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Abstract

Modern unsupervised machine translation
(MT) systems reach reasonable translation qual-
ity under clean and controlled data conditions.
As the performance gap between supervised
and unsupervised MT narrows, it is interesting
to ask whether the different training methods
result in systematically different output beyond
what is visible via quality metrics like adequacy
or BLEU. We compare translations from super-
vised and unsupervised MT systems of simi-
lar quality, finding that unsupervised output is
more fluent and more structurally different in
comparison to human translation than is super-
vised MT. We then demonstrate a way to com-
bine the benefits of both methods into a sin-
gle system which results in improved adequacy
and fluency as rated by human evaluators. Our
results open the door to interesting discussions
about how supervised and unsupervised MT
might be different yet mutually-beneficial.

1 Introduction

Supervised machine translation (MT) utilizes paral-
lel bitext to learn to translate. Ideally, this data con-
sists of natural texts and their human translations.
In a way, the goal of supervised MT training is to
produce a machine that mimicks human translators
in their craft. Unsupervised MT, on the other hand,
uses monolingual data alone to learn to translate.
Critically, unsupervised MT never sees an exam-
ple of human translation, and therefore must create
its own style of translation. Unlike supervised MT
where one side of each training sentence pair must
be a translation, unsupervised MT can be trained
with natural text alone.

In this work, we investigate the output of su-
pervised and unsupervised MT systems of similar
quality to assess whether systematic differences in
translation exist. Our exploration of this research
area focuses on English—German for which abun-
dant bilingual training examples exist, allowing us
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to train high-quality systems with both supervised
and unsupervised training.

Our main contributions are:

* We observe systematic differences between
the output of supervised and unsupervised MT
systems of similar quality. High-quality un-
supervised output appears more natural, and
more structurally diverse when compared to
human translation.

* We show a way to incorporate unsupervised
back-translation into a standard supervised
MT system, improving adequacy, naturalness,
and fluency as measured by human evaluation.

Our results provoke interesting questions about
what unsupervised methods might contribute be-
yond the traditional context of low-resource lan-
guages which lack bilingual training data, and sug-
gest that unsupervised MT might have contribu-
tions to make for high-resource scenarios as well.
It is worth exploring how combining supervised
and unsupervised setups might contribute to a sys-
tem better than either creates alone.

We discuss related work in §2. In §3, we in-
troduce the dataset, model details, and evaluation
setups. In §4, we characterize the differences be-
tween the output of unsupervised and supervised
neural MT systems of similar quality. In §5, we
demonstrate a combined system which benefits
from the complementary strengths of the two meth-
ods. We summarize the paper in §6.

2 Related Work

Unsupervised MT Two paradigms for unsuper-
vised MT are finding a linear transformation to
align two monolingual embedding spaces (Lample
et al., 2018a,b; Conneau et al., 2018; Artetxe et al.,
2018, 2019), and pretraining a bi-/multilingual
language model then finetuning on a translation
task (Conneau and Lample, 2019; Song et al., 2019;
Liu et al., 2020). We study the Masked Sequence-
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to-Sequence Pretraining (MASS) language model
pretraining paradigm of Song et al. (2019). MASS
is an encoder-decoder trained jointly with a masked
language modeling objective on monolingual data.
Iterative back-translation (BT) follows pretraining.

Monolingual Data in MT BT is widely-used to
exploit monolingual data (Sennrich et al., 2016).
“Semi-supervised” systems use monolingual and
parallel data to improve performance (e.g. Artetxe
et al. (2018)). Siddhant et al. (2020) combine mul-
tilingual supervised training with MASS for many
languages and zero-shot translation.

Source Artifacts in Translated Text Because su-
pervised MT is trained ideally on human-generated
translation, characteristics of human translation af-
fects the style of machine translation from such
systems. Dubbed “translationese,” human transla-
tion includes source language artifacts (Koppel and
Ordan, 2011) and source-independent artifacts—
Translation Universals (Mauranen and Kujamiki,
2004). There are systematic biases inherent to
translated texts (Baker, 1993; Selinker, 1972),
and biases coming from interference from source
text (Toury, 1995). In MT, Freitag et al. (2019,
2020) attribute these patterns as a source of mis-
match between BLEU (Papineni et al., 2002) and
human evaluation measures of quality, raising con-
cerns that overlap-based metrics reward hypotheses
with the characteristics of translated text more than
those with natural language. Vanmassenhove et al.
(2019, 2021) note loss of linguistic diversity and
richness from MT, and Toral (2019) see related ef-
fects even after human post-editing. The impact of
translated text on human evaluation has also been
studied (Toral et al., 2018; Zhang and Toral, 2019;
Graham et al., 2019; Fomicheva and Specia, 2016;
Ma et al., 2017), as has the impact in training data
(Kurokawa et al., 2009; Lembersky et al., 2012;
Bogoychev and Sennrich, 2019; Riley et al., 2020).

Measuring Word Reordering Word reordering
models are well-studied because they formed a crit-
ical part of statistical MT (see Bisazza and Federico
(2016) for a review). Others examined metrics
for measuring reordering in translation (e.g. Birch
et al., 2008, 2009, 2010). Wellington et al. (2006)
and Fox (2002) use part-of-speech (POS) tags in
the context of parse trees, and Fox (2002) measure
the similarity of French and English with respect
to phrasal cohesion by calculating alignment cross-
ings using parse trees. Most similar to us, Birch

(2011) view simplified word alignments as permu-
tations and compare distance metrics over these to
quantify the amount of reordering done. They use
TER computed over the alignments as a baseline.
Birch and Osborne (2011)’s LRScore interpolates a
reordering metric with a lexical translation metric.

3 Experimental Setup

3.1 Data

Training Experiments are in English—German.
For the main study comparing supervised and un-
supervised MT, we use News Commentary v14
(329,000 sentences) as parallel bitext for the super-
vised system, and News Crawl 2007-17 as mono-
lingual data for the unsupervised system. Dedu-
plicated News Crawl 2007-17 has 165 million En-
glish sentences and 226 million German sentences.

The combined system demonstration at the end
of our work utilizes a BT selection method. We use
the bilingual training data from WMT2018 (Bojar
et al., 2018) (News Commentary v13, Europarl v7,
Common Crawl, EU Press Release) so that our
model can be compared with well-known work
using BT (e.g. Edunov et al., 2018; Caswell et al.,
2019). We deduplicate and filter out pairs with
> 250 tokens in either language or length ratio
over 1.5, resulting in 5.2 million paired sentences.

Development and Test Sets For the main ex-
periments, we use newstest2017 as the dev set
with newstest2018 and newstest2019 for test. new-
stest2018 was originally created by translating one
half of the test data from English—German (orig-
en) and the other half from German— English (orig-
de). Since 2019, WMT produces newstest sets with
only source-original text and human translations
on the target side to mitigate known issues when
translating and evaluating on target-original data
(e.g. Koppel and Ordan, 2011; Freitag et al., 2019).

For most experiments, we evaluate on orig-en
sentences only to reflect the real use-case for trans-
lation and modern evaluation practice. We exam-
ine orig-de only for BLEU score as an additional
data point of difference between supervised and un-
supervised MT. Zhang and Toral (2019) show that
target-language-original text should not be used for
human evaluation (orig-de, in our case).

We use the newstest2018 “paraphrased” test ref-
erences from Freitag et al. (2020),! which are made

! github.com/google/wmt19-paraphrased-references
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for orig-en sentences only. These additional refer-
ences have different structure than the source sen-
tence but maintain semantics, and provide a way
to measure system quality without favoring trans-
lations with the same structure as the source. Ob-
serving work that uses these references, BLEU is
typically much lower than on original test sets, and
score differences tend to be small but reflect tangi-
ble quality difference (Freitag et al., 2020).

For the system combination demonstration,
we use newstest2018 for development and new-
stest2019 for test. We also use newstest2019
German—English and swap source and target to
make an orig-de English—German test set, and use
paraphrase references for newtest2019 (orig-en).

Testing on the official newstest2018 in the main
experiments allows us to see interesting differences
between unsupervised and supervised MT that are
hidden with newstest2019 because it is orig-en only.
Using newstest2018 for development in the system
combination demonstration aligns with similar liter-
ature (e.g. Edunov et al., 2018; Caswell et al., 2019).
We use SacreBLEU throughout (Post, 2018).2

3.2 Part-of-Speech Tagging

We use part-of-speech taggers for some experi-
ments: universal dependencies (UD) implemented
in spaCy® and spaCy’s language-specific fine-
grained POS tags for German from the TIGER Cor-
pus (Albert et al., 2003; Brants et al., 2004).

3.3 Models

Our unsupervised MT model is a MASS trans-
former with the hyperparameters of Song et al.
(2019). We train MASS on the News Crawl cor-
pora, hereafter called “Unsup.” Our supervised
MT systems use the transformer-big (Vaswani
et al., 2017) as implemented in Lingvo (Shen et al.,
2019) with a vocabulary of 32k subword units.

To investigate differences between approaches,
we train two language models (LMs) on differ-
ent types of data and calculate the perplexity of
translations generated by the supervised and un-
supervised MT systems. We train one LM on the
monolingual German News Crawl dataset with a
decoder-only transformer, hereafter called the “nat-
ural text LM” (nLM). We train another on machine
translated sentences which we call the “translated
text LM” (tLM). We generate the training corpus

2BLEU+case.mixed+lang.ende+numrefs. I +smooth.exp+
{TESTSET }+tok.13a+version.1.4.12
*https://spacy.io/, https://universaldependencies.org/

by translating the English News Crawl dataset into
German with a English—German transformer-big
model trained on the WMT18 bitext.

3.4 Human Evaluations

Human evaluation complements automatic evalua-
tion and abstracts away from comparison to a hu-
man reference which favors the characteristics of
translated text (Freitag et al., 2020). We score ad-
equacy using direct assessment and run side-by-
side evaluations measuring fluency and adequacy
preference between systems. Each campaign has
1,000 test items. For side-by-side eval, a test item
includes a pair of translations of the same source
sentence: one from the supervised system and one
from the unsupervised. We hire 12 professional
translators, who are more reliable than crowd work-
ers (Toral, 2020; Freitag et al., 2021).

Direct Assessment Adequacy We use the tem-
plate from the WMT 2019 evaluation campaign.
Human translators assess a translation by how ade-
quately it expresses the meaning of the source sen-
tence on a 0-100 scale. Unlike WMT, we report the
average rating and do not normalize the scores.

Side-by-side Adequacy Raters see a source sen-
tence with two translations (one supervised, one
unsupervised) and rate each on a 6-point scale.

Side-by-side Fluency Raters assess the alterna-
tive translations (one supervised, one unsupervised)
without the source, and rate each on a 6-point scale.

4 Unsupervised vs. Supervised MT

The goal of this section is to analyse supervised and
unsupervised systems of similar overall translation
quality so that differences in quality do not con-
found analyses. As unsupervised systems underper-
form supervised systems, we use a smaller parallel
corpus (news commentary) to train systems of sim-
ilar quality. Table 1 summarizes the BLEU scores
and human side-by-side adequacy results for both
systems. Although the supervised system is below
state-of-the-art, these experiments help elucidate
how unsupervised and supervised output is differ-
ent. Overall BLEU and human ratings suggest simi-
lar translation quality. Nevertheless, we observe no-
table differences between orig-de and orig-en sides
of the test set when comparing both systems. Re-
call that orig-de has natural German text on the tar-
get side. Unsup scores higher than Sup on orig-de,
suggesting that its output is more natural-sounding
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as it better matches text originally written in Ger-
man. Performance discrepancies on orig-en and
orig-de indicate that differences in system output
may exist and prompt further investigation.
|Overall orig-en orig-de |nt18p|Human Adq.

Sup 29.2 340 21.1 | 93 3.89
Unsup| 30.1 309  27.1 9.6 3.82

Table 1: SacreBLEU & human adequacy (orig-en) on
newstest2018 and newstest2018p (nt18p = paraphrase
reference). nt18p is available for orig-en only.

4.1 Selecting Translations of Same Adequacy

To assess the translation style and compare linguis-
tic aspects of supervised and unsupervised MT,
we further must compare translations that have
the same accuracy level on the segment level, so
that neither confounds analysis. We use the ade-
quacy evaluation from Table 1 and retain sentences
for which both approaches yield similar adequacy
scores. We divide the rating scale into bins of low
(0-2), medium (3—4), and high (5-6) adequacy. Ta-
ble 2 shows the percentage of sentences in each bin.
For each source sentence, there is one translation by
Unsup and one by Sup. If human judges assert that
both translations belong in the same adequacy bin,
that sentence also appears in “Both.” There are 86,
255, and 218 sentences in “Both” for low, medium,
and high bins, respectively. For subsequent analy-
ses, we examine sentences falling into “Both.”

| Low Medium High

Sup 18.7% 42.1% 39.2%
Unsup 19.3% 44.6% 36.1%
Both 8.6% 25.5% 21.8%

Table 2: Percentage of sentences with low, medium
and high human-evaluated adequacy ratings. “Both” are
sentences which have same rating from both systems.

4.2 Comparing Translation Style

Measuring Structural Similarity We develop a
metric to ascertain the degree of structural similar-
ity between two sentences, regardless of language.
When evaluated on a source-translation pair, it mea-
sures the influence of the source structure on the
structure of the output without penalizing for dif-
fering word choice; thus it is a measure of “mono-
tonicity” — the degree to which words are translated
in-order. Given alternative translations in the same
language, it assesses the degree of structural simi-
larity between the two. Thus given a machine trans-
lation and a human translation of the same source
sentence, it can measure the structural similarity
between the machine and human translations.
Word alignment seems well-suited here. Like
Birch (2011), we calculate Kendall’s tau (Kendall,

1938) over alignments of source-translation pairs,
but do not simplify alignments to permutations. We
use fast_align (Dyer et al., 2013) but observe that
it struggles to align words not on the diagonal, so
sometimes skipped alignments.* Because of this
issue, we instead estimate monotonicity/structural
similarity using the new metric, introduced next.

We propose measuring translation edit rate (TER,
Snover et al. (2006)) over POS tag sequences. TER
is a well-known word-level translation quality met-
ric which measures the number of edits required
to transform a “hypothesis” sentence into the ref-
erence, outputting a “rate” by normalizing by sen-
tence length. Between languages, we compute
TER between POS tag sequences of the source
text (considered the reference) and the translation
(considered the hypothesis), so that TER now mea-
sures changes in structure independent of word
choice. Source-target POS sequences which can
be mapped onto each other with few edits are con-
sidered similar—a sign of a monotonic translation.
Given a machine translation (hypothesis) and a hu-
man reference in the same language, TER over
POS tags measures structural similarity between
the machine and human translations. Outputs with
identical POS patterns score 0, increasing to 1+ as
sequences diverge. Lower TER for (source, transla-
tion) pairs indicates monotonic translation; Lower
TER for (machine translation, human translation)
pairs indicates structural similarity to human trans-
lation. We call the metric “posTER”.

Monotonicity POS sequences are comparable
across languages thanks to universal POS tags. Ta-
ble 3 has a toy example with two possible German
translations of an English source. Next to each sen-
tence is its universal dependencies POS sequence.
In the third column, TER is calculated with the
POS sequence of the English source as reference
and the sequence of the translation as hypothesis.
Table 4 shows posTER over universal depen-
dencies of German translations versus the new-
stest2018 (orig-en) source sentences. While
the standard newstest2018 references (Ref) score
0.410, newstest2018p’s (RefP) higher score of
0.546 reflects the fact that the paraphrase references
are designed to have different structure than the
source. Difference in overall monotonicity between
Sup and Unsup is unapparent at this granularity.
Because universal dependencies are designed to

*We ran fast_align with and without diagonal-favoring and
all 5 symmetrization heuristics, and see similar trends.
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Sentence POS Sequence TER

I made myself a cup of coffee this morning. PRON VERB PRON DET NOUN ADP -
PNOUN DET NOUN PUNCT

Ich habe mir heute Morgen eine Tasse PRON AUX PRON ADV NOUN DET 0.5

Kaffee gemacht. NOUN NOUN VERB PUNCT

Heute morgen habe ich mir eine Tasse ADV ADV AUX PRON PRON DET 0.7

Kaffee gemacht. NOUN NOUN VERB PUNCT

Table 3: posTER over universal dependencies POS sequences for example toy German translations of an English
source. Row 1 is the source with its POS tag sequence. Rows 2/3 are example translations with the POS tags of each.
posTER is calculated via the POS sequences of the translation (hypothesis) and the source (considered the reference).

| nt18 | ntl8p | Sup | Unsup
Src || 0410 | 0546 | 0409 | 0.399
Table 4: posTER (0-1+) over universal dependencies
of translations of newstest2018 (orig-en) vs. the source.
J = more monotonic translation. ntl18p=paraphrase ref.

suit many languages, the 17 UD categories may be
too broad to adequately distinguish moderate struc-
tural difference. Whereas UD has a single class for
“VERB,” the finer-grained German TIGER tags dis-
tinguish between 8 sub-verb types including infini-
tive, modal, and imperative. We use these language-
specific categories next to uncover differences be-
tween systems that broad categories conceal.

Similarity to Human Translation Recall that su-
pervised MT essentially mimics human translators,
while unsupervised MT learns to translate without
examples. Intuitively, supervised MT output might
be stylistically more like human translation, even
when controlling for quality. The first indication is
Sup’s lower BLEU score on nt18p—the paraphrase
test set designed to have structure different than the
original human translation.

We compare the structure of MT output with
the human reference using German TIGER tags.
Lower posTER indicates more structural similar-
ity, while higher posTER indicates stylistic devia-
tion from human translation. Comparison with the
newstest2018 orig-en human reference is in Table
5. Sup and Unsup show negligible difference over-
all, but binning by adequacy shows Unsup output
as less structurally similar to the human reference
on the high-end of adequacy, and more similar on
the low-end. This suggests systematic difference
between systems, and that unsupervised MT might
have more structural diversity as quality improves.

| Overall | Low Med  High
Sup 0.280 ‘ 0.348  0.282  0.255
Unsup 0.287 0313  0.298  0.296
Table 5: posTER (0-1+ scale) over TIGER POS tags
of system output vs. the human reference, grouped by
adequacy (newstest2018, orig-en). | = greater structural
similarity to the human reference.

Naturalness The first hint that Unsup might pro-
duce more natural output than Sup is its markedly
higher BLEU on the orig-de test set: 27.1, versus
21.1 from Sup. Recall that orig-de has natural Ger-
man on the target side, so higher BLEU here means
higher n-gram overlap with natural German.

Edunov et al. (2020) recommend augmenting
BLEU-based evaluation with perplexity from a lan-
guage model (LM) to assess fluency or natural-
ness of MT output. Perplexity (Jelinek et al., 1977)
measures similarity of a text sample to a model’s
training data. We contrast the likelihood of output
according to two LMs: one trained on machine-
translated text (tLM) and another trained on non-
translated natural text (nLM). While machine-
translated and human-translated text differ, the
LMs are nonetheless a valuable heuristic and con-
tribute insights on whether systematic differences
between MT system outputs exist. Low perplex-
ity from the nLLM indicates natural language. Low
perplexity from the tLM (trained on English News
Crawl that has been machine-translated into Ger-
man) shows proximity to training data composed
of translated text, indicating simplified language.

Sup perplexity is lower than Unsup across ade-
quacy bins for the tLM, seen in Table 6. Conversely,
Sup generally has higher perplexity from the nLM.
All adequacy levels for Unsup have similar nLM
perplexity, suggesting it is particularly skilled at
generating fluent output. Together, these findings
suggest that unsupervised MT output is more natu-
ral than supervised MT output.

Stronger Supervised MT Though analyzing sys-
tems of similar quality is important for head-to-
head comparison, we evaluate a stronger super-
vised system for context.> We do not have human
evaluation scores, but automatic results give in-
sight: see Table 7. The model has overall BLEU =
40.9 and a similarly large discrepancy on orig-en vs.
orig-de as did the Sup system used throughout this

Trained on 4.5 million lines of WMT14 bitext.
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Natural Text LM | Translated Text LM 1
Overall Low Medium High Overall Low Medium High
Sup 72.69 90.61 76.36 68.37 41.06 5191 40.32 36.70
Unsup 67.01 68.32 60.56 69.88 58.17 61.50 53.71 57.95

Table 6: Perplexity of MT output on newstest2018 based on LMs trained on natural text vs. translated text, binned
by adequacy. Sup and Unsup are comparable supervised and unsupervised MT systems, respectively. | from the
Natural Text LM and 1 from the Translated Text LM indicate more natural-sounding output.

work: 44.6 for orig-en and 34.9 for orig-de. As for
structural similarity, this stronger system has lower
overall posTER vs. the human reference—0.238
vs. 0.280/0.287 from Sup/Unsup—indicating even
more structural similarity with the reference. For
naturalness, the stronger system has lower perplex-
ity from the nLM. As a higher-quality system, this
is expected. At the same time, it scores much lower
than Sup and Unsup by the tLM, where higher in-
dicates more natural-sounding output: 29.23 vs.
41.06/58.17 for Sup/Unsup.

Quality Structural Sim.  Naturalness
BLEU ntl8p | v.Src  v.Ref | nLM LM
40.9 12.1 | 0.401 0.238 | 5435 29.23

Table 7: Strong supervised model trained on WMT14.
Structural sim. is posTER: v. Src is comparable to Table
4, v. Ref to Overall in Table 5. | = more monotonic.
nLM/tLM are Natural/Translated Text LMs of Table 6.

Ablation: Architecture vs. Data One reason
Unsup might produce more natural-sounding out-
put could be simply that it develops language-
modeling capabilities from natural German alone,
whereas Sup must see some translated data (being
trained on bitext of human translations). Next, we
ask whether the improved naturalness and struc-
tural diversity is due to the unsupervised NMT ar-
chitecture, or simply the natural training data.

We build a supervised en-de MT system with
329,000 paired lines of translated English source
and natural German, where the source is back-
translated German News Crawl from a supervised
system. In other words, we train on backtranslated
data only on the source side and natural German as
the target. The model thus develops its language-
modeling capabilities on natural sentences alone. If
more natural output is simply a response to training
on natural data, then this supervised system should
perform as well in naturalness as Unsup, or better.

We train another unsupervised system on trans-
lated text only. Source-side training data is syn-
thetic English from translating German News
Crawl with a supervised system. Target-side is syn-
thetic German which was machine-translated from
English News Crawl. If naturalness solely results

from data, this system should perform worst, being
trained only on translated (unnatural) text.

Table 8 shows the results. The original unsuper-
vised system (Unsup) performs best according to
both LMs, having output that is more natural and
less like translated text. When given only natural
German to build a language model, the supervised
system (Sup En-Trns/De-Orig) still produces more
unnatural output than Unsup. Even when the unsu-
pervised system uses translated data only (Unsup-
Trns), its output is still more natural than the origi-
nal supervised system (Sup) according to both LMs.
This is a surprising result, and is interesting for fu-
ture study. Together, these findings suggest that
both German-original data and the unsupervised ar-
chitecture encourage output to sound more natural.

5 Application: Leveraging Unsupervised
Back-translation

Our results indicate that high-adequacy unsuper-
vised MT output is more natural and more struc-
turally diverse in comparison to human translation,
than is supervised MT output. We are thus moti-
vated to use these advantages to improve transla-
tion. We explore how to incorporate unsupervised
MT into a supervised system via back-translation.
We train for ~500,000 updates for each experiment,
and select models based on validation performance
on newstest2018. We test on newstest2019(p).

5.1 Baselines

The first row of Table 9 is the supervised baseline
trained on the WMT 18 bitext. The second row is
Unsup, used throughout this work.

We back-translate 24 million randomly-selected
sentences of German News Crawl twice: once us-
ing a supervised German-English system trained
on WMT18 bitext with a transformer-big architec-
ture, and once using Unsup. Both use greedy de-
coding for efficiency. We augment the WMT 18 bi-
text with either the supervised or unsupervised BT.

Seen in Table 9, adding supervised BT (+SupBT)
performs as expected; minorly declining on the
source-original test set (orig-en), improving on
the target-original set (orig-de), and improving on
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LM Perplexity (PPL) BLEU
Natural Text LM | Translated Text LM Overall | orig-en | orig-de
Supervised (Sup) 72.69 41.06 29.2 34.0 21.1
Sup En-Trns/De-Orig 69.75 50.65 354 35.5 34.1
Unsup 67.01 58.17 30.1 30.9 27.1
Unsup-Trns 69.88 48.90 33.4 354 28.4

Table 8: Comparison of 4 English—German MT systems: ppl from LMs trained on natural or translated text,
BLEU on newstest2018. | ppl = model prefers the output. Sup En-Trns/De-Orig is supervised, trained on translated
English and German-original News Crawl. Unsup is trained on natural English and German News Crawl. Unsup-
Trns uses translated News Crawl only. Unsup performs best == more like natural text and less like translated text.

( Supeivised )

0.7
02 \/
0.5

( Unsupfrvised )

0.1 (-80%)
0.2
0.4 (-43%) )
0.1 (-50%)
0.4 )

Figure 1: Back-translation selection method. Both systems translate the same source sentences. If an unsupervised
output sentence is more than T% as likely as the supervised one, select the unsupervised. Here, T=65%.

the paraphrase set (nt19p). Conversely, adding
unsupervised BT (+UnsupBT) severely lowers
BLEU on source-original and paraphrase test sets.
Randomly-partitioning the BT sentences such that
50% are supervised BT and 50% are unsupervised
also lowers performance on orig-en (+50-50BT).

5.2 Tagged BT

Following Caswell et al. (2019), we tag BT on
the source-side. Tagging aids supervised BT
(+SupBT_Tag) and greatly improves unsupervised
BT (+UnsupBT_Tag), which outperforms the base-
line and is nearly on-par with +SupBT_Tag. Com-
bining supervised and unsupervised BT using the
same tag for both (+50-50BT_Tag) shows no bene-
fit over +SupBT_Tag. +50-50BT_TagDiff uses dif-
ferent tags for supervised vs. unsupervised BT.

5.3 Probability-Based BT Selection

We design a BT selection method based on transla-
tion probability to exclude unsupervised BT of low
quality. We assume that supervised BT is “good
enough.” Given translations of the same source sen-
tence (one supervised, one unsupervised) we assert
that an unsupervised translation is “good enough”
if its translation probability is similar or better than
that of the supervised translation. If much lower,
the unsupervised output may be low-quality.

* Score each supervised and unsupervised BT
with a supervised de-en system.

* Normalize the translation probabilities to con-

trol for translation difficulty and output length.

* Compare probability of the supervised and
unsupervised BT of the same source sentence:
_ Pnorm(unsup)

AP =
Pnorm(sup)

* Sort translation pairs by AP.

* Select the unsupervised BT for pairs scoring
highest AP and the supervised BT for the rest.

This filters out unsupervised outputs less than a hy-
perparameter T% as likely as the corresponding
supervised sentence and swaps them with the cor-
responding supervised sentence. Importantly, the
same 24M source sentences are used in all experi-
ments. The procedure is shown in Figure 1.

Full results varying T are in the Appendix for
brevity, but we show two example systems in Table
9. The model we call “+MediumMix_Tag” uses
the top ~40% of ranked unsupervised BT with the
rest supervised (9.4M unsupervised, 14.6M super-
vised). “+SmallMix_Tag” uses the top ~13% of
unsupervised BT (3.1M unsupervised, 20.9M su-
pervised).® We use the same tag for all BTs. Im-
provements are modest, but our goal was to demon-
strate how one might use unsupervised MT output
rather than build a state-of-the-art system.

+SmallMix_Tag performs better than the previ-
ous best on newstest2018p and +MediumMix_Tag
performs highest overall on nt19p. We recall

%The numbers are not round because data was selected
using round numbers for the hyperparameter T.
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newstest2018 newstest2019
Overall | orig-en | orig-de | ntl8p orig-en | orig-de | ntl9p
Supervised Baseline (5.2M) 41.8 46.1 34.3 12.6 38.8 30.4 11.7
Unsup (used throughout this work) 30.1 30.9 27.1 9.6 24.6 28.5 8.8
Supervised Baseline
+ SupBT 43.4 43.7 41.8 12.5 37.0 39.9 12.0
+ UnsupBT 333 33.8 31.1 9.9 27.2 30.8 9.5
+ 50-50BT 38.0 36.4 39.0 12.9 29.4 383 10.0
+ SupBT_Tag 44.8 47.0 40.7 13.0 40.3 38.2 12.4
+ UnsupBT_Tag 43.3 46.9 36.9 12.9 39.1 35.0 12.2
+ 50-50BT_Tag 444 47.1 39.6 12.9 394 38.0 12.2
+ 50-50BT_TagDiff 444 46.8 40.1 13.0 39.9 37.9 12.4
+ SmallMix_Tag 44.8 46.8 40.8 13.2 39.8 38.8 12.5
+ MediumMix_Tag 44.7 46.8 40.8 13.0 40.1 38.2 12.6

Table 9: SacreBLEU of supervised baseline plus 24M supervised or unsupervised BTs. +MediumMix_Tag and
+SmallMix_Tag use the BT selection method of §5.3. +MediumMix_Tag has 9.4M unsupervised BT and 14.6M
supervised BT. +SmallMix_Tag has 3.1M and 20.9M, respectively. nt18p and nt19p are paraphrase references
from Freitag et al. (2020), where small BLEU score changes can indicate tangible quality difference.

that small differences on paraphrase test sets can | Adequacy
. . . . . + UnsupBT_Tag 54.82

signal tangible quality differences (Freitag et al., + SupBT_Tag 36.13

2020). Trusting BLEU on nt19p, we use +Medi- + Mediun_lMix_Tag 58:62

umMix_Tag as our model for human evaluation.
One might inquire whether improved perfor-

mance is due to the simple addition of noise in light

of Edunov et al. (2018), who conclude that noising

Table 10: Human-eval direct assessment (adequacy) of
supervised MT with supplemental back-translation.

Better Same Worse
51.1% 3.7% 45.2%

BT improves MT quality. Subsequent work, how-
ever, found that benefit is not from the noise itself
but rather that noise helps the system distinguish
between parallel and synthetic data (Caswell et al.,
2019; Marie et al., 2020). Yang et al. (2019) also
propose tagging to distinguish synthetic data. With
tagging instead of noising, Caswell et al. (2019)
outperform Edunov et al. (2018) in 4 of 6 test sets
for En-De, furthermore find that noising on top of
tagging does not help. They conclude that “tagging
and noising are not orthogonal signals but rather
different means to the same end.” In light of this,
our improved results are likely not due to increased
noise but rather to systematic differences between
supervised and unsupervised BT.

5.4 Human Evaluation

We run human evaluation with professional trans-
lators for +MediumMix_Tag, comparing its out-
put translation of the newstest2019 test set with
two baseline models. Table 10 shows that humans
prefer the combined system over the baseline out-
puts.” Table 11 shows the percentage of sentences
judged as “worse than,” “about the same as,” or
“better than” the corresponding +SupBT_Tag out-
put, based on fluency. Raters again prefer the com-
bined system. The improvements are modest, but

"Scores are low because we use only WMT18 bitext + BT,
and translators score more harshly than crowd workers.

Table 11: Human side-by-side fluency eval. Shown:
% of +MediumMix_Tag sentences judged “worse than,”
“about the same,” or “better than” +SupBT_Tag output.

encouragingly indicate that unsupervised MT may
have something to contribute to machine transla-
tion, even in high-resource settings.

6 Conclusion

Recent unsupervised MT systems can reach reason-
able translation quality under clean and controlled
data conditions, and could bring alternative transla-
tions to language pairs with ample parallel data. We
perform the first systematic comparison of super-
vised and unsupervised MT output from systems
of similar quality. We find that systematic differ-
ences do exist, and that high-quality unsupervised
MT output appears more natural and more struc-
turally diverse when compared to human transla-
tion, than does supervised MT output. Our find-
ings indicate that there may be useful differences
between supervised and unsupervised MT systems
that could contribute to a system better than either
achieves alone. As a first step, we demonstrate an
unsupervised back-translation augmented model
that takes advantage of the differences between the
translation methodologies to outperform a tradi-
tional supervised system on human-evaluated mea-
sures of adequacy and fluency.
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newstest2018 newstest2019
Joint|Orig-En | Orig-De |nt18p || Orig-En | Orig-De |nt19p
Supervised Baseline (5.2M) 41.8| 46.1 343 | 12.6 38.8 304 | 117
Unsup (same used throughout this work) 30.1| 309 27.1 9.6 24.6 28.5 8.8
Supervised Baseline
+ SupBT 434 437 41.8 | 125 37.0 399 | 120
+ UnsupBT 333| 338 31.1 9.9 27.2 30.8 9.5
+ 50-50BT 38.0| 364 39.0 | 129 29.4 38.3 | 10.0
+ SupBT_Tag 44.8| 47.0 40.7 | 13.0 40.3 382 | 124
+ UnsupBT_Tag 433 | 469 369 | 129 39.1 350 | 122
+ 50-50BT_Tag 4441 471 39.6 | 129 394 38.0 | 122
+ 50-50BT_TagDiff 444 46.8 40.1 13.0 39.9 379 | 124
+21.7M Tagged Unsup & 2.3M Sup BT 440 | 46.6 393 | 13.0 39.6 369 | 123
+ 17.4M Tagged Unsup & 6.6M Sup BT 44.0| 462 40.0 | 13.0 40.0 37.7 | 123
+ 9.4M Tagged Unsup & 14.6M Sup BT (+MediumMix_Tag)|| 44.7 | 46.8 40.8 13.0 40.1 38.2 | 12.6
+ 3.1M Tagged Unsup & 20.9M Sup BT (+SmallMix_Tag) 44.8 | 46.8 40.8 | 13.2 39.8 38.8 | 125
+ 1.5M Tagged Unsup & 22.5M Sup BT 48| 47.1 40.7 | 13.2 40.0 384 | 125
+ 680K Tagged Unsup & 23.3M Sup BT 444 464 40.7 | 129 40.0 38.1 12.4

Table 12: SacreBLEU of supervised baseline plus 24M supervised or unsupervised BTs. Systems using both use
the BT selection method of §5.3 with increasing values for hyperparameter 7. nt18p and nt19p are paraphrase
references from Freitag et al. (2020), where small BLEU score changes can indicate tangible quality difference.
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