLM-R
Layer Dense Sparse Dense Sparse

21 74.39 77.45 69.29 74.51
22 74.87 77.60 67.87 74.50
23 74.45 77.86 67.48 74.26
24 73.58 76.21 64.50 70.06

Table 3: English results expressed in F-score.

4.2 Monolingual evaluation

We first conducted evaluations in the monolingual
setting, i.e., we used the sense annotated training
data to train and evaluate WSD models in English.
The results of these experiments – depending on
the encoder architecture used (BERT/XLM-R), the
layer of the encoder utilized ({21,. . . ,24}), and
whether the sparsification of the contextualized
representations took place (Dense/Sparse) – are
included in Table 3.

Unsurprisingly, the application of the language-
specific BERT model achieved better scores com-
pared to that of XLM-R. An interesting observa-
tion though, is that the drop in performance is much
more subtle for those cases when the contextualized
representations are enhanced via sparsification, i.e.,
the typical loss in performance across the layers is
only 3 points (apart from the final layer), opposed
to the typical loss of 4-7 points in the dense case.

4.3 Cross-lingual zero-shot evaluation

Table 4 includes the zero-shot cross-lingual WSD
results for a collection of baseline approaches (Ta-
ble 4a) from (Pasini et al., 2021), followed by our

models not utilizing the sparsification of the con-
textualized embeddings (Table 4b) and the ones
that additionally benefit from sparsification as well
(Table 4c). It is useful to note that the mono→* ap-
proaches are strictly more resource efficient during
inference as they are based on 12-layer encoders
instead of the 24 layers of the multilingual XLM-R
model.

At this point, we separate the multi→multi re-
sults into two, i.e., 1) those obtained when relying
on the hidden representations from the same layer
of XLM-R without mapping (or equivalently, with
the identity mapping from the target to source rep-
resentations); and 2) those obtained when the tar-
get and source language contextual representations
could originate from different layers of the XLM-R
encoder, and a non-identity (either isometric or RC-
SLS) mapping was employed. We keep referring
to the latter as multi→multi, and denote the former
type of experiments as multi (without the →multi
suffix as there were no real mappings performed
in these cases). Inspecting the first two rows of
Table 4b and Table 4c reveals that enhancing the
multilingual encoder towards the treatment of a par-
ticular pair of languages by providing it a language
pair specific mapping has a larger positive effect
when using dense vectors. In fact, it increased the
micro-averaged F-score over the 17 languages by
1.72 and 0.11 points for the dense and the sparse
cases, respectively.

Overall, the micro-averaged F-score of our final
approach managed to improve nearly 6.5 points
(cf. the first row of Table 4b and the last row in
Table 4c). A 5 point average improvement is due
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bg ca da de es et eu fr gl hr hu it ja ko nl sl zh Avg.

XLMR-Large 72.00 49.97 80.61 83.18 75.85 66.13 47.15 83.88 66.28 72.29 67.64 77.66 61.87 64.20 59.20 68.36 51.62 65.66
XLMR-Base 71.59 47.77 79.18 82.13 76.55 64.73 43.86 82.33 64.79 72.13 68.36 76.73 61.46 63.65 58.77 66.34 49.77 64.82
MBERT 68.78 47.35 76.04 80.63 74.66 64.33 42.41 81.64 68.07 70.65 65.24 76.16 60.34 63.37 56.64 62.16 48.99 62.84
EWISER (2020) 68.64 42.99 76.67 80.86 71.85 65.98 42.85 80.86 59.41 70.60 66.17 74.06 55.77 63.38 57.50 59.74 48.30 62.16
SyntagRank 61.10 43.98 72.93 75.99 68.58 56.31 42.91 69.57 67.56 68.35 57.98 69.57 57.46 50.29 56.00 52.25 41.23 57.68
Babelfy 60.39 36.52 71.33 77.84 64.07 49.62 36.65 67.41 64.17 63.75 51.99 64.22 51.91 51.95 44.27 35.38 34.94 52.85
MCS 58.16 27.17 64.33 75.99 55.65 46.87 32.72 59.31 60.85 62.88 47.29 52.77 48.71 52.48 44.61 36.71 29.62 49.13

(a) Baseline results (MCS stands for Most Common Sense) from (Pasini et al., 2021).

bg ca da de es et eu fr gl hr hu it ja ko nl sl zh Avg.

multi 67.07 47.46 76.58 80.74 70.61 65.23 42.53 75.60 56.85 70.63 65.42 71.38 58.45 63.88 54.86 61.91 48.98 61.98
multi→multi 68.99 51.62 78.56 80.51 70.02 65.28 44.68 78.62 57.44 71.59 68.99 70.90 61.40 64.41 57.73 61.17 50.65 63.71
multi→mono 68.82 44.17 79.75 84.69 70.88 64.68 40.95 79.66 56.58 71.34 68.07 69.93 59.71 64.49 59.25 61.37 50.77 63.30
mono→multi 69.68 52.95 78.90 82.02 68.34 66.33 49.62 80.17 58.30 72.34 70.75 74.01 64.35 65.02 59.32 64.76 54.95 65.57
mono→mono 71.17 53.31 81.21 83.29 72.56 66.48 51.08 81.55 63.14 73.76 72.76 72.52 65.26 66.57 60.52 67.42 55.45 66.96

(b) Our results relying on dense sense vectors.

bg ca da de es et eu fr gl hr hu it ja ko nl sl zh Avg.

multi 70.69 51.52 81.41 83.53 76.45 67.78 47.85 83.62 64.47 73.06 70.10 76.65 63.73 64.67 58.00 64.12 53.29 66.04
multi→multi 70.91 51.52 80.50 82.37 75.96 66.13 47.09 83.79 63.26 72.94 70.01 77.17 64.47 64.73 60.16 66.49 53.05 66.15
multi→mono 71.91 50.54 81.21 79.93 76.93 64.83 44.05 83.62 62.87 71.64 69.26 77.48 63.59 64.59 60.39 61.07 53.48 65.82
mono→multi 70.76 52.49 79.67 82.25 75.09 67.83 50.89 83.19 60.68 73.99 72.97 75.33 63.80 65.86 61.57 65.70 55.65 66.79
mono→mono 72.00 57.47 81.15 83.76 76.12 68.88 51.71 83.10 63.92 74.40 75.52 76.12 67.47 67.52 61.95 67.47 57.05 68.47

(c) Our results based on sparse sense vectors.

Table 4: Test set results on the XL-WSD benchmark. The hyperparameters of the individual approaches (e.g. which
layer of the target language encoder to align with which layer of the source language encode) were determined
based on the development set of each language.

to the replacement of the XLM-R encoder for both
the source language during training and target lan-
guages for inference (cf. the first and last row of
Table 4b) and an additional 1.5 points of improve-
ment was an effect of our sparsification in the cross-
lingual setting. The inspection of the third and
fourth rows in both Table 4b and Table 4c reveals
that using a monolingual encoder during inference
helps more compared to the application of a mono-
lingual encoder for encoding the source language
during training.

We conducted the McNemar test between our
system outputs when a non-identity mapping was
used between a pair of languages. Our investiga-
tion revealed that all such

(
8
2

)
pairs of system out-

puts from Table 4b and Table 4c differ significantly
from each other with p < 0.0007, with only four
exceptions, i.e, 1) multi→multi and multi→mono
from Table 4b; 2) multi→multi and multi→mono
from Table 4c; 3) mono→multi from Table 4c and
mono→mono from Table 4b; 4) multi→mono from
Table 4c and mono→multi from Table 4b.

Figure 2 summarizes the results of all the possi-
ble runs conducted. When using the multilingual
encoder for both the target and source languages
without a mapping step between the two (multi),
we ran 4 different experiments per each language
based on the hidden representations obtained from

multi
multi multi

multi mono
mono multi

mono mono
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Figure 2: Overall averaged results for all the experi-
ments conducted for the different approaches.

one of the last 4 layers of the multilingual encoder.
For the remaining experiments relying on the dense
and sparse representations, there were 32 and 64 ex-
periments for each language, respectively. The 32
experiments were a result of choosing any of the 16
possible combination of the final four layers on the
target and source language encoder, coupled with
the type of mapping utilized (isometric/RCSLS).
For the experiments involving the sparse represen-
tations, there was an extra parameter, whether the
normalization of the PMI scores for obtaining the
sense representations to be performed, resulting
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Figure 3: Comparison of the two best performing sys-
tems when the same hyperparameters were employed.

in 2 × 32 experiments all together. Our ablation
study in Table 5 illustrates that this extra factor of
2 for the sparse experiments did not provided us
an unfair advantage, i.e., when fixing the value of
normalization in any way, the overall results did
not differ substantially.

The difference in the average performance of
our approach transforming sparse contextualized
representations obtained by monolingual models is
significant (using unpaired t-test2, p < 0.005) com-
pared to any other configuration. This suggests that
the mono→mono approach has a robust advantage
over alternative variants, and the improvements
seen in Table 4 are not an effect of careful hyperpa-
rameter selection, but they generalize over a wide
range of choices.

This effect is further corroborated in Figure 3,
which offers a comparison between the two sys-
tems with the best average performance, i.e.,
mono→mono that operates with the dense vectors
(results are along the x-axis) and the same model
but with the enhancement of sparsification (results
are along the y-axis). Each data point corresponds
to a setting with the same hyperparameter choices,
and points above the diagonal line with slope one
demonstrate the benefits of sparsification.

We have demonstrated the improved utility of
mapping language-specific sparse contextualized
representations for conducting zero-shot WSD, re-
quiring large pre-trained language-specific text en-
coders for the target languages. While such models
are available for all languages in XL-WSD, a vari-

2We used unpaired t-test as the number of experiments was
not same in all cases, i.e., 4 experiments/language in the multi
case, and either 32 or 64 experiments/language in the rest of
the cases.

ety of the existing languages lack their dedicated
language-specific pre-trained language model.

As such, an important question emerges whether
it is possible to enjoy the benefits of mapping
sparse contextualized representations for zero-shot
WSD in the absence of a large pre-trained language
model dedicated to the target language. To this end,
we shall inspect the results of our multi→mono
approach in Table 4, a series of mapping-based
experiments in which we acted as if the monolin-
gual language models (other than the one for En-
glish) did not exist. In these experiments, the sense
embeddings were obtained with bert-large-cased
(being specialized to English), and the mapping to
the non-English target languages were performed
towards their XLM-R representations during the
evaluation. This way, we could simulate the effects
of the absence of language-specific models.

The multi→mono approach provided a substan-
tially better average performance compared to the
mere utilization of a multilingual encoder in the
case of dense contextualized representations as
it can be seen in Table 4b. The average results
of multi→mono are slightly inferior (albeit sta-
tistically insignificantly) to that of the multi ap-
proach for the application of sparse contextual-
ized representations. However, when comparing
the multi→multi results with that of multi→mono,
we can see that by relying on a multilingual en-
coder alone, and allowing a mapping to be em-
ployed between its hidden representations pertain-
ing to different languages, one can obtain the same
(or even slightly better) performance as with the
multi→mono approach. This highlights the im-
portance of monolingual encoders for the target
language, which seems to be more important than
having access to a monolingual encoder for the
source language.

5 Conclusions

In this paper we provided a systematic investiga-
tion of the benefits of using large monolingual pre-
trained language models in place of multilingual
language models, such as XLM-R. We have shown
that since monolingual neural language models are
specifically tailored for a single (or at most a few
related) languages, they can effectively mitigate
the curse of multilinguality typical of multilingual
models, and their application can significantly im-
prove the F-scores in zero-shot WSD. We addi-
tionally showed that the benefits of sparse con-
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textualized word representations, obtained via a
dictionary learning procedure, also convey to the
cross-lingual setting, and that it provides comple-
mentary improvements to the usage of monolingual
neural language models.
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A Analysis of the language models

We compare some of the basic properties of the
pretrained language models that we employed in
Figure 4 and Figure 5. This can be useful as the
monolingual quality of the language models we
used could influence and account for their utility
when used in conjunction with our mapping-based
algorithm.

Figure 4 includes quantitative scores over the dif-
ferent languages related to the subword tokenizers
employed by the various language models. Fertil-
ity in Figure 4a refers to the average number of
subtokens a single token gets separated into by the
tokenizer of the given language model. Multi-token
ratio (MTR) in Figure 4b indicates the fraction of
tokens that gets split into more than one piece upon
tokenization (Ács, 2019; Rust et al., 2021). Smaller
values of MTR mean a better adaptation of the to-
kenizer to the peculiarities of the given language.
It can be seen that the monolingual models do a
much better job compared to XLM-R, which can
be part of the reason why mapping independently
trained monolingual .

In Figure 5a, we refer to the last four layers of
the investigated models as {-4,-3,-2,-1} as the En-
glish BERT is a 24-layer model, whereas the rest
of the monolingual models consist of 12 layers.
This means that layer -1 refers to layer 24 for En-
glish and layer 12 for some non-English model.
Even though Figure 5a shows pathological masked
language modeling (MLM) losses for certain mono-
lingual models (e.g. Bulgarian or Basque) when
measured on the XL-WSD database, their mapping-
based utilization in zero-shot WSD was still possi-
ble as indicated by our main results (see Table 4).
A further interesting phenomenon is that the per-
formance of XLM-R exceeds that of the bert-large-
cased model in terms of MLM for English. These
results suggest that the masked language modeling
performance of pretrained language models and
their utility in WSD are not strongly related with
each other.

B Analysis on using the normalization of
PMI scores

Upon the calculation of the sense representation
matrix Φ, involving the calculation of PMI scores
between the various senses from the sense inven-
tory and the coordinates of a sparse contextual rep-
resentation being non-zero, Berend (2020a) sug-
gested the use of normalized PMI scores (Bouma,
2009). Our preliminary results suggested that the
normalization of PMI scores can have a mixed ef-
fect over the different languages. Table 5 includes a
detailed breakdown on this effect for the individual
languages.

2470

https://doi.org/10.18653/v1/2021.deelio-1.1
https://doi.org/10.18653/v1/2021.deelio-1.1
https://doi.org/10.18653/v1/2021.deelio-1.1


bg ca da de en es et eu fr gl hr hu it ja ko nl sl zh
0.0

0.5

1.0

1.5

2.0
fe

rti
lit

y
mono
XLM-R

(a) Fertility

bg ca da de en es et eu fr gl hr hu it ja ko nl sl zh
0.0

0.2

0.4

0.6

0.8

1.0

M
TR

mono
XLM-R

(b) Multi-token ratio (MTR)

Figure 4: Comparison of the tokenizers of the multilingual (XLM-R) and the monolingual language models.
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(a) MLM loss of the monolingual models
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Figure 5: The comparison of the multilingual (XLM-R) and the monolingual neural language models in terms of
subword tokenization and their MLM objective.

multi 70.69 49.46 81.38 83.53 76.45 67.23 47.22 83.62 64.47 72.16 68.29 76.65 62.79 64.70 59.02 67.96 53.29 65.82
multi→multi 70.91 49.31 80.81 82.37 75.96 67.28 44.30 83.79 62.63 71.89 69.24 77.17 63.26 64.52 60.16 66.49 52.82 65.71
multi→mono 71.91 48.79 81.64 79.93 76.93 64.83 42.72 83.62 62.87 71.34 69.29 77.48 62.58 64.59 60.68 63.09 52.44 65.54
mono→multi 70.76 50.49 79.93 83.41 75.09 66.13 49.37 83.19 60.68 73.11 71.66 75.33 63.01 64.44 60.70 66.63 55.14 66.23
mono→mono 72.00 54.90 81.27 83.76 76.12 67.28 49.87 83.10 63.92 73.33 74.12 76.12 65.57 66.31 61.55 67.47 56.32 67.69

(a) Our results based on sparse sense vectors when always using the normalization of PMI scores as done in (Berend, 2020a).

bg ca da de es et eu fr gl hr hu it ja ko nl sl zh Avg.

multi 69.62 51.52 81.41 82.25 74.01 67.78 47.85 82.76 62.79 73.06 70.10 74.32 63.73 64.67 58.00 64.12 53.62 65.68
multi→multi 69.97 51.52 80.50 82.13 74.07 66.13 47.09 82.76 63.26 72.94 70.01 74.63 64.47 64.73 60.16 65.55 53.05 65.82
multi→mono 71.56 50.54 81.21 83.18 74.45 65.68 44.05 79.05 61.77 71.64 69.26 74.19 63.59 64.41 60.39 61.07 53.48 65.51
mono→multi 70.16 52.49 79.67 82.25 70.77 67.83 50.89 81.29 58.65 73.99 72.97 73.92 63.80 65.86 61.57 65.70 55.65 66.42
mono→mono 71.31 57.47 81.15 82.25 72.29 68.88 51.71 81.38 61.03 74.40 75.52 73.49 67.47 67.52 61.95 65.94 57.05 67.96

(b) Our results based on sparse sense vectors when not using the normalization of PMI scores as done in (Berend, 2020a).

bg ca da de es et eu fr gl hr hu it ja ko nl sl zh Avg.

multi 70.69 51.52 81.41 83.53 76.45 67.78 47.85 83.62 64.47 73.06 70.10 76.65 63.73 64.67 58.00 64.12 53.29 66.04
multi→multi 70.91 51.52 80.50 82.37 75.96 66.13 47.09 83.79 63.26 72.94 70.01 77.17 64.47 64.73 60.16 66.49 53.05 66.15
multi→mono 71.91 50.54 81.21 79.93 76.93 64.83 44.05 83.62 62.87 71.64 69.26 77.48 63.59 64.59 60.39 61.07 53.48 65.82
mono→multi 70.76 52.49 79.67 82.25 75.09 67.83 50.89 83.19 60.68 73.99 72.97 75.33 63.80 65.86 61.57 65.70 55.65 66.79
mono→mono 72.00 57.47 81.15 83.76 76.12 68.88 51.71 83.10 63.92 74.40 75.52 76.12 67.47 67.52 61.95 67.47 57.05 68.47

(c) Our results based on sparse sense vectors when the normalization of PMI scores was optional and based on the development
set for each language.

Table 5: The effects of making the normalization of PMI scores (Bouma, 2009) (a) mandatory, (b) prohibited,
(c) optional to use (based on development set results) during the creation of the sparse sense representations.
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