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Abstract

Dense retrieval approaches can overcome the
lexical gap and lead to significantly improved
search results. However, they require large
amounts of training data which is not avail-
able for most domains. As shown in previous
work (Thakur et al., 2021b), the performance
of dense retrievers severely degrades under a
domain shift. This limits the usage of dense re-
trieval approaches to only a few domains with
large training datasets.

In this paper, we propose the novel unsuper-
vised domain adaptation method Generative
Pseudo Labeling (GPL), which combines a
query generator with pseudo labeling from a
cross-encoder. On six representative domain-
specialized datasets, we find the proposed GPL
can outperform an out-of-the-box state-of-the-
art dense retrieval approach by up to 9.3 points
nDCG@10. GPL requires less (unlabeled) data
from the target domain and is more robust in
its training than previous methods.

We further investigate the role of six recent
pre-training methods in the scenario of domain
adaptation for retrieval tasks, where only three
could yield improved results. The best ap-
proach, TSDAE (Wang et al., 2021) can be
combined with GPL, yielding another average
improvement of 1.4 points nDCG@ 10 across
the six tasks. The code and the models are
available !.

1 Introduction

Information Retrieval (IR) is a central component
of many natural language applications. Tradition-
ally, lexical methods (Robertson et al., 1994) have
been used to search through text content. However,
these methods suffer from the lexical gap (Berger
et al., 2000) and are not able to recognize synonyms
and distinguish between ambiguous words.

*Contributions made while being employed at UKP Lab.
"https://github.com/UKPLab/gpl

Recently, information retrieval methods based
on dense vector spaces have become popular to
address these challenges. These dense retrieval
methods map queries and passages” to a shared,
dense vector space and retrieve relevant hits by
nearest-neighbor search. Significant improvement
over traditional approaches has been shown for
various tasks (Karpukhin et al., 2020; Xiong et al.,
2021). This method is also adapted increasingly
by industry to enhance the search functionalities
of various applications (Choi et al., 2020; Huang
et al., 2020).

However, as shown in Thakur et al. (2021b),
dense retrieval methods require a large amount
of training data to work well.> Most importantly,
dense retrieval methods are extremely sensitive to
domain shifts: Models trained on MS MARCO
perform rather poorly for questions for COVID-19
scientific literature (Wang et al., 2020; Voorhees
et al., 2021). The MS MARCO dataset was created
before COVID-19, hence, it does not include any
COVID-19 related topics and models did not learn
how to represent this topic well in a vector space.

In this work, we present Generative Pseudo La-
beling (GPL), an unsupervised domain adaptation
technique for dense retrieval models (see Figure 1).
For a collection of paragraphs from the desired
domain, we use an existing pre-trained TS encoder-
decoder to generate synthetic queries. These input
passages are viewed as the positive passages for the
generated queries. For each generated query, we
retrieve the most similar paragraphs as the neg-
ative passages using an existing dense retrieval
model. We term this step negative mining and term
these negative passages hard negatives. Finally,
we use an existing cross-encoder to score each
(query, passage)-pair and train a dense retrieval

“We use passage to refer to text of any length.

3For reference, the popular MS MARCO dataset (Nguyen
et al., 2016) has about 500k training instances; the Natural
Questions dataset (Kwiatkowski et al., 2019) has more than
100k training instances.
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model on these generated, pseudo-labeled queries
using MarginMSE-Loss (Hofstitter et al., 2020).

We use publicly available models for query gen-
eration, negative mining, and the cross-encoder,
which have been trained on the MS MARCO
dataset (Nguyen et al., 2016), a large-scale dataset
from Bing search logs combined with relevant
passages from diverse web sources. We evaluate
GPL on six representative domain-specific datasets
from the BelR benchmark (Thakur et al., 2021b).
GPL improves the performance by up to 9.3
points nDCG @10 compared to state-of-the-art
model trained solely on MS MARCO. Compared
to the previous state-of-the-art domain-adaptation
method QGen (Ma et al., 2021; Thakur et al.,
2021b), GPL improves the performance by up to
4.5 nDCG @10 points. Training with GPL is easy,
fast, and data efficient.

We further analyze the role of six recent pre-
training methods in the scenario of domain adap-
tation for retrieval tasks. The best approach is
TSDAE (Wang et al., 2021), that outperforms the
second best approach, Masked Language Model-
ing (Devlin et al., 2019) on average by 2.5 points
nDCG@10. TSDAE can be combined with GPL,
yielding another average improvement of 1.4 point
nDCG@10.

2 Related Work

Pre-Training based Domain Adaptation. The
most common domain adaptation technique
for transformer models is domain-adaptive pre-
training (Gururangan et al., 2020), which continues
pre-training on in-domain data before fine-tuning
with labeled data. However, for retrieval it is often
difficult to get in-domain labeled data and models
are applied in a zero-shot setting on a given corpus.
Besides Masked Language Modeling (MLM) (De-
vlin et al., 2019), different pre-trained strategies
specifically for dense retrieval methods have been
proposed. Inverse Cloze Task (ICT) (Lee et al.,
2019) generates query-passage pair by randomly se-
lecting one sentence from the passage as the query
and the other part as the paired passage. ConDensor
(CD) (Gao and Callan, 2021) applies MLM on top
of the CLS token embedding from the final layer
and the other context embeddings from a previous
layer to force the model to learn meaningful CLS
representation. SimCSE (Gao et al., 2021a; Liu
et al., 2021) passes the same input twice through
the network with different dropout masks and min-

imizes the distance of the resulting embeddings,
while Contrastive Tension (CT) (Carlsson et al.,
2021) passes the input through two different mod-
els. TSDAE (Wang et al., 2021) uses a denoising
auto-encoder architecture for representation learn-
ing: Words from the input text are removed and
passed through an encoder to generate a fixed-sized
embedding. A decoder must reconstruct the origi-
nal text without noise. As we show in Appendix E,
just using these unsupervised techniques is not suf-
ficient and the resulting models perform poorly.

So far, ICT and CD have only been studied on
in-domain performance, i.e. a large in-domain la-
beled dataset is available which is used for subse-
quent supervised fine-tuning. SimCSE, CT, and
TSDAE have been only studied for unsupervised
sentence embedding learning. As our results show
in Appendix E, they do not work at all for purely
unsupervised dense retrieval.

If these pre-training approaches can be used for
unsupervised domain adaptation for dense retrieval
was so far unclear. In this work, we transfer the
setup from Wang et al. (2021) to dense retrieval
and first pre-train on the target corpus, followed
by supervised training on labeled data from MS
MARCO (Nguyen et al., 2016)*. Performance is
then measured on the target corpus.

Query Generation. Query generation has been
used to improve retrieval performances. Doc2query
(Nogueira et al., 2019a,b) expands passages with
predicted queries, generated by a trained encoder-
decoder model, and uses traditional BM25 lexical
search. This performed well in the zero-shot re-
trieval benchmark BelR (Thakur et al., 2021b). Ma
et al. (2021) proposes QGen, that uses a query
generator trained on general domain data to syn-
thesize domain-targeted queries for the target cor-
pus, on which a dense retriever is trained from
scratch. As a concurrent work, Liang et al. (2020)
also proposes the similar method. Following this
idea, Thakur et al. (2021b) views QGen as a post-
training method to adapt powerful MS MARCO
retrievers to the target domains.

Despite the success of QGen, previous methods
only consider the cross-entropy loss with in-batch
negatives, which provides coarse-grained relevance
and thus limits the performance. In this work, we
show that extending this approach by using pseudo-
labels from a cross-encoder together with hard neg-

*As shown in Wang et al. (2021), training in the reverse

order, i.e. first on MS MARCO and then on the target corpus
usually performs poorly.
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Figure 1: Generative Pseudo Labeling (GPL) for training domain-adapted dense retriever. First, synthetic queries
are generated for each passage from the target corpus. Then, the generated queries are used for mining negative
passages. Finally, the query-passage pairs are labeled by a cross-encoder and used to train the domain-adapted
dense retriever. The output at each step is marked with dashed boxes.

atives can boost the performance by several points
nDCG@10.

Other Methods. Recently, Xin et al. (2021) pro-
poses MoDIR to use Domain Adversarial Training
(DAT) (Ganin et al., 2016) for unsupervised do-
main adaptation of dense retrievers. MoDIR trains
models by generating domain invariant represen-
tations to attack a domain classifier. However, as
argued in Karouzos et al. (2021), DAT trains mod-
els by minimizing the distance between represen-
tations from different domains and such learning
objective can result in bad embedding space and
unstable performance. For sentiment classification,
Karouzos et al. (2021) proposes UDALM based on
multiple stages of training. UDALM first applies
MLM training on the target domain; and it then ap-
plies multi-task learning on the target domain with
MLM and on the source domain with a supervised
objective. However, as shown in section 5, we find
this method cannot yield improvement for retrieval
tasks.

Pseudo Labeling and Cross-Encoders: Bi-
Encoders map queries and passage independently
to a shared vector space from which the query-
passage similarity is computed. In contrast, cross-
encoders (Humeau et al., 2020) work on the con-
catenation of the query and passage and predict
a relevance score using cross-attention between
query and passage. This can be used in a re-ranking
setup (Nogueira and Cho, 2019), where the rele-
vancy is predicted for all query-passage-pairs for
a small candidate set. Previous work has shown
that cross-encoders achieve much higher perfor-
mances (Thakur et al., 2021a; Hofstitter et al.,
2020; Ren et al., 2021) and are less prone to domain
shifts (Thakur et al., 2021b). But cross-encoders
come with an extremely high computational over-
head, making them less suited for a production set-

ting. Transferring knowledge from cross-encoder
to bi-encoders have been shown previous for sen-
tence embeddings (Thakur et al., 2021a) and for
dense retrieval: Hofstitter et al. (2020) predict
cross-encoder scores for (query, positive)-pairs and
(query, negative)-pairs and learns a bi-encoder to
predict the margin between the two scores. This has
been shown highly effective for in-domain dense
retrieval.

3 Method

This section describes our proposed Generative
Pseudo Labeling (GPL) method for the unsuper-
vised domain adaptation of dense retrievers. Fig-
ure 1 illustrates the idea of GPL.

For a given target corpus, we generate for each
passage three queries (cf. Table 3) using an T5-
encoder-decoder model (Raffel et al., 2020). For
each of the generated queries, we use an exist-
ing retrieval system to retrieve 50 negative pas-
sages. Dense retrieval with a pre-existing model
was slightly more effective than BM25 lexical re-
trieval (cf. Appendix A). For each (query, posi-
tive, negative)-tuple we compute the margin § =
CE(Q, P*,) — CE(Q, P~) with CE the score as
predicted by a cross-encoder, ) the query and
P* /P~ the positive / negative passage.

We use the synthetic dataset Dgpr, =
{(Qi, Pi, P, ,0;)}; with the MarginMSE loss (Hof-
stétter et al., 2020) for training a domain-adapted
dense retriever that maps queries and passages into
the shared vector space.

Our method requires from the target domain just
an unlabeled collection of passages. Further, we
use use pre-existing T5- and cross-encoder models
that have been trained on the MS MARCO passages
dataset.

Query Generation: To enable supervised train-
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ing on the target corpus, synthetic queries can be
generated for the target passages using a query
generator trained on a different, existing dataset
like MS MARCO. Previous work QGen (Ma et al.,
2021) used the simple MultipleNegativesRanking
(MNRL) loss (Henderson et al., 2017; van den
Oord et al., 2018) with in-batch negatives’ to train
the model:

exp (10 (fo(Qs), fo(P)))

LMNRL(G) =
ST

log
Z S5 exp (7 o (fo(Qu), fol(P)

where P; is a relevant passage for ();; o is a cer-
tain similarity function for vectors; 7 controls the
sharpness of the softmax normalization; M is the
batch size.

MarginMSE loss: MultipleNegativesRanking
loss considers only the coarse relationship between
queries and passages, i.e. the matching passage is
considered as relevant while all other passages are
considered irrelevant. However, the query encoder
is not without flaws and might generate queries that
are not answerable® by the passage. Further, other
passages might actually be relevant as well for a
given query, which is especially the case if training
is done with hard negatives as we do it for GPL.

In contrast, MarginMSE loss (Hofstitter et al.,
2020) uses a powerful cross-encoder to soft-label
(query, passage) pairs. It then teaches the dense re-
triever to mimic the score margin between the pos-
itive and negative query-passage pairs. Formally,

1 M-1

Lvtarginmse (0) = — 7 S li—aF
i=0

where &; is the corresponding score margin of the
student dense retriever, i.e. & = fo(Q:)T fo(P;) —
fo(Qi)T fo(P;). Here the dot-product is usually
used due to the infinite range of the cross-encoder
scores.

This loss is a critical component of GPL, as it
solves two major issues from the previous QGen
method: A badly generated query for a given pas-
sage will get a low score from the cross-encoder,

SIn-batch negatives mean that within the same batch, the
passages in example ¢ are viewed as the negatives for example
j G #j).

®For example, some generated queries are statements in-
stead of questions.

hence, we do not expect the dense retriever to put
the query and passage close in the vector space. A
false negative will lead to a high score from the
cross-encoder, hence, we do not force the dense
retriever to assign a large distance between the cor-
responding embeddings. In section 6.3, we show
that GPL is a lot more robust to badly generated
queries than the previous QGen method.

4 Experiments

In this section, we describe the experimental setup,
the datasets used and the baselines for comparison.

4.1 Experimental Setup

We use the MS MARCO passage ranking
dataset (Nguyen et al., 2016) as the data from the
source domain. It has 8.8M passages and 532.8K
query-passage pairs labeled as relevant in the train-
ing set. We select six representative datasets from
the BeIR benchmark as the data from the target
domain (cf. subsection 4.2). As Table 1 shows,
a state-of-the-art dense retrieval model, achieving
an MRR@10 of 33.2 points on the MS MARCO
passage ranking dataset, performs poorly on the six
selected domain-specific retrieval datasets when
compared to simple BM25 lexical search.

We use the DistilBERT (Sanh et al., 2019) for
all the experiments. We use the concatenation of
the title and the body text as the input passage
for all the models. We use a maximum sequence
length of 350 with mean pooling and dot-product
similarity by default. For QGen, we use the de-
fault setting in Thakur et al. (2021b): 1-epoch
training and batch size 75. For GPL, we train the
models with 140k training steps and batch size
32. To generate queries for both QGen and GPL,
we use the DocT5Query (Nogueira et al., 2019a)
generator trained on MS MARCO and generate ’
queries using nucleus sampling with temperature
1.0, £ = 25 and p = 0.95. To retrieve hard neg-
atives for both GPL and the zero-shot setting of
MS MARCO training, we use two dense retriev-
ers with cosine-similarity trained on MS MARCO:
msmarco-distilbert-base-v3 and msmarco-MiniLM-
L-6-v3 from Sentence-Transformers®. The zero-
shot performance of these two dense retrievers is
available in Appendix B. We retrieve 50 negatives

"We use the script from BelR at https://github.
com/UKPLab/beir.

$https://github.com/UKPLab/
sentence-transformers

2348


https://github.com/UKPLab/beir
https://github.com/UKPLab/beir
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers

using each retriever and uniformly sample one neg-
ative passage and one positive passage for each
training query to form one training example. For
pseudo labeling, we use the ms-marco-MiniLM-L-
6-v2° cross-encoder. For all the pre-training meth-
ods (e.g. TSDAE and MLM), we train the models
for 100K training steps and with batch size 8.

As shown in Section 6, small corpora require
more generated queries and for large corpora, a
small down-sampled subset (e.g. 50K) is enough
for good performance. Based on these findings,
we adjust the number of generated queries per pas-
sage ¢avg. and the corpus size |C| to make the total
number of generated queries equal to a fixed num-
ber, 250K, i.e. gavg. X |C| = 250K. In detail, we
first set gavg. >= 3 and uniformly down-sample
the corpus if 3 x |C| > 250K; then we calculate
gave. = |250K/|C|]. For example, the gay,. val-
ues for FiQA (original size = 57.6K) and Robust04
(original size = 528.2K) are 5 and 3, resp. and
the Robust04 corpus is down-sampled to 83.3K.
QGen and GPL share the generated queries for fair
comparision.

4.2 Evaluation

As our methods focus on domain adaptation to
specialized domains, we selected six domain-
specific text retrieval tasks from the BelR bench-
mark (Thakur et al., 2021b): FiQA (financial do-
main) (Maia et al., 2018), SciFact (scientific pa-
pers) (Wadden et al., 2020), BioASQ (biomedical
Q&A) (Tsatsaronis et al., 2015), TREC-COVID
(scientific papers on COVID-19) (Roberts et al.,
2020), CQADupStack (12 StackExchange sub-
forums) (Hoogeveen et al., 2015) and Robust04
(news articles) (Voorhees, 2005). These selected
datasets each contain a corpus with a rather specific
language and can thus act as a suitable test bed for
domain adaptation.

The detailed information for all the target
datasets is available at Appendix C. We make
modification on BioASQ and TREC-COVID. For
efficient training and evaluation on BioASQ, we
randomly remove irrelevant passages to make the
final corpus size to 1M. In TREC-COVID, the orig-
inal corpus has many documents with a missing
abstract. The retrieval systems that were used to
create the annotation pool for TREC-COVID often
ignored such documents. This leads to a strong

*https://huggingface.co/cross—encoder/
ms—-marco-MinilLM-L-6-v2

annotation bias on text length for these documents,
since this dataset contains only titles and abstracts.
Hence, we removed all documents with a missing
abstract from the corpus. The evaluation results
on the original BioASQ and TREC-COVID are
available at Appendix D. Evaluation is done using
nDCG@10.

4.3 Baselines

Zero-Shot Models: We apply supervised training
on MS MARCO or PAQ (Lewis et al., 2021) and
evaluate the trained retrievers on the target datasets.
(a) MS MARCO represents a distilbert-base dense
retrieval model trained with MarginMSE on the
MS MARCO dataset with batch-size 75 for 70k
steps. (b) PAQ (Oguz et al., 2021) represents
MNRL training on the PAQ dataset. (c) PAQ + MS
MARCO represents MNRL training on PAQ fol-
lowed by MarginMSE training on MS MARCO. (d)
TSDAEwns marco represents TSDAE (Wang et al.,
2021) pre-training on MS MARCO followed by
MarginMSE training on MS MARCO. (e) BM25
system based on lexical matching from Elastic-
search!?,

Previous Domain Adaptation Methods: We
include two previous unsupervised domain adapta-
tion methods, UDALM (Karouzos et al., 2021) and
MoDIR (Xin et al., 2021). For UDALM, we apply
MLM training on the target corpus and then apply
the multi-task training of MarginMSE training on
MS MARCO and MLM training on the target cor-
pus. For MoDIR, it starts from the ANCE check-
point and apply domain adversarial training on MS
MARCO and the target dataset. As of writing, the
training code of MoDIR is not public, but domain
adapted models for 5 out of 6 datasets have been
released by the authors.

Pre-Training based Domain Adaptation: We
follow the setup proposed in Wang et al. (2021)
on domain-adapted pre-training: We pre-train the
dense retrievers with different methods on the tar-
get corpus and then continue to train the mod-
els on MS MARCO with MarginMSE loss. The
pre-training methods consist of: (a) CD (Gao and
Callan, 2021) extracts the hidden representations
from an intermediate layer and applies MLM on
the CLS token representation and these extracted
hidden representations“. (b) SimCSE (Gao et al.,
2021b; Liu et al., 2021) simply encode the same

Ohttps://www.elastic.co
"CD can only be applied with CLS pooling.
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Mot FiQA | SciFact | BioASQ | TRECC. | CQADup. | Robust04 | Ave.
Zero-Shot Models

MS MARCO 26.7 57.1 529 66.1 29.6 39.0 45.2
PAQ 15.2 533 44.0 23.8 24.5 31.9 32.1
PAQ + MS MARCO 26.7 57.6 53.8 63.4 30.6 37.2 44.9
TSDAEMms Mmarco 26.7 55.5 514 65.6 30.5 36.6 44.4
BM25 239 66.1 70.7 60.1 31.5 38.7 48.5
Previous Domain Adaptation Methods

UDALM 233 33.6 33.1 57.1 24.6 26.3 33.0
MoDIR 29.6 50.2 47.9 66.0 29.7 - -
Pre-Training based Domain Adaptation: Target — MS MARCO

CT 28.3 55.6 49.9 63.8 30.5 35.9 44.0
CD 27.0 62.7 47.7 65.4 30.6 345 447
SimCSE 26.7 55.0 53.2 68.3 29.0 37.9 45.0
ICT 27.0 58.3 55.3 69.7 31.3 374 46.5
MLM 30.2 60.0 51.3 69.5 304 38.8 46.7
TSDAE 29.3 62.8 55.5 76.1 31.8 39.4 49.2
Generation-based Domain Adaptation (Previous State-of-the-Art)

QGen 28.7 63.8 56.5 72.4 33.0 38.1 48.8
QGen (w/ Hard Negatives) | 26.0 59.6 57.7 65.0 33.2 36.5 46.3
TSDAE + QGen (Ours) 314 66.7 58.1 72.6 35.3 374 50.3
Proposed Method: Generative Pseudo Labeling

GPL 32.8 66.4 61.0 72.6 34.5 41.4 51.5
TSDAE + GPL 34.4 68.9 61.6 74.6 35.1 43.0 529
Re-Ranking with Cross-Encoders (Upper Bound, Inefficient at Inference)

BM25 + CE 33.1 67.6 72.8 71.2 36.8 46.7 54.7
MS MARCO + CE 33.0 66.9 57.4 65.1 36.9 44.7 50.7
TSDAE + GPL + CE 36.4 68.3 68.0 71.4 38.1 48.3 55.1

Table 1: Evaluation using nDCG@ 10. The best results of the single-stage dense retrievers are bold. TRECC. and
CQADup. are short for TREC-COVID and CQADupStack. Our proposed GPL significantly outperforms other
domain adaptation methods. For the first time, we investigate the TSDAE pre-training in domain adaptation for
dense retrieval and find it can significantly improve both QGen and GPL. The results on the full 18 BelR datasets

can be found in Appendix D.

text twice with different dropout masks in combi-
nation with MNRL loss. (¢) CT (Carlsson et al.,
2021) is similar to SimCSE but it uses two inde-
pendent encoders to encode a pair of text. (d)
MLM (Devlin et al., 2019) uses the default set-
ting in original paper, where 15% tokens in a text
are sampled to be masked and are needed to be
predicted. (e) ICT (Lee et al., 2019) uniformly
samples one sentence from a passage as the pseudo
query to that passage and uses MNRL loss on the
synthetic data. We follow the setting in Lee et al.
(2019) and masked out the selected sentence 90%
of the time. (f) TSDAE (Wang et al., 2021) uses
a denoising autoencoder to pre-train the dense re-
trievers with 60% random tokens deleted in the
input texts.

Generation-based Domain Adaptation: We
use the training script'? from Thakur et al. (2021b)
to train QGen models with the default setting. Co-

Pnttps://github.com/UKPLab/beir

sine similarity is used and the models are fine-tuned
for 1 epoch with MNRL. The default QGen is
trained with in-batch negatives. For a fair com-
parison, we also test QGen with hard negatives as
used in GPL, noted as QGen (w/ Hard Negatives).
Further, We test the combination of TSDAE and
QGen (TSDAE + QGen).

Re-Ranking with Cross-Encoders: We also
include results of the powerful but inefficient
re-ranking methods for reference. Three re-
trievers for the first-phrase retrieval are tested:
BM25 from Elasticsearch, the zero-shot MS
MARCO retriever and the GPL retriever en-
hanced by TSDAE pre-training. We use the cross-
encoder ms-marco-MiniLM-L-6-v2 from Sentence-
Transformers, which is also the same model used
for pseudo labeling in GPL.

5 Results

Pre-Training based Domain Adaptation:
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The results are shown in Table 1. Compared
with the zero-shot MS MARCO model, TSDAE,
MLM and ICT can improve the performance if we
first pre-train on the target corpus and then perform
supervised training on MS MARCO. Among them,
TSDAE is the most effective method, outperform-
ing the zero-shot baseline by 4.0 points nDCG@10
on average. CD, CT and SimCSE are not able to
adapt to the domains in a pre-training setup and
achieve a performance worse than the zero-shot
model.

To ensure that TSDAE actually learns domain
specific terminology, we include TSDAEMs MmarRcO
in our experiments: Here, we performed TSDAE
pre-training on the MS MARCO dataset followed
by supervised learning on MS MARCO. This
performs slightly weaker than the zero-shot MS
MARCO model.

We also tested the pre-training methods without
any supervised training on MS MARCO. We find
all of them fail miserably compared to the zero-shot
baseline as shown in Appendix E .

Previous Domain Adaptation Methods: We
test MoDIR on the datasets except Robust04!3.
MoDIR performs on-par with our zero-shot MS
MARCO model on FiQA, TREC-COVID and
CQADupStack, while it performs much weaker on
SciFact and BioASQ. An improved training setup
with MoDIR could improve the results.

We also test UDALM, which first does MLM
pre-training on the target corpus, and then runs
multitask learning with MLLM objective and super-
vised training on MS MARCO. The results show
that UDALM in this case greatly harms the perfor-
mance by 12.2 points in average, when compared
with the MLM-pre-training approach. We suppose
this is because unlike text classification, the dense
retrieval models usually do not have an additional
task head and the direct MLLM training conflicts
with the supervised training.

Generation-based Domain Adaptation: The
results show that the previous best method, QGen,
can successfully adapt the MS MARCO models
to the new domains, improving the performance
on average by 3.6 points. It performs on par with
TSDAE-based domain-adaptive pre-training. Com-
bining TSDAE with QGen can further improve the
performance by 1.5 points.

When using QGen with hard negatives instead

3The original author did not train the model on Robust04
and the code is also not available.

of random in-batch negatives, the performance de-
creases by 2.5 points in average. QGen is sensitive
to false negatives, i.e. negative passages that are
actually relevant for the query. This is a common
issue for hard negative mining. GPL solves this
issue by using the cross-encoder to determine the
distance between the query and a passage. We give
more analysis in section 7.

Generative Pseudo Labeling (GPL, proposed
method): We find GPL is significantly better on
almost all the datasets compared to other tested
methods, outperforming QGen by up to 4.5 points
(on BioASQ) and in average by 2.7 points. One
exception is TREC-COVID, but as this dataset has
just 50 test queries, this difference can be due to
noise.

As a further enhancement, we find that TSDAE-
based domain-adaptive pre-training combined with
GPL (i.e. TSDAE + GPL) can further improve the
performance on all the datasets, achieving the new
state-of-the-art result of 52.9 nDCG @10 points
in average. It outperforms the out-of-the-box MS
MARCO model 7.7 points on average.

For the results of GPL on the full 18 BelR
datasets, please refer to Appendix D. The observa-
tions remain the same.

Re-ranking with Cross-Encoders: Cross-
encoders perform well in a zero-shot setting and
outperform dense retrieval approaches significantly
(Thakur et al., 2021b), but they come with a sig-
nificant computational cost at inference. TSDAE
and GPL can narrow but not fully close the perfor-
mance gap between the single-stage retrievers and
the re-ranking methods. Due to the much lower
computational costs at inference, the TSDAE +
GPL model would be preferable in a production
setting. For example, as shown in Thakur et al.
(2021b), the retrieval latency on a 1M-sized corpus
for one query is 14ms and 450ms for dense retriev-
ers (with the same backbone as ours) and BM25 +
CE reranking, resp.

6 Analysis

In this section, we analyze the influence of training
steps, corpus size, query generation and choices of
starting checkpoints on GPL.

6.1 Influence of Training Steps

We first analyze the influence of the number of
training steps on the model performance. We eval-
uate the models every 10K training steps and end
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Figure 2: Influence of the number training steps on the
averaged performance. The performance of GPL begins
to be saturated after 100K steps. TSDAE helps improve
the performance during the whole training stage.

Size

Method 1K | 10K | 50K | 250K | 528K
QGen 355 | 36.5| 387 | 375 | 37.0
GPL 37.6 | 41.4 | 425 | 414 | 413
Zero-shot 39.0

Table 2: Influence of corpus size on performance on
Robust04. The full size is 528K. GPL can achieve the
best performance with as little as SOK passages.

the training after 140K steps. The results for the
change of averaged performance on all the datasets
are shown in Figure 2. We find the performance of
GPL begins to be saturated after around 100K steps.
With the TSDAE pre-training, the performance can
be improved consistently during the whole train-
ing stage. For reference, training a distilbert-base
model for 100k steps takes about 9.6 hours on a
single V100 GPU.

6.2 Influence of Corpus Size

We next analyze the influence of different corpus
sizes. We use Robust04 for this analysis, since it
has a relatively large size. We sample 1K, 10K,
50K and 250K passages from the whole corpus in-
dependently to form small corpora and train QGen
and GPL on the same small corpus. The results are
shown in Table 2. We find with more than 10K pas-
sages, GPL can already significantly outperform
the zero-shot baseline by 2.4 NDCG@ 10 points;
with more than 50K passages, the performance be-
gins to saturate. On the other hand, QGen falls
behind the zero-shot baseline for each corpus size.

6.3 Robustness against Query Generation

Next, we study how the query generation influences
the model performance. First, we train QGen and
GPL on SciFact, FiQA and Robust04, with 1 up to
50 generated Queries Per Passage (QPP). The re-

Queries Per Passage
Dataset | Method i 3 3 5 10 75 =
SciFact QGen 56.7 | 59.6 | 60.2 | 59.9 | 61.5 | 62.2 | 63.7
(5.2K) GPL 61.7 | 63.2 | 63.8 | 64.7 | 66.8 | 66.9 | 67.9
Zero-shot 57.1
FiQA QGen 273 [28.1[27.8]285]293 3113138
(57.6K) GPL 31.5 \ 322 \ 32.3 \ 32.8 \ 33.0 \ 335 \ 335
Zero-shot 26.7
QGen 379 | 38.7 | 37.0 | 37.3 | 38.2 | 37.7 | 37.7
Z";;“;g? GPL 20 } a3 } a4 } a1, } 0.9 } a2 } 406
. Zero-shot 39.0

Table 3: Influence of number of generated Queries Per
Passage (QPP) on the performance on SciFact, FIQA
and Robust04. Corpus size is labeled under each dataset
name. Smaller corpora, e.g. SciFact and FiQA require
larger QPP to achieve the optimal performance.

sults are shown in Table 3. We observe that smaller
corpora, e.g. SciFact (size = 5.2K) and FiQA (size
= 57.6K) require more generated queries per pas-
sage than the large one, Robust04 (size = 528.2K).
For example, GPL needs QPP equal to around 50,
5 and 1 for SciFact, FiQA and Robust04, resp. to
achieve the optimal performance.

The temperature'* plays an important role in nu-
cleus sampling, higher values make the generated
queries more diverse, but of lower quality. We
train QGen and GPL on FiQA with different tem-
peratures: 0.1, 1, 1.3, 3, 5 and 10. Examples of
generated queries are available in Appendix F. We
generated 3 queries per passage. The results are
shown in Figure 3. We find the performance of
QGen and GPL both peaks at 1.0. With a higher
temperature, the next-token distribution will be flat-
ter and more diverse queries, but of lower quality,
will be generated. With high temperatures, the gen-
erated queries have nearly no relationship to the
passage. QGen will perform poorly in these cases,
worse than the zero-shot model. In contrast, GPL
performs still well even when the generated queries
are of such low quality.

6.4 Sensitivity to Starting Checkpoints

We also analyze the influence of initialization
on GPL. In the default setting, we start from a
distilbert-model supervised on MS MARCO us-
ing MarginMSE loss. We also evaluate to directly
fine-tune a distilbert-model using QGen, GPL and
TSDAE + GPL. The performance averaged on all
the datasets is shown in Table 4. We find the MS
MARCO training has relatively small effect on the
performance of GPL (with 0.3-point difference in
average), while QGen highly relies on the choice

!“The amplifying coefficient to the raw logits in the Softmax
function.
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Figure 3: Influence of the temperature in generation on
the performance on FiQA. A higher temperature means
more diverse queries but of lower quality. GPL can still
yield around 3.0-point improvement over the zero-shot
baseline with high temperature value of 10.0, where
the generated queries have nearly no connection to the
passages.

Methed Init 1 pistilbert | MS MARCO
QGen 46.9 48.8
TSDAE + QGen (Ours) 49.6 50.3
GPL 51.2 51.5
TSDAE + GPL 52.3 529
Zero-shot - 452

Table 4: Influence of initialization checkpoint on per-
formance in average. GPL yields similar performance
when starting from different checkpoints.

of the initialization checkpoint (with 1.9-point dif-
ference in average).

7 Case Study: Fine-Grained Labels

GPL uses continuous pseudo labels from a cross-
encoder, which can provide more fine-grained in-
formation and is more informative than the simple
0-1 labels as in QGen. In this section, we give a
more detailed insight into it by a case study.

One example from FiQA is shown in Table 5.
The generated query for the positive passage asks
for the definition of “futures contract”. Negative
1 and 2 only mention futures contract without ex-
plaining the term (with low GPL labels/scores be-
low 2.0), while Negative 3 gives the required def-
inition (with high GPL label/score 8.2). As an
interesting case, Negative 4 gives a partial explana-
tion of the term (with medium GPL label/score 6.9).
GPL assigns suitable fine-grained labels to differ-
ent negative passages. In contrast, QGen simply
labels all of them as 0, i.e. as irrelevant. Such differ-
ence explains the advantage of GPL over QGen and
why using hard negatives harms the performance

Item Text
Query

GPL | QGen
what is futures contract - -
Futures contracts are a
member of a larger class
of financial assets called

derivatives ...

... Anyway in this one example
the s&p 500 futures contract
has an "initial margin" of
$19,250, meaning ...

... but the moment you exercise
you must have $5,940 in a
margin account to actually
use the futures contract ...
... a futures contract is simply
a contract that requires party A

to buy a given amount of a 8.2 0
commodity from party B at a
specified price...

... A futures contract commits

two parties to a buy/sell of the 6.9 0
underlying securities, but ...

Positive 10.3 1

Negative 1 2.0 0

Negative 2 0.3 0

Negative 3

Negative 4

Table 5: Examples of the labels assigned to different
query-passage pairs in FIQA by GPL and QGen. The
key term "futures contract” is marked in bold. QGen
uses only 0-1 scores. GPL uses raw logits, which can
be any value between positive and negative infinity (e.g.
[—12,11] is a typical range).

of QGen in Table 1.

8 Conclusion

In this work we propose GPL, a novel unsuper-
vised domain adaptation method for dense retrieval
models. It generates queries for a target corpus and
pseudo labels these with a cross-encoders. Pseudo-
labeling overcomes two important short-comings
of previous methods: Not all generated queries are
of high quality and pseudo-labels efficiently detects
those. Further, training with mined hard negatives
is possible as the pseudo labels performs efficient
denoising.

In this work, we also evaluated different
pre-training strategies in a domain-adaptive pre-
training setup: We first pre-trained on the target
domain, then performed supervised training on MS
MARCO. ICT and MLLM were able to yield a small
improvement (by <=1.5 nDCG @10 points on aver-
age), while TSDAE was able to yield a significant
improvement of 4 nDCG@ 10 points on average.
Other approaches degraded the performance.
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A Performance of Using Different Retrievers for Negative Mining in GPL

The performance of using different retrievers (BM25, dense, BM25 + dense and single dense retrievers)
for mining hard negatives in GPL is shown in Table 6. The results show GPL performs best when using
hard negatives mined by both the two dense retrievers.

Method Dataset FiQA | SciFact | BioASQ | TRECC. | CQADup. | Robust04 | Avg.
GPL (w/ BM25 + dense) 329 | 644 61.1 68.6 33.8 413 | 504
GPL (w/ BM25) 3.1 | 609 57.8 67.5 33.5 359 | 478
GPL (w/ dense) 328 | 664 61.0 72.6 345 414 | 515
GPL (w/ msmarco-distilbert-base-v3) | 32.1 64.7 60.9 70.8 343 41.5 50.7
GPL (w/ msmarco-MiniLM-L-6-v3) | 327 | 64.6 61.7 69.7 35 404 | 507
MS MARCO 267 | 57.1 52.9 66.1 29.6 39.0 | 452

Table 6: Performance (nDCG@ 10) of using different retrievers for hard-negative mining in GPL. The scores of the
baseline MS MARCO and the scores of GPL with dense retrievers are copied from Table 1. "Dense" represents
using both of the two dense retrievers msmarco-distilbert-base-v3 and msmarco-MiniLM-L-6-v3.

B Performance of the Zero-Shot Retrievers in Hard-Negative Mining

The performance of directly using the zero-shot retrievers for hard-negative mining in GPL is shown in
Table 7. Compared with the strong baseline (MS MARCO in Table 7) trained with MarginMSE, msmarco-
distilbert-base-v3 and msmarco-MiniLM-L-6-v3 are much worse in terms of zero-shot generalization on
each dataset. This comparison supports GPL can indeed train powerful domain-adapted dense retrievers
with minimum reliance on choices of the retrievers for hard-negative mining.

Method Dataset FiQA | SciFact | BioASQ | TRECC. | CQADup. | Robust04 | Avg.
msmarco-distilbert-base-v3 | 24.0 52.3 45.6 61.1 24.3 30.6 39.7
msmarco-MiniLM-L-6-v3 233 48.8 41.9 57.9 24.3 28.5 37.5
MS MARCO 26.7 57.1 52.9 66.1 29.6 39.0 45.2

Table 7: Performance (nDCG@ 10) of different zero-shot retrievers. msmarco-distilbert-base-v3 and msmarco-
MiniLM-L-6-v3 are used in GPL for hard-negative mining. The scores of the baseline MS MARCO are copied from
Table 1.

C Target Datasets

FiQA is for the task of opinion question answering over financial data. It contains 648 queries and 5.8K
passages from StackExchange posts under the Investment topic in the period between 2009 and 2017. The
labels are binary (relevant or irrelevant) and there are 2.6 passages in average labeled as relevant for each
query.

SciFact is for the task of verifying scientific claims using evidence from the abstracts of the scientific
papers. It contains 300 queries and 5.2K passages built from S20RC (Lo et al., 2020), a publicly-available
corpus of millions of scientific articles. The labels are binary and there are 1.1 passages in average labeled
as relevant for each query.

BioASQ is for the task of biomedical question answering. It originally contains 500 queries and 15M
articles from PubMed'>. The labels are binary and it has 4.7 passages in average labeled as relevant for
each query. For efficient training and evaluation, we randomly remove irrelevant passages to make the
final corpus size to 1M.

TREC-COVID is an ad-hoc search challenge for scientific articles related to COVID-19 based on the
CORD-19 dataset (Wang et al., 2020). It originally contains 50 queries and 171K documents. The original
corpus has many documents with only a title and an empty body. We remove such documents and the

Bhttps://pubmed.ncbi.nlm.nih.gov/
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final corpus size is 129.2K. The labels in TREC-COVID are 3-level (i.e. 0, 1 and 2) and there are 430.8
passages in average labeled as 1 or 2 in the clean-up version.

CQADupStack is a dataset for community question-answering, built from 12 StackExchange subfo-
rums: Android, English, Gaming, Gis, Mathematica, Physics, Programmers, Stats, Tex, Unix, Webmasters
and WordPress. The task is to retrieve duplicate question posts with both a title and a body text given
a post title. It has 13.1K queries and 457.2k passages. The labels are binary and there are 1.4 passages
in average labeled as relevant for each query. As in Thakur et al. (2021b), the average score of the 12
sub-tasks is reported.

Robust04 is a dataset for news retrieval focusing on poorly performing topics. It has 249 queries and
528.2K passages. The labels are 3-level and there are in average 69.9 passages labeled as relevant for
each query.

The detailed statistics of these target datasets are shown in Table 8.

Dataset Statistics Domain Title | Relevancy | #Queries | #Passages | PPQ | Query Len. | Passage Len.
FiQA Financial X Binary 648 57.6K 2.6 10.8 132.2
SciFact Scientific v Binary 300 5.2K 1.1 12.4 213.6
BioASQ Bio-Medical | v/ Binary 500 1.0M 4.7 8.1 204.1
BioASQ* Bio-Medical | v Binary 500 14.9M 4.7 8.1 202.6
TREC-COVID Bio-Medical | v/ 3-Level 50 129.2K | 430.8 10.6 210.3
TREC-COVID* Bio-Medical | v 3-Level 50 171.3K | 4935 10.6 160.8
CQADupStack Forum v Binary 13,145 457.2K 1.4 8.6 129.1
Robust04 News X 3-Level 249 528.2K 69.9 153 466.4

Table 8: Statistics of the target datasets used in the experiments. Column Title indicates whether there is (v') a title
for each passage or not (X). Column PPQ represents number of Passages Per Query. Query/passage lengths are
counted in words. Symbol * marks the original version from the BeIR benchmark (Thakur et al., 2021b)

We also evaluate the models trained in this work on the original version of BioASQ and TREC-COVID
datasets from BelR (Thakur et al., 2021b). The results are shown in Table 9.

D Results on full BeIR

We also evaluate the models on all the 18 BelR datasets. We include DocT5Query (Nogueira et al., 2019a),
the strong baseline based on document expansion with the TS query generator (also used in GPL for query
generation) + BM25 (Anserini). We also include the powerful zero-shot model TAS-B (Hofstitter et al.,
2021), which is trained on MS MARCO with advanced knowledge-distillation techniques into comparison.
Viewing TAS-B as the base model and also the negative miner, we apply QGen and GPL on top of them,
resulting in TAS-B + QGen and TAS-B + GPL, resp.

The results are shown in Table 9. We find both DocT5Query and BM25 (Anserini) outperform
MS MARCO, TSDAE and QGen, in terms of both average performance and average (performance)
rank. QGen struggles to beat MS MARCO, the zero-shot baseline and it even significantly harms the
performance on many datasets, e.g. TREC-COVID, FEVER, HotpotQA, NQ. Thakur et al. (2021b) also
observes the same issue, claiming that the bad generation quality on these corpora is the key to the failure
of QGen. On the other hand, GPL significantly outperforms these baselines above, achieving average
performance rank 5.2 and can consistently improve the performance over the zero-shot model on all the
datasets. For TSDAE, TSDAE + QGen and TSDAE + GPL, the conclusion remains the same as in the
main paper.

For the powerful zero-shot model TAS-B, it outperforms QGen and performs on par with TSDAE +
QGen. When building on top of TAS-B, GPL can also yield significant performance gain by up-to 21.5
nDCG @10 points (on TREC-COVID) and 4.6 nDCG @ 10 points on average. This TAS-B + GPL model
performs the best over all these retriever models, achieving the averaged performance rank equal to 3.2.
However, when applying QGen on top of TAS-B, it cannot improve the overall performance but also
harms the individual performance on many datasets, instead.
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Method BM25 DocT5- MS TSDAE + TSDAE + TAS-B + | TAS-B + || BM25+ CE

Dataset (Anserini) | Query | MARCO TSDAE | QGen QGen (Ours) GPL GPL TAS-B QGen GPL (Upperbound)
FiQA 23.6 29.1 26.7 29.3 28.7 314 32.8 344 29.8 30.1 344 347
SciFact 66.5 67.5 57.1 62.8 63.8 66.7 66.4 68.9 63.5 65.3 67.4 68.8
BioASQ* 46.5 43.1 33.6 37.3 36.9 38.5 41.2 40.9 36.2 38.5 442 52.3
TRECC.* 65.6 71.3 66.1 70.8 56.0 58.4 71.8 74.9 48.5 56.6 70.0 75.7
CQADup. 29.9 325 29.6 31.8 33.0 353 34.5 35.1 31.5 33.7 35.7 37.0
Robust04 40.8 43.7 39.0 39.4 38.1 37.4 414 43.0 424 39.4 43.7 47.5
ArguAna 41.4% 46.91 339 37.5 52.4 54.7 483 51.2 434 51.8 55.7 41.7
Climate-F. 21.3 20.1 20.0 16.8 225 22.6 22.7 22.2 22.1 24.4 23.5 25.3
DBPedia 313 33.1 34.2 354 33.1 332 36.1 36.1 384 32.7 384 40.9
FEVER 75.3 71.4 76.5 64.0 63.8 64.2 71.9 78.6 69.5 63.9 75.9 81.9
HotpotQA 60.3 58.0 55.4 63.8 51.4 522 56.5 57.2 58.4 52.0 58.2 70.7
NFCorpus 325 32.8 27.7 31.2 314 33.7 34.2 339 31.9 334 34.5 35.0
NQ 329 39.9 45.6 47.1 354 34.6 46.7 47.1 46.3 36.3 48.3 53.3
Quora 78.9 80.2 81.2 83.3 85.0 85.7 83.2 83.1 83.5 85.3 83.6 82.5
SciDocs 15.8 16.2 13.6 154 15.5 17.1 16.1 16.8 14.9 16.4 16.9 16.6
Signal-1M 33.0 30.7 24.4 259 26.8 26.8 26.5 27.6 28.9 26.6 27.6 33.8
TRECN. 39.8 42.0 36.0 35.0 36.0 38.3 40.7 415 37.7 38.0 42.1 43.1
Touché20 36.7 34.7 19.6 21.8 17.1 17.2 23.1 23.5 16.2 17.5 25.5 27.1
Avg. 429 44.1 40.0 41.6 40.4 41.6 44.5 453 41.3 41.2 45.9 48.2
Avg. Rank 7.6 6.2 9.8 8.2 8.9 6.5 52 4.2 7.8 7.3 3.2 2.4

Table 9: Performance (nDCG@ 10) on all the original 18 BelR datasets. The results of MS MARCO, TSDAE,
QGen, TSDAE + QGen, GPL and TSDAE + GPL on FiQA, SciFact, CQADupStack and Robust04 are copied
from Table 1. The results of BM25, DocT5Query and BM25 + CE come from Thakur et al. (2021b). { marks
correction over the original scores, where identical IDs between queries and passages are removed. TRECN. is short
for TREC-NEWS. Avg. Rank is the average over the rank of the performance on each dataset over the different
models (the lower, the better).

E Performance of Unsupervised Pre-Training

The performance of the unsupervised pre-training methods without access to the MS MARCO data is
shown in Table 10. We find ICT is the best method, achieving highest scores on all the datasets. However,
all the unsupervised pre-training methods cannot directly yield improvement in performance compared
with the zero-shot baseline.

Mot Dataset | oA | SciFact | BioASQ | TRECC. | CQADup. | Robust0d | Ave.
CD 66 | 06 03 98 8.1 38 | 49
CT 02 | 07 0.0 25 0.9 00 | 07
MLM 54 | 278 47 16.0 8.5 61 | 114
TSDAE 78 | 372 6.9 9.4 143 101 | 143
SimCSE 55 | 250 | 131 26.0 14.6 98 | 157
ICT 102 | 426 | 390 475 23.0 165 | 298
MS MARCO %67 | 571 | 529 66.1 296 390 | 452

Table 10: Performance (nDCG @ 10) of unsupervised pre-training methods with only access to the target corpus as
the training data. The scores of the zero-shot baseline MS MARCO are copied from Table 1.

F Examples of Generated Queries under Different Temperatures

The generation temperature controls the sharpness of the next-token distribution. The examples for one
passage from FiQA are shown in Table 11 Higher temperature results in longer and less duplicate queries
under more risk of generating non-sense texts.
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Item

Text Pseudo Label
You can never use a health FSA for individual health insurance premiums. Moreover,
FSA plan sponsors can limit what they are will to reimburse. While you can’t use a health
Input Passage FSA for premiums, you could previously use a 125 cafeteria plan to pay premiums, but it -
had to be a separate election from the health FSA. However, under N. 2013-54, even
using a cafeteria plan to pay for indivdiual premiums is effectively prohibited.
can you use a cafeteria plan for premiums 9.1
Temperature 0.1 can you use a cafeteria plan for premiums 9.1
can you use a cafeteria plan for premiums 9.1
can i use my fsa to pay for a health plan 9.7
Temperature 1.0 can i use my health fsa for an individual health plan? 9.9
can fsa pay premiums 9.2
cafe a number cafe plan is used by -10.5
what type of benefits do the health savings accounts cover 79
Temperature 3.0 when applying for medical terms health insurance ’
why can’t an individual file medical premium on their insurance account with an fsa plan 6.0
instead of healthcare policy. '
which one does not apply after an emergency medical -11.1
Temperature 5.0 is medicare cafe used exclusively as plan funds (health savings account -71.2
how soon to transfer coffee bean fses to healthcare -11.0
will employer limit premiums reimbursement on healthcare expenses with caeatla
cafetaril and capetarians account on my employer ca. plans and deductible accounts -2.5
a.f,haaq and asfrhnta,
Temperature 10.0 kfi what is allowed as personal health account or ca -10.2
do people put funds back to buy plan plans before claiming an deductible without the
provider or insurance cover f/f associator funds of the person you elect? healthfin depto -4.5

of benefit benefits deduct all oe premiumto payer for individual care

Table 11: Examples of generated queries under different temperature value for a passage from FiQA.
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