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Abstract

We present a generic and trend-aware curricu-
lum learning approach for graph neural net-
works. It extends existing approaches by in-
corporating sample-level loss trends to better
discriminate easier from harder samples and
schedule them for training. The model effec-
tively integrates textual and structural infor-
mation for relation extraction in text graphs.
Experimental results show that the model pro-
vides robust estimations of sample difficulty
and shows sizable improvement over the state-
of-the-art approaches across several datasets.

1 Introduction

Relation extraction is the task of detecting (of-
ten pre-defined) relations between entity pairs. It
has been investigated in both natural language pro-
cessing (Mintz et al., 2009; Lin et al., 2016; Peng
et al., 2017; Zhang et al., 2018) and network sci-
ence (Zhang and Chen, 2018; Fout et al., 2017).
Relation extraction is a challenging task, especially
when data is scarce. Nonetheless, the ability to
automatically link entity pairs is a crucial task as it
can reveal relations that have not been previously
identified, e.g., informing clinicians about a causal
relation between a gene and a phenotype or dis-
ease. Figure 1 shows an example sentence from
a PubMed article in the Gene Phenotype Relation
(PGR) dataset (Sousa et al., 2019), which describes
the application domain of the present work as well.

Previous research has extensively investigated
relation extraction at both sentence (Zeng et al.,
2015; dos Santos et al., 2015; Sousa et al., 2019)
and document (Yao et al., 2019b; Quirk and Poon,
2017) levels. Furthermore, effective graph-based
neural network approaches have been developed
for various prediction tasks on graphs, including
link prediction between given node pairs (Kipf and
Welling, 2017; Hamilton et al., 2017; Xu et al.,
2018; Veličković et al., 2018). Several recent ap-
proaches (Li et al., 2020; Zhang and Chen, 2018;
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Figure 1: An example showing the report of a causal
relation between a gene and a phenotype (symptom)
from the PGR dataset (Sousa et al., 2019).

Alsentzer et al., 2020) illustrated the importance of
enhancing graph neural networks using structurally-
informed features such as shortest paths, random
walks and node position features.

In this work, we develop a graph neural network
titled Graph Text Neural Network (GTNN) that
employs structurally-informed node embeddings
as well as textual descriptions of nodes at predic-
tion layer to avoid information loss for relation
extraction. GTNN can be trained using a standard
approach where data samples are fed to the network
in a random order (Hamilton et al., 2017). How-
ever, nodes, edges or sub-graphs can significantly
vary in their difficulty to learn, owing to frequent
substructures, complicated topology and indistinct
patterns in graph data. We tackle these challenges
by presenting a generic and trend-aware curricu-
lum learning approach that incorporates sample-
level loss trajectories (trends) to better discriminate
easier from harder samples and schedule them for
training graph neural networks.

The contributions of this paper are: (a): a graph
neural network that effectively integrates textual
data and graph structure for relation extraction, il-
lustrating the importance of direct use of text em-
beddings at prediction layer to avoid information
loss in the iterative process of learning node em-
beddings for graph data; and (b): a novel curricu-
lum learning approach that incorporates loss trends
at sample-level to discover effective curricula for
training graph neural networks.
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We conduct extensive experiments on real world
datasets in both general and specific domains, and
compare our model against a range of existing ap-
proaches including the state-of-the-art models for
relation extraction. Experimental results demon-
strate the effectiveness of the proposed approach;
the model achieves an average of 8.6 points im-
provement in F1 score against the best-performing
graph neural network baseline that does not di-
rectly use text embeddings at its prediction layer.
The proposed curriculum learning approach further
improves this performance by 0.7 points, result-
ing in an average F1 score of 89.9 on our three
datasets. We conduct extensive experiments to
shed light on the improved performance of the
model. Code and data are available at https:
//clu.cs.uml.edu/tools.html.

2 Method

Consider an undirected graph G = (V , E) where V
and E are nodes and edges respectively, and nodes
carry text summaries as their descriptions. Edges
in the graph indicate “relations” between their end
points, e.g., causal relations between genes and dis-
eases, or links between concepts in an encyclopedia.
Our goal is to predict relations/links between given
node pairs in G.

2.1 Graph Text Neural Network
We present the Graph Text Neural Network
(GTNN) model which directly operates on G and
textual descriptions of its nodes. Figure 2 shows the
architecture of GTNN, which we describe below.

2.1.1 Graph Encoder
Given G and its initial text embeddings, xi for each
node i, we apply a graph encoder (Hamilton et al.,
2017) to generate a d-dimensional embedding for
each node by iteratively aggregating the current
embeddings of the node and its t-hop neighbours
through the sigmod function denoted by g:

h
(t+1)
i = g

(
W1h

(t)
i +W2(

1

|Ni|
∑

j∈Ni

h
(t)
j )

)
, (1)

where hi
(t) is the embedding of node i at the tth

layer of the encoder and is initialized by xi, i.e.,
hi

(0) = xi,∀i, and Ni is the set of neighbors of
node i aggregated through a mean operation. W1

and W2 are parameter matrices to learn during
training. Equation (1), applied iteratively, generates
node embeddings zi = hi

(t+1) ∈ Rd.

2.1.2 Additional Text Features
In addition to the representations obtained from
the graph encoder, we use additional features from
text data to better learn the relations between enti-
ties. Here, we consider three types of features: (a)
relevance score between the descriptions of node
pairs obtained from information retrieval (IR) algo-
rithms; we use BM-25 (Robertson et al., 1995),
classic TF/IDF (Jones, 1972), as well as DFR-
H and DFR-Z (Amati and Van Rijsbergen, 2002)
models. These IR models capture lexical similari-
ties and relevance between node pairs through dif-
ferent approaches; (b): we also use the initial text
embeddings of nodes (xi,∀i) as additional features
because the direct uses of these embeddings at pre-
diction layer can avoid information loss in the itera-
tive process of learning node embeddings for graph
data; and (c): if there exist other text information
for a given node pair, e.g., a sentence mentioning
the node pair as in Figure 1, we use the embeddings
of such information as additional features.

2.1.3 Graph Text Decoder
For a given node pair (u,v), we combined repre-
sentation of their additional features using a single
hidden layer neural network as follows:

huv = ReLU
(
Weauv + be

)
, (2)

where a is obtained by concatenating the additional
feature vectors of u and v. We combine huv with
node representations, zu and zv, and pass them to
a two layer decoder to predict their relations:

h = ReLU
(
Wlastf(huv, zu, zv) + blast

)
, (3)

p(u, v) = g
(
Woutputh+ boutput

)
,

where f is a fusion operator, g is the sigmod
function, and p(u, v) indicates the probability of
an edge between nodes u and v. Flattened outer
product, inner product, concatenation and 1-D con-
volution can be used as the fusion operator (Amiri
et al., 2021). In our experiments, we obtained bet-
ter performance using outer product, perhaps due
to its better encoding of feature interactions:

f(huv, zu, zv) = huv ⊗ [zu; zv]. (4)

2.2 Generic Trend-aware Curricula
Graph neural networks are often trained using the
standard or “rote” approach where samples are
fed to the network in a random order for train-
ing (Hamilton et al., 2017). However, edges (and
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Figure 2: The architecture of the proposed graph text neural network (GTNN) model with Trend-SL curriculum
learning approach. The proposed model consists of an encoder-decoder component that determines relations
between given node pairs. The graph neural encoder takes as input features from textual descriptions of nodes and
sub-graph extracted for a given node pair to create node embeddings. The resulting embeddings in conjunction with
additional text features are directly used by the decoder to predict links between given entity pairs. The resulting
loss is given as an input to our Trend-SL approach to dynamically learn a curriculum during training.

other entities in graphs such as nodes and sub-
graphs) can vary significantly in their classifica-
tion difficulty, and therefore we argue that graph
neural networks can benefit from a curriculum for
training. Recent work by Castells et al. (2020) de-
scribed a generic loss function called SuperLoss
(SL) which can be added on top of any target-task
loss function to dynamically weight training sam-
ples according to their difficulty for the model.
Specifically, it uses a global difficulty threshold
(τ ), determined by the exponential moving average
of all sample losses, and considers samples with an
instantaneous loss smaller than τ as easy and the
rest as hard. Similar to the commonly-used easy-to-
hard transition curricula, such as those in (Bengio
et al., 2009) and (Kumar et al., 2010), the model
initially assigns higher weights to easier samples,
thereby allowing back-propagation to initially fo-
cus more on easier samples than harder ones.

However, SL does not take into account the trend
of instantaneous losses at sample-level, which can
(a): improve the difficulty estimations of the model
by making them local, sample dependent and po-
tentially more precise, and (b): enable the model
to distinguish samples with similar losses based on
their known loss trajectories. For example, con-
sider an easy sample with a rising loss trend which

is about to become a hard sample versus another
easy sample with the same instantaneous loss but
a falling loss trend which is about to become fur-
ther easier for the model. Trend information allows
distinguishing such examples.

The above observations inspire our work to uti-
lize trend information in our curriculum learning
framework, called Trend-SL. The model uses loss
information from the local time window before
each iteration to capture a form of momentum of
loss in terms of rising or falling trends and deter-
mine individual sample weights as follows:

TrendSLλ,α(luv) = argmin
σuv

(
luv − (τ − α∆uv)

)
(5)

×σuv + λ(log σuv)
2,

where σuv is the latent weight for the training
sample (u, v) , luv is the target-task loss (binary
cross-entropy in our experiments) for (u, v) at cur-
rent iteration, τ is the batch-level global difficulty
threshold determined by the exponential moving
average of sample losses (Castells et al., 2020), and
∆ ∈ [−1, 1] is the trend indicator quantified by
the normalized sample-level loss trend weighted
by α ∈ [0, 1]; our approach reduces to SL with
α = 0. ∆ captures the trend in the instantaneous
losses of samples over recent k iterations, effec-
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Figure 3: Difficulty dynamics in Trend-SL. τ is the
fixed difficulty threshold of SL, which can be thought
of as a global difficulty metric to separate easy and
hard samples. Dotted (red) and dashed (green) trend
lines indicate four samples with rising and falling loss
trends respectively. Trend-SL uses trend dynamics to
shift the difficulty boundaries and adjust global difficulty
using local sample-level loss trends. The vertical dashed
and dotted lines show updated sample-specific difficulty
thresholds for easy and hard samples respectively.

tively utilizing local sample-level information to
determine difficulty. There are various techniques
for fitting trends to time series data (Bianchi et al.,
1999). We use differences between consecutive
losses to determine the trend for each sample:

∆uv =

i∑

j=i−k+2

(ljuv−lj−1
uv )/

i∑

j=i−k+2

| ljuv−lj−1
uv |,

(6)
where i is the current iteration, lj. indicates loss at
iteration j and k controls the number of previous
losses to consider. As Figure 3 illustrates, Trend-
SL increases the difficulty threshold for samples
with falling loss trends (negative ∆s), becoming
more flexible in increasing the weights of such
samples by allowing greater instantaneous losses.
On the other hand, it becomes more conservative
in weighting samples with rising trends (positive
∆s) by reducing the difficulty threshold.

Finally, we note that the weight σuv in (5) can
be computed as follows, where W is the Lambert
W function (Euler, 1783); see details in the supple-
mentary materials in (Castells et al., 2020):

σ∗
uv = exp

(
−W

(1
2
max(−2

e
, β)

))
, (7)

β =
luv − (τ − α∆uv)

λ
. (8)

3 Experiments

3.1 Datasets

Gene, Disease, Phenotype Relation (GDPR)
dataset contains textual descriptions for genes, dis-
eases and phenotypes (symptoms) as well as their
relations, and is obtained by combining two freely
available datasets: Online Mendelian Inheritance in
Man (OMIM) (Amberger et al., 2019) and Human
Phenotype Ontology (HPO) (Köhler et al., 2021).
OMIM is the primary repository of curated infor-
mation on the causal relations between genes and
rare diseases, and HPO provides mappings of phe-
notypes to genes/diseases in the OMIM.1 We intro-
duce a challenging experimental setup based on the
task of differential diagnosis (Raftery et al., 2014)
using GDPR, where competing models should dis-
tinguish relevant diseases to a gene from irrelevant
ones that present similar clinical features, making
the task more difficult because of high textual and
structural similarity between relevant and irrelevant
diseases. For example, diseases 3-methylglutaconic
type I, Barth syndrome and 3-methylglutaconic type
III are of the same disease type and have high lex-
ical similarity in their descriptions, but they are
not related to the same genes. We include such
harder negative gene-disease pairs by sampling
genes from those that are linked to diseases that
share the same disease type with a target disease,
but are not linked to the target disease. We also
include an equal number of randomly sampled neg-
ative pairs to this set.

Gene Phenotype Relation (PGR) (Sousa et al.,
2019) is created from PubMed articles and con-
tains sentences describing relations between given
genes and phenotypes ( Figure 1). We only include
data points with available text descriptions for their
genes and phenotypes. For fair comparison, we
apply the best model from (Sousa et al., 2019) to
this dataset.

Wikipedia (Rozemberczki et al., 2021) is on the
topic of the old world lizards Chameleons with 202
species. In this dataset, nodes represent pages and
edges indicate mutual links between them. Each
page has an informative set of nouns, which we use
as additional features. We note that this dataset con-
tains only these noun features but not the original

1A gene can cause one or more diseases and a disease
can have several disease types. As a pre-processing step, we
remove isolated nodes from the dataset and explicit mentions
of relations between entities from summaries.
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Metric GDPR PGR Wikipedia
# Nodes 18.3K 20.4K 2.2K
# Edges 365.0K 605.4K 31.4K
# Sampled Edges 37.6K 3.0K 188.5K
→ # pos. Edges 6.2K 1.4K 31.4K
→ # neg. Edges 31.4K 1.6K 157.1K

Table 1: Statistics of the three datasets. Sampled edges
are used to create training, validation and test sets. All
models take the entire graph as input.

text, which is required by our text only models.
Table 1 shows statistics of these datasets. In case

of GDPR and WIKIPEDIA, we create five negative
examples for every positive pair. We divide these
pairs into 80%, 10% and 10% as training, valida-
tion and test splits respectively. The data splits for
PGR is the same as the original dataset, except that
we discard data points (node pairs) that do not have
text descriptions.

3.2 Baselines
We use the following baselines:

• Co-occurrence labels a test pair as positive if
both entities occur together in the input text.

• Relevance Score uses scores from IR models
(Section 2.1.2) as features of a logistic classifier.

• Doc2Vec (Le and Mikolov, 2014) uses domain-
specific text embeddings obtained from Doc2Vec
as features of a logistic classifier.

• BioBERT (Lee et al., 2020; Devlin et al., 2019)
is a BERT model pre-trained on PubMed arti-
cles. BioBERT is most appropriate for relation
extraction on both GDPR and PGR datasets as
they are also developed based on PubMed arti-
cles. It is the current state-of-the-art model on
PGR (Sousa et al., 2019). We also include a ver-
sion of BioBERT that uses graph information by
concatenating the representation of each given
pair with the average embedding of its neighbors.

• Graph Convolutional Network (GCN) (Kipf
and Welling, 2017) is an efficient and scalable
approach based on convolution neural networks
which directly operates on graphs.

• Graph Attention Network (GAT) (Veličković
et al., 2018) extends GCN by employing self-
attention layers to identify informative neighbors
while aggregating their information, effectively
prioritizing important neighbors for target tasks.

• GraphSAGE (Hamilton et al., 2017) is an induc-
tive framework which aggregates node features

and network structure to generate node embed-
dings, see (1). It uses both text and graph in-
formation. We use Doc2Vec (Le and Mikolov,
2014) embeddings to initialize node features of
GraphSAGE, as they led to better performance
than other embeddings in our experiments.

• Graph Isomorphism Network (GIN) (Xu et al.,
2018) identifies the graph structures that are not
distinguishable by the variants of graph neural
networks like GCN and GraphSAGE. Compared
to GraphSAGE and GCN, GIN uses extra learn-
able parameters during sum aggregation and uses
MLP encoding.

• CurGraph (Wang et al., 2021) is a curriculum
learning framework for graphs that computes
difficulty scores based on the intra- and inter-
class distributions of embeddings and develops a
smooth-step function to gradually include harder
samples in training. We report the results of our
implementation of this approach.

• SuperLoss (SL) (Castells et al., 2020) is a
generic curriculum learning approach that dy-
namically learns a curriculum from model behav-
ior. It uses a fixed difficulty threshold at batch
level, determined by the exponential moving aver-
age of all sample losses, to assign higher weights
to easier samples than harder ones.

We compare these baselines against GTNN and
Trend-SL, described in Section 2.

3.3 Settings

We reproduce the results reported in (Sousa
et al., 2019) using BioBERT and therefore fol-
low the same settings on the PGR dataset. Ini-
tial domain-specific node embeddings are obtained
using Doc2Vec (Le and Mikolov, 2014) or Bio-
BERT (Lee et al., 2020). In case of Bio-BERT,
since nodes carry long descriptions, we first gen-
erate sentence level embeddings and use their av-
erage to represent each node, following (Zhang
et al., 2020a). More recent techniques can be used
as well (Beltagy et al., 2020). We consider 1-
hop neighbors and set t = 1 in (1). To optimize
our model, we use the Adam optimizer (Kingma
and Ba, 2015) and apply hyper-parameter search
and tuning for all competing models based on
performance on validation data. In (5), we set
α from [0, 1] with a step size of 0.1, λ from
{0.1, 0.5, 1.0, 5, 10, 100}, and loss window k from
[1, 10] with a step size of 1. We consider a maxi-
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Modality Model GDPR PGR Wikipedia
P R F1 P R F1 P R F1 avg F1

- Co-occurance 16.7 100 28.6 47.5 100 64.4 16.7 100 28.6 40.5
T Relevance Score 59.2 83.4 69.2 75.6 64 69.1 - - - 69.2
T BioBERT (node pairs) 20.3 55.6 29.7 84.9 74.7 79.4 - - - 54.6
T BioBERT (neighbors) 21.1 57.4 30.9 74.0 76.0 75.0 - - - 53.0
T Doc2vec (node pairs) 19.8 45.0 27.5 80.5 82.7 81.6 - - - 54.6
T Doc2vec (neighbors) 20.6 51.9 29.5 83.1 78.7 80.8 - - - 55.2
G GCN 34.2 44.5 38.6 61.1 79.5 68.6 72.8 89.7 80.3 62.5
G GAT 23.7 50.3 31.7 75.8 91.1 82.5 78.2 86.7 82.2 65.5
G GIN 21.8 48.1 29.8 54.2 88.1 67.0 76.4 77.2 76.1 57.6
G GraphSAGE (random) 17.2 90.4 28.5 84.8 79.2 81.8 57.9 82.28 67.9 59.4
G,T GraphSAGE (Doc2Vec) 54.0 79.2 64.1 91.8 90.2 91.0 81.5 93.0 86.6 80.6
G,T GTNN 78.0 87.9 82.6 93.6 93.2 93.4 87.9 95.4 91.5 89.2

Table 2: Performance of different models on GDPR, PGR, and WIKIPEDIA datasets. Here, (T) indicates “Text only",
(G) indicates “Graph only", (G,T) indicates combination of both. Note that the WIKIPEDIA dataset contains only
noun features but not the original text, which is required by the text only models.

.

Model GDPR PGR Wikipedia avg F1
GTNN 82.6 93.4 91.5 89.2
CurGraph 75.9 85.1 80.3 80.3
SL 83.5 94.0 92.0 89.8
Trend-SL 84.3 94.2 91.3 89.9

Table 3: Performance of curriculum models on GDPR,
PGR, and WIKIPEDIA datasets. The base model for all
curriculum learning approaches is GTNN, see the last
row in Table 2.

mum number of 100 training iterations with early
stopping based on validation data for all models. In
addition, we evaluate models based on the standard
Recall, Precision and F1 score for classification
tasks (Buitinck et al., 2013). We experiment with
five random seeds and report the average results.
For all experiments, we use Ubuntu 18.04 with one
40GB A100 Nvidia GPU, 1 TB RAM and 16 TB
hard disk space. GPU hours to train our model have
been linear to the size of the datasets ranging from
30 min to 5 hours. We use Precision (P), Recall (R)
and F1 score (F1) as evaluation metrics.

3.4 Results

Table 2 shows the results. We start with text only
and graph only baselines followed by baselines that
incorporate both data modalities.

Text models (T): Comparing all text based
model, Relevance Score and Doc2Vec outperform
other models. In case of GDPR, high performance
of Relevance Score indicates the ability of unsu-
pervised IR models in finding relevant informa-
tion in long text descriptions. However, Relevance
Score shows poor performance on PGR compared
to Doc2Vec, which is better at semantic represen-
tation of input data. BioBERT (node pair) obtains

higher precision on both datasets and good perfor-
mance on PGR. In addition, the F1 score of the
BioBERT model developed in (Sousa et al., 2019)
for PGR is 76.6. We note that Doc2Vec obtains
better performance than BioBERT, perhaps due to
its in-domain pre-training.

Graph models (G): The results show that GCN
and GAT perform better than other competing
graph models. We attribute their performance to the
use of convolution and attention networks, which
effectively prioritize important neighboring nodes
with respect to the target tasks.

Graph models with additional information:
Comparing GraphSAGE (Doc2Vec) and Graph-
SAGE (random) illustrates the significant effect
of initialization with in-domain embeddings. In
addition, GTNN outperforms GraphSAGE, result-
ing in an average of 8.6 points improvement in F1
score. This improvement is because GTNN directly
uses text descriptions at its prediction layer. This
information, although available to GraphSAGE as
well, can be lost in the iterative process of learning
node embeddings through neighbors, see (1).

Training with curricula: The results in Table 3
show that training GTNN with effective curricula
can further improve its performance. We attribute
the better performance of Trend-SL compared to
SL to the use of trend information, which leads to
better curricula. We conduct further analysis on the
effect of trend information below. The lower per-
formance of CurGraph could be due to close proba-
bility densities that we obtained for samples in our
datasets, which do not allow easy and hard samples
to be effectively discriminated by CurGraph.

2207



Figure 4: The fraction of samples with an inverted dif-
ficulty group in two consecutive epochs. Both models
are converging on the their estimated difficulty classes
of samples as training progresses. Trend-SL results in
fewer inversions compared to SL; the area under the
curve for Trend-SL is 2.12 compared to 2.15 of SL.

4 Trend Model Introspection

We conduct several ablation studies to shed light
on the improved performance of Trend-SL.

4.1 Inversion Analysis
Trend-SL results in robust estimation of diffi-
culty: In curriculum learning, instantaneous sam-
ple losses can fluctuate as model trains (Zhou et al.,
2020). These changes result in samples being
moved across easy and hard data groups. Let’s
define an inversion as an event where the difficulty
group of a sample is inverted in two consecutive
epochs (determined by curricula), i.e., an easy sam-
ple becomes hard in the next iteration or vice versa.
Figure 4 shows the number of inversions in SL
and Trend-SL during training. Both models con-
verge on their estimated difficulty classes of sam-
ples as training progresses. However, we observe
that Trend-SL results in fewer inversions compared
to SL, as the area under the curve for Trend-SL is
2.12 compared to 2.15 of SL. Given these results
and the performance of Trend-SL on our target
tasks, we conjecture that trend information leads to
more robust estimation of sample difficulty.

Transition patterns at inversion time: Let
epoch e be the epoch at which an inversion oc-
curs. Considering SL as the curriculum, Figure 5
reports the average normalized loss of samples at
their inversion epochs (e) and k epochs before and
after that. There are some insightful patterns: (a):
easy-to-easy (E2E) and hard-to-hard (H2H) transi-
tions are almost flat lines, indicating the lack of any
significant trend when no inversion occurs; and (b):
easy-to-hard (E2H) and hard-to-easy (H2E) tran-
sitions show that, on average, there is a sharp and

Figure 5: Transition in sample difficulty determined by
SL. 0 on the x-axis denotes any epoch at which an inver-
sion occurs, and the y-axis shows average normalized
losses at epochs around the inversion epochs. Easy-
to-Hard and Hard-to-Easy transitions show sharp and
significant increase and decrease in losses respectively.

(a) Easy to Hard (b) Hard to Easy

Figure 6: Inversion dynamics at difficulty level during
training: (a) inversions from easy to hard with rising loss
trends and (b) inversions from hard to easy with falling
loss trends. The initial epochs on the y-axis are brighter
then later epochs, indicating that most inversions occur
early in training.

significant increase and decrease in loss patterns
as samples are inverted to hard and easy difficulty
groups respectively. Since SL does not directly
take into account trend information, these results
show that trend dynamics can inform our technical
objective of developing better curricula.

Inversions occur early during training: Fig-
ure 6(a) shows the fraction of samples that were
easy at epoch i but became hard with a rising trend
at epoch j > i. The corresponding heatmap for
Hard-to-Easy with falling trend is shown in Fig-
ure 6(b). In both case, the initial epochs (see the
y-axis) are brighter then later epochs, indicating
that most inversions occur early in training and the
effect of trend is more prominent in the initial part
of training.
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(a) Easy to Hard (b) Hard to Easy

Figure 7: Inversion heatmap when (a): easy samples with rising loss trend become hard (left) and (b): hard samples
with falling loss trend become easy (right).

Inversions occur with falling or rising loss
trends: SL does not use trend information. How-
ever, its estimated difficulty for a considerable frac-
tion of samples (with falling or rising loss trends)
is inverted during training. In fact, we observe that
21.2% to 50.0% of hard samples that have a falling
loss trend will become easy in their next training
iteration; similarly 1.3% to 11.1% of easy samples
that have a rising loss trend will become hard in
their next training iteration. Figure 7 shows the
inversion heatmap for such Easy-to-Hard and Hard-
to-Easy transitions in consecutive epochs. The area
under the curve for Easy-to-Hard with rising trend
and Hard-to-Easy with falling trend are 24.87 and
4.51 respectively. Trend-SL employs such trend
dynamics to create better curricula.

4.2 Domain and Feature Analysis

In-domain embeddings improve the perfor-
mance: In these experiments, we re-train our
model with different embedding initialization. As
shown in Figures 8, Doc2Vec embeddings result
in an overall better performance than BioBERT
and random initialization approaches across the
datasets. We attribute this result to in-domain train-
ing using text summaries of genes, diseases and
phenotypes associated to rare diseases. In addition,
the performance using BioBERT embeddings is
either comparable or considerably lower than that
of other embeddings including Random. This is
perhaps due to pre-training of BioBERT using a
large scale PubMED dataset, which has a signif-
icantly lower prevalence of publications on rare
versus common diseases. On the other hand, we di-
rectly optimize Doc2Vec on in-domain rare-disease
datasets, which leads to higher performance of the
model. We tried to fine tune BioBERT on our cor-
pus but as the text summaries are long, only a small
fraction of texts (512 tokens) can be considered.

Figure 8: Performance of GTNN with Trend-SL with
additional features.

Figure 9: Performance of GTNN with Trend-SL without
additional features.

Additional Features improve the performance:
We re-train our models and exclude additional fea-
ture (i.e., relevance scores for GDPR and sentence
embeddings for PGR), with different node embed-
ding initialization. Figure 9 shows that excluding
these features considerably reduces the F1-scores
of our model across datasets and embedding initial-
ization. These results show that both text features
and information obtained from graph structure con-
tribute to predicting relations between nodes.

5 Related Work

Previous research on relation extraction can be cat-
egorized into text- and graph-based approaches. In
addition, to our knowledge, there is limited work
on curriculum learning with graph datasets.
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Text-based models: Text-based methods extract
entities and the relations between them from given
texts. Although, previous works typically focus on
extracting intra-sentence relations for entity pairs in
supervised and distant supervised settings (Sousa
et al., 2019; Mintz et al., 2009; Dai et al., 2019;
Lin et al., 2016; Peng et al., 2017; Zhang et al.,
2018; Fout et al., 2017; Zhang and Chen, 2018;
Quirk and Poon, 2017), there are relation extrac-
tion approaches that focus on inter-sentence rela-
tions (Kilicoglu, 2016; Yao et al., 2019b). Kil-
icoglu (2016) investigated multi-sentence relation
extraction between chemical-disease entity pairs
mentioned at multi-sentence level. They consid-
ered lexical features, and features obtained from
intervening sentences as input to a classifier. A
close related work to our study has been conducted
by Sousa et al. (2019), who developed an effective
model to detect relations between genes and pheno-
types at sentence-level using sentential context and
medical named entities in text. We compared our
approach with Sousa et al. (2019) on the dataset
that they developed (PGR), see Section 3.2.

Graph based models: Previous research show
that adding informative additional features with
graph helps models learn better node representa-
tions for extracting relation between entity pairs.
For example, Zhang and Chen (2018) used distance
metric information, and Li et al. (2020) used dis-
tance features like shortest path and landing proba-
bilities between pair of nodes in subgraphs as addi-
tional features. We note that some graph properties,
although informative and effective, can be expen-
sive to calculate on large graphs during training
and should be computed offline.

Curriculum learning with graph data: Curricu-
lum learning approaches design curricula for model
training and generalizability (Bengio et al., 2009;
Kumar et al., 2010; Jiang et al., 2015; Amiri et al.,
2017; Jiang et al., 2018; Castells et al., 2020; Zhou
et al., 2020). The common approach is to detect
and use easy examples to train the model and grad-
ually add harder examples as training progresses.
Curricula can be static and pre-built by humans or
can be automatically and dynamically learned by
the model. There are very few curriculum learning
methods designed to work on the graph structure.
Wang et al. (2021) developed CurGraph, which is
a curriculum learning method for sub-graph classi-
fication. The model estimates the difficulty of sam-

ples using intra and inter-class distributions of sub-
graph embeddings and orders training instances to
initially expose easy sub-graphs to the underlying
graph neural network followed by harder ones. As
opposed to static curriculum, Saxena et al. (2019)
introduced a dynamic curriculum approach which
automatically assigns a confidence score to sam-
ples based on their estimated difficulty. However,
the model requires a large number of extra train-
able parameters especially when data set is large.
To overcome this limitation, Castells et al. (2020)
introduced a framework with similar idea but cal-
culates the optimal confidence score for each in-
stances using a closed-form solution, thereby avoid-
ing learning extra parameters. We extended this
approach to include trend information at sample-
level for learning effective curriculum.

Graph neural networks for NLP: There are sev-
eral distantly related work that develop graph neu-
ral network algorithm for downstream tasks such
as semantic role labeling (Marcheggiani and Titov,
2017), machine translation (Bastings et al., 2017;
Marcheggiani et al., 2018), multimedia event ex-
traction (Liu et al., 2020), text classification (Yao
et al., 2019a; Zhang et al., 2020b) and abstract
meaning representation (Song et al., 2018). Graph
neural networks are used to model word-word or
word-document relations, or applied to dependency
trees. Yao et al. (2019a) generated a single text
graph using word occurrences and document word
relations from text data, and used the GCN method
to learn embeddings of words and documents. Sim-
ilarly, Peng et al. (2018) used GCN to capture
the semantics between non-consecutive and long-
distance entities.

6 Conclusion and Future Work

We propose a novel graph neural network ap-
proach that effectively integrates textual and struc-
tural information and uses loss trajectories of sam-
ples during training to learn effective curricula
for predicting relations between given entity pairs.
Our approach can be used for both sentence- and
document-level relation extraction, and shows a
sizable improvement over the state-of-the-art mod-
els across several datasets. In future, we will in-
vestigate curriculum learning approaches for other
sub-tasks of relation extraction, develop more ef-
fective techniques to better fit trends to time series
data, and investigate the effect of curricula on other
graph neural networks for relation extraction.
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