
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 219 - 230

July 10-15, 2022 ©2022 Association for Computational Linguistics

CERES: Pretraining of Graph-Conditioned Transformer for
Semi-Structured Session Data

Rui Feng†, Chen Luo‡, Qingyu Yin‡, Bing Yin‡, Tuo Zhao† and Chao Zhang†

†Georgia Institute of Technology
‡Amazon Inc.

{rfeng, tourzhao, chaozhang}@gatech.edu
{cheluo,qingyy, alexbyin}@amazon.com

Abstract

User sessions empower many search and rec-
ommendation tasks on a daily basis. Such
session data are semi-structured, which en-
code heterogeneous relations between queries
and products, and each item is described
by the unstructured text. Despite recent ad-
vances in self-supervised learning for text or
graphs, there lack of self-supervised learn-
ing models that can effectively capture both
intra-item semantics and inter-item interac-
tions for semi-structured sessions. To fill
this gap, we propose CERES, a graph-based
transformer model for semi-structured ses-
sion data. CERES learns representations
that capture both inter- and intra-item seman-
tics with (1) a graph-conditioned masked lan-
guage pretraining task that jointly learns from
item text and item-item relations; and (2)
a graph-conditioned transformer architecture
that propagates inter-item contexts to item-
level representations. We pretrained CERES
using ∼468 million Amazon sessions and find
that CERES outperforms strong pretraining
baselines by up to 9% in three session search
and entity linking tasks.

1 Introduction

User sessions are ubiquitous in online e-commerce
stores. An e-commerce session contains customer
interactions with the platform in a continuous pe-
riod. Within one session, the customer can issue
multiple queries and take various actions on the
retrieved products for these queries, such as click-
ing, adding to cart, and purchasing. Sessions are
important in many e-commerce applications, e.g.,
product recommendation (Wu et al., 2019a), query
recommendation (Cucerzan and White, 2007), and
query understanding (Zhang et al., 2020).

This paper considers sessions as semi-structured
data, as illustrated in Figure 1. At the higher level,
sessions are heterogeneous graphs that contain in-
teractions between items. At the lower level, each

Product 1
Title: Harrys Razor
Type: Personal Care

Product 2
Title: Harrys Potter
Type: DVD

Product 3
Title: Harrys Potter
Type: Book

Viewed Viewed Purchased

Rewrite RewriteQ1: "Harry" Q2: "Harry Potter" Q3: "Harry Potter
Book"

Figure 1: Illustration of a customer session. A session
consists of two types of items: queries and products.
The customer searched for 3 keywords sequentially and
interacted with the products returned by the search en-
gine.

graph node has unstructured text descriptions: we
can describe queries by search keywords and prod-
ucts by titles, attributes, customer reviews, and
other descriptors. Our goal is to simultaneously
encode both the graph and text aspects of the ses-
sion data to understand customer preferences and
intents in a session context.

Pretraining on semi-structured session data re-
mains an open problem. First, existing works on
learning from session data usually treat a session
as a sequence or a graph (Xu et al., 2019; You
et al., 2019; Qiu et al., 2020b). While they can
model inter-item relations, they do not capture the
rich intra-item semantics when text descriptions
are available. Furthermore, these models are usu-
ally large neural networks that require massive la-
beled data to train from scratch. Another line of re-
search utilizes large-scale pretrained language mod-
els (Lan et al., 2019; Liu et al., 2019; Clark et al.,
2020) as text encoders for session items. However,
they fail to model the relational graph structure.
Several works attempt to improve language models
with a graph-structured knowledge base, such as in
(Liu et al., 2020; Yao et al., 2019; Shen et al., 2020).
While adjusting the semantics of entities according
to the knowledge graph, they fail to encode general
graph structures in sessions.

We propose CERES (Graph Conditioned
Encoder Representations for Session Data), a pre-
training model for semi-structured e-commerce ses-
sion data, which can serve as a generic session
encoder that simultaneously captures both intra-

219

item semantics and inter-item relations. Beyond
training a potent language model for intra-item se-
mantics, our model also conditions the language
modeling task on graph-level session information,
thus encouraging the pretrained model to learn how
to utilize inter-item signals. Our model architec-
ture tightly integrates two key components: (1)
an item Transformer encoder, which captures text
semantics of session items; and (2) a graph condi-
tioned Transformer, which aggregates and propa-
gates inter-item relations for cross-item prediction.
As a result, CERES models the higher-level inter-
actions between items.

We have pretrained CERES using 468,199,822
sessions and performed experiments on three
session-based tasks: product search, query search,
and entity linking. By comparing with publicly
available state-of-the-art language models and
domain-specific language models trained on alter-
native representations of session data, we show that
CERES outperforms strong baselines on various
session-based tasks by large margins. Experiments
show that CERES can effectively utilize session-
level information for downstream tasks, better cap-
ture text semantics for session items, and perform
well even with very scarce training examples.

We summarize our contributions as follows: 1)
We propose CERES , a pretrained model for semi-
structured e-commerce session data. CERES can
effectively encode both e-commerce items and
sessions and generically support various session-
based downstream tasks. 2) We propose a new
graph-conditioned transformer model for pretrain-
ing on general relational structures on text data. 3)
We conducted extensive experiments on a large-
scale e-commerce benchmark for three session-
related tasks. The results show the superiority
of CERES over strong baselines, including main-
stream pretrained language models and state-of-
the-art deep session recommendation models.

2 Customer Sessions

A customer session is the search log before a fi-
nal purchase action. It consists of customer-query-
product interactions: a customer submits search
queries obtains a list of products. The customer
may take specific actions, including view and pur-
chase on the retrieved products. Hence, a session
contains two types of items: queries and products,
and various relations between them established by
customer actions.

We define each session as a relational graph
G = (V, E) that contains all queries and products
in a session and their relations. The vertex set
V = (Q,P) is partitioned into ordered query set
Q and unordered product set P . The queries Q =
(q1, . . . , qn) are indexed by order of the customer’s
searches. The edge set E contains two types of
edges: {(qi, qj), i < j} are one-directional edges
that connect each query to its previous queries; and
{qi, pj , aij} are bidirectional edges that connects
the ith query and jth product, if the customer took
action aij on product pj retrieved by query qj .

The queries and products are represented by tex-
tual descriptions. Specifically, each query is rep-
resented by customer-generated search keywords.
Each product is represented with a table of tex-
tual attributes. Each product is guaranteed to have
a product title and description. In this paper, we
call “product sequence” as the concatenation of
title and description. A product may have addi-
tional attributes, such as product type, color, brand,
and manufacturer, depending on their specific cate-
gories.

3 Our Method

In this section we present the details of CERES.
We first describe our designed session pretraining
task in Section 3.1, and then describe the model
architecture of CERES in Section 3.2.
3.1 Graph-Conditioned Masked Language

Modeling Task
Suppose G = (V, E) is a graph on T text items as
vertices, v1, . . . , vT , each of which is a sequence
of text tokens: vi = [vi1, . . . , viTi], i = 1, . . . , T .
We propose graph-conditioned masked language
modeling (GMLM), where masked tokens are pre-
dicted with both intra-item context and inter-item
context:

pGMLM(vmasked) =
∏

jth masked
P(vij |G, {vik}kth unmasked),

(1)

which encourages the model to leverage informa-
tion graph-level inter-item semantics efficiently in
order to predict masked tokens. To optimize (1),
we need to learn token-level embeddings that are
infused with session-level information, which we
introduce in Section 3.2.2. Suppose certain tokens
in the input sequence of items as masked (detailed
below), we optimize the predictions of the masked
tokens with cross entropy loss. The pretraining
framework is illustrated in Figure 3.

220

Input Session

Transformer

Intra-item Token
Embeddings Item 1

Item N Intra-item Token
Embeddings

Graph Neural
Network

Session-level Item
Embeddings

Session Graph

Cross-attention
Transformer

Inter-item Token
Embeddings

Inter-item Token
Embeddings

Item Transformer Encoder Graph-Conditioned Transformer

Figure 2: Model illustration. CERES first produces intra-item embeddings in the Item Transformer Encoder.
Then, the Graph-Conditioned Transformer aggregates and propagates session-level information to obtain inter-
item embeddings.

Input Item Tokens

Item Transformer Encoder

Graph-Conditioned
Transformer

Intra-item Embeddings

Inter-item Embeddings
LM Head

LM Head

Masked Token Labels

LM Loss+

Figure 3: Pretraining framework illustration. CERES
learns both inter-item and intra-item embeddings for
item tokens for Masked LM and Graph-Conditioned
Masked LM. In practice, we find it beneficial to opti-
mize both.

Token Masking Strategy. To mask tokens in
long sequences, including product titles and de-
scriptions, we follow (Devlin et al., 2018) and
choose 15% of the tokens for masking. For short
sequences, including queries and product attributes,
there is a 50% probability that a short sequence will
be masked, and for those sequences 50% of their
tokens are randomly selected for masking.

3.2 Model Architecture

To model the probability in (1), we design two
key components in the CERES model: 1) a
Transformer-based item encoder, which produces
token-level intra-item embeddings that contain con-
text information within a single item; and 2) a
graph-conditioned Transformer for session encod-
ing, which produces session-level embeddings that
encodes inter-item relations, and propagates the
session information back to the token-level. We
illustrate our model architecture in Figure 2.

3.2.1 Item Transformer Encoder
The session item encoder aims to encode intra-item
textual information for each item in a session. We
design the item encoder based on Transformers,
which allows CERES to leverage the expressive
power of the self-attention mechanism for model-
ing domain-specific language in e-commerce ses-
sions. Given an item i, the transformer-based item

encoder compute its token embeddings as follows:
[vi1, . . . ,viTi] = Transformeritem([vi1, . . . , viTi])

vi = Pool([vi1, . . . , viTi]),
(2)

where vij is the embedding of the jth token in the
ith item, and vi is the pooled embedding of the ith
item. At this stage, {vij}, {vi} are embeddings
that only encode the intra-item information.

Details of Item Encoding. We detail the encoding
method for the two types of items, queries and
products, in the following paragraphs.

Each query qi = [qi1, . . . , qiTi] is a sequence
of tokens generated by customers as search key-
words. We add a special token at the beginning
of the queries, [SEARCH], to indicate that the se-
quence represents a customer’s search keywords.
Then, to obtain the token-level embedding of the
queries and the pooled query embedding by taking
the embedding of the special token [SEARCH].

Each product pi is a table of K attributes:
p1, . . . , pK , where p1 is always the product se-
quence, which is the concatenation of prod-
uct title and bullet description. Each attribute
pki = [pki1, p

k
i2, . . .] starts with a special token

[ATTRTYPE], where ATTRTYPE is replaced with
the language descriptor of the attribtue. Then,
the Transformer is used to compute token and sen-
tence embeddings for all attributes. The product
embedding is obtained by average pooling of all
attribute’s sentence embeddings.

3.2.2 Graph-Conditioned Session
Transformer

The Graph-Conditioned Session Transformer aims
to infuse intra-item and inter-item information
to produce item and token embeddings. For
this purpose, we first design a position-aware
graph neural network (PGNN) to capture the inter-
item dependencies in a session graph to produce

221

Item Token EmbeddingsLatent Conditioning Tokens

Figure 4: Illustration of cross-attention over latent con-
ditioning tokens. The item token embeddings perform
self-attention as well as cross-attention over latent con-
ditioning tokens, thus incorporating session-level in-
formation. Latent conditioning tokens perform self-
attention to update their embeddings, but do not attend
to item tokens to preserve session-level information.

item embeddings. The effect of PGNN is ana-
lyzed in Section 4.4. Then conditioned on the
PGNN-learned item embedding, we propose a
cross-attention Transformer, which produces in-
fused item and token embeddings for the Graph-
Conditioned Masked Language Modeling task.

Position-Aware Graph Neural Network. We
use a GNN to capture inter-item relations. This
will allow CERES to obtain item embeddings that
encode the information from other locally corre-
lated items in the session. Let [v1, . . . ,vN] denote
the item embeddings produced by the intra-item
transformer encoder. We treat them as hidden states
of nodes in the session graph G and feed them to
the GNN model, obtaining session-level item em-
beddings [vh

1 , . . . ,v
h
N].

The items in a session graph are sequential ac-
cording to the order the customers generated them.
To let the GNN model learn of the positional infor-
mation of items, we train an item positional embed-
ding in the same way BERT (Devlin et al., 2018)
trains positional embeddings of tokens. Before
feeding the item embeddings to GNN, the pooled
item embeddings are added item positional embed-
dings according to their positions in the session’s
item sequence. In this way, the item embeddings
{vi}i∈V are encoded their positional information
as well.

Cross-Attention Transformer. Conditioned on
PGNN, we design a cross-attention transformer
which propagates session-level information in
PGNN-produced item embeddings to all tokens
to produce token embeddings that are infused with
both intra-item and inter-item information.

In order to propagate item embeddings to tokens,
we treat item embeddings as latent tokens that can
be treated as a “part” of item texts. for each item i,
we first expand vh

i to K latent conditioning tokens
by using a multilayer perceptron module to map
vh
i to K embedding vectors [vh

i1, . . . ,v
h
iK] of the

same size. For each item i, we compute its latent
conditioning tokens by averaging all latent tokens
in its neighborhood. Suppose N(i) is the set of all
neighboring items in the session graph, itself in-
cluded. In each position, we take the average of the
latent token embeddings in N(i) as the kth latent
conditioning token, vh

ik, for the ith item. Then, we
concatenate the latent conditioning token embed-
dings and the item token embeddings obtained by
the session item encoder:

[vh
i1, . . . ,v

h
iK ,vi1, . . . ,viNi]. (3)

Finally, we compute the token-level embeddings
with session information by feeding the concate-
nated sequence to a shallow cross-attention Trans-
former. The cross-attention Transformer is of the
same structure as normal Transformers. The dif-
ference is that we prohibit the latent conditioning
tokens from attending over original item tokens
to prevent the influx of intra-item information po-
tentially diluating session-level information stored
in latent conditioning tokens. Illustration of cross-
attention Transformer is provided in Figrue 4.

We use the embeddings produced by this cross-
attention Transformer as the final embeddings for
modeling the token probabilities in Equation (1)
and learning the masked language modeling tasks.
During training, the model is encouraged to learn
good token embeddings with the Item Transformer
Encoder, as better embeddings {vij}Ni

j=1 is neces-
sary to improve the quality of {vc

ij}Ni
j=1. The

Graph-Conditioned Transformer will be encour-
aged to produce high-quality session-level embed-
dings for the GMLM task. Hence, CERES is en-
couraged to produce high-quality embeddings that
unify both intra-item and inter-item information.

3.3 Finetuning

When finetuning CERES for downstream tasks, we
first obtain session-level item embeddings. The
session embedding is computed as the average of
all item embeddings. To obtain embedding for a
single item without session context, such as for
retrieved items in recommendation tasks, only the
Item Transformer Encoder is used.

To measure the relevance of an item to a given
session, we first transform the obtained embed-
dings by separate linear maps. Denote the trans-
formed session embeddings as s and item embed-
dings as y. The similarity between them is com-
puted by cosine similarity dcos(s,y). To finetune

222

the model, we optimize a hinge loss on the cosine
similarity between sessions and items.

4 Experiments

4.1 Experiment Setup

Dataset. We collected customer sessions from
Amazon for pretraining and finetuning on down-
stream tasks. 468,199,822 customer sessions are
collected from August 1 2020 to August 31 2020
for pretraining. 30,000 sessions are collected from
September 2020 to September 7 2020 for down-
stream tasks. The pretraining and downstreaming
datasets are from disjoint time spans to prevent data
leakage. All data are cleaned and anonymized so
that no personal information about customers was
used. Each session is collected as follows: when a
customer perform a purchase action, we backtrace
all actions by the customer in 600 seconds before
the purchase until a previous purchase is encoun-
tered. The actions of customers include: 1) search,
2) view, 3), add-to-cart, and 4) purchase. Search
action is associated with customer generated query
keywords. View, add-to-cart, and purchase are as-
sociated with the target products. All the products
in the these sessions are gathered with their product
title, bullet description, and various other attributes,
including color, manufacturer, product type, size,
etc. In total, we have 37,580,637 products. The
sessions have an average of 3.24 queries and 4.36
products. Queries have on average 5.63 tokens,
while product titles and bullet descriptions have
averagely 17.42 and 96.01 tokens.

Evaluation Tasks and Metrics. We evaluate all
the compared models on the following tasks: 1)
Product Search. In this task, given observed cus-
tomer behaviors in a session, the model is asked
to predict which product will be purchased from a
pool of candidate products. The purchased prod-
ucts are removed from sessions to avoid trivial in-
ference. The candidate product pool is the union of
all purchased products in the test set and the first
10 products returned by the search engine of all
sessions in the test set.

2) Query Search. Query Search is a recommen-
dation task where the model retrieves next queries
for customers which will lead to a purchase. Given
a session, we hide the last query along with prod-
ucts associated with it, i.e. viewed or purchased
with the removed query. Then, we ask the model
to predict the last query from a pool of candidate

queries. The candidate query pool consists of all
last queries in the test set.

3) Entity Linking. In this task we try to under-
stand the deeper semantics of customer sessions.
Specifically, if customer purchases a product in a
session, the task is to predict the attributes of the
purchased product from the rest contexts in the
session. In total, we have 60K possible product
attributes.

Baselines. The compared baselines can be catego-
rized into three groups:

1) General-domain pretrained language mod-
els which include BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), and ELECTRA (Clark
et al., 2020). These models are state-of-the-art
pretrained language models, which can serve as
general-purpose language encoders for items and
enable downstream session-related tasks. Specifi-
cally, the language encoders produce item embed-
dings first, and compose session embeddings by
pooling the items in sessions. To retrieve items
for sessions, one can compare the cosine similarity
between sessions and retrieved items.

2) Pretrained session models which are pre-
trained models on e-commerce session data. Specif-
ically, we pretrain the following language models
using our session data: a) Product-BERT, which
is a domain-specific BERT model pretrained with
product information; b) SQSP-BERT, where SQSP
is short for Single-query Single-Product. SQSP-
BERT is pretrained on query-product interaction
pairs with language modeling and contrastive learn-
ing objectives. They are used in the same manner
in downstream tasks as general-domain pretrained
language models. The detailed configurations are
provided in the Appendix.

3) Session-based recommendation methods
including SR-GNN (Wu et al., 2019b) and
NISER+ (Gupta et al., 2019), which are state-of-
the-art models for session-based product recom-
mendation on traditional benchmarks, including
YOOCHOOSE and DIGINETICA; and Nvidia’s
MERLIN (Mobasher et al., 2001), which is the best-
performing model in the recent SIGIR Next Items
Prediction challenge (Kallumadi et al., 2021)

To evaluate the performance on these tasks, we
employ standard metrics for recommendation sys-
tems, including MAP@K, and Recall@K.

4.2 Implementation Details
The implementation details for pretraining and fine-
tuning stages are described as follows.

223

Pretraining details. We developed our model
based on Megatron-LM (Shoeybi et al., 2019). We
used 768 as the hidden size, a 12-layer transformer
blocks as the backbone language model, a two-
layer Graph Attention Network and three-layer
Transformer as the conditioned language model
layers. In total, our model has 141M parameters.
The model is trained for 300,000 steps with a batch
size of 512 sessions. The parameters are updated
with Adam, with peak learning rate as 3e− 5, 1%
steps for linear warm-up, and linear learning rate
decay after warm-up until the learning rate reaches
the minimum 1e− 5. We trained our model on 16
A400 GPUs on Amazon AWS for one week.
Finetuning details. For each downstream task,
we collected 30,000 sessions for training, 3000 for
validation and 5000 for testing. For each of the pre-
trained model, we finetune them for 10 epochs with
a maximal learning rate chosen from [1e-4, 1e-5,
5e-5, 5e-6] to maximize MAP@1 on the validation
set. The rest of the configuration of optimizers is
the same as in pretraining.

4.3 Main Results
4.3.1 Product Search
Table 1 shows the performance of different meth-
ods for the product search task. We observe that
CERES outperforms domain-specific methods by
more than 1% and general-domain methods by over
6% in MAP@1. The second best performing model
is Product-BERT, which is pretrained on product
information alone.

We also compared with session-based recom-
mendation systems. SR-GNN and NISER+ model
only session graph structure but not text seman-
tics; hence they have limited performance because
of the suboptimal representation of session items.
While MERLIN can capture better text semantics,
its text encoder is not trained on domain-specific
e-commerce data. While it can outperform general-
domain methods, its performance is lower than
Product-BERT and CERES. The benefits of joint
modeling of text and graph data and the Graph-
Conditioned MLM allow CERES to outperform
existing session recommendation models.

4.3.2 Query Search
Table 2 shows the performance of different meth-
ods on Query Search. Query Search is a more dif-
ficult task than Product Search because customer-
generated next queries are of higher variance. In
this challenging task, CERES outperforms the best

domain-specific model by over 7% and general-
domain model by 12% in all metrics.

4.3.3 Entity Linking

Table 3 shows the results on Entity Linking. Sim-
ilar to Query Search, this task also requires the
models to tie text semantics (queries/product at-
tributes) to a customer session, which requires a
deeper understanding of customer preferences. It is
easier than Query Search as product attributes are
of lower variance. However, the product attributes
that the customer prefer rely more on session in-
formation, as they may have been reflected in the
past search queries and viewed products. In this
task, CERES outperforms domain-specific models
and general-domain models by averagely 9% in
MAP@1 and 6% in MAP@32 and MAP@64.

4.4 Further Analysis and Ablation Studies

In this section we present further studies to under-
stand: 1) the effect of training data sizes in the
downstream task; 2) the effects of different com-
ponents in CERES for both the pretraining and
finetuning stages. following observations:

CERES is highly effective when training data
are scarce. We compare CERES with two
strongest baselines (BERT, and Product-BERT)
when the training sample size varies. Figure 5
shows the MAP@64 scores of these methods on
Product Search and Query Search when training
size varies. Clearly, the advantage of CERES is
greater when training data is extremely small. With
a training size of 300, CERES can achieve a decent
performance of about 37.55% in Product Search
and 36.37% in Query Search, while the baseline
models cannot be trained sufficiently with such
small-sized data. This shows that the efficient uti-
lization of session-level information in pretraining
and fine-tuning stages make the model more data
efficient than other pretrained models.

300 1000 3000 10000 30000
0

20

40

60

80

CERES
Product Bert
Bert

(a) Product Search

300 1000 3000 10000 30000
0

10

20

30

40

50

60

70 CERES
Product Bert
Bert

(b) Query Search

Figure 5: Effect of sample size on Product Search and
Query Search. x-axis represents the training data size
and y-axis represents MAP@64.

224

Method map@1 recall@1 map@32 recall@32 map@64 recall@64
SR-GNN 36.313 37.284 50.683 99.592 60.413 99.689
NISER+ 37.193 38.144 52.855 98.293 62.371 99.111
MERLIN 89.744 90.166 93.067 98.98 93.075 99.33
BERT 85.096 84.688 89.172 99.082 89.18 99.301
RoBERTa 79.647 78.963 83.207 95.396 83.25 97.494
Electra 85.897 86.32 89.841 99.344 89.845 99.519
Product-Bert 91.026 91.71 93.856 99.563 93.856 99.563
SQSP-Bert 85.577 85.795 90.049 99.038 90.057 99.301
CERES 92.628 93.094 94.848 99.551 94.853 99.65

Table 1: The performance of different methods for Product Search, after fine-tuning with 30,000 training sessions.
Method map@1 recall@1 map@32 recall@32 map@64 recall@64
BERT 47.276 47.627 60.143 92.553 60.214 95.417
RoBERTa 26.603 26.323 37.722 74.468 37.839 80.196
Electra 32.853 32.788 47.512 90.426 47.632 95.663
Product-BERT 52.724 52.973 66.035 95.99 66.065 97.463
SQSP-BERT 45.833 46.29 60.195 92.881 60.26 95.499
CERES 59.936 60.284 72.329 97.463 72.331 97.627

Table 2: The performance of different methods for Query Search, after fine-tuning with 30,000 training sessions.

Graph-Conditioned Transformer is Vital to
Pretraining. Without the Graph-Conditioned
Transformer in pretraining, our model is essen-
tially the same as domain-specific baselines, such
as Product-BERT, which are trained on session data
but only with intra-item text signals. While SQSP-
BERT has access to session-level information when
maximizing the masked language modeling objec-
tive, the lack of a dedicated module for GMLM
results in worse performance, as shown in the main
experiment results.

We could train the Graph-Conditioned Trans-
former from scratch in the finetuning stage. We
present a model called CERES w/o Pretrain, which
attaches the Graph-Conditioned Session Trans-
former to Product-BERT as the Item Transformer
Encoder. As shown in Figure 6, this ablation
method achieves MAP@64 scores of 89.341%
in Product Search, 64.890% in Query Search,
and 74.031% in Entity Linking, which are be-
low Product-BERT. This shows that the pretrain-
ing stage of the Graph-Conditioned Transformer
is necessary to facilitate its ability to aggregate
and propagate session-level information for down-
stream tasks.

Graph-Conditioned Transformer Improves
Item-level Embeddings. We also present CERES
w/o Cond, which has the same pretrained model
as CERES, but only uses the Item Transformer
Encoder in the finetuning stage. The Item
Transformer Encoder is used to compute session
item embeddings that contain only item-level
information, and then takes the average of these
embeddings as session embedding. As shown in
Figure 6, CERES w/o Cond acheives 94.741%,
72.175%, and 81.03% respectively in Product

Product Search Query Search Entity Linking0

20

40

60

80

M
AP

@
64

MAP@64 for Ablation Models
CERES
CERES w/o Cond
CERES w/o Pretrain
CERES w/o GNN

Figure 6: Results on three tasks on ablation models. y-
axis represents MAP@64. CERES w/o Cond is CERES
without the Graph-Conditioned Transformer in the fine-
tuning stage. CERES w/o Pretrain is CERES without
pretraining the Graph-Conditioned Transformer, but in-
stead training it from scratch in the finetuning stage.
CERES w/o GNN is CERES pretrained without the
GNN module.

Search, Query Search, and Entity Linking,
observing a drop of 0.1% to 0.2% in performance
compared with CERES. The performance drop
is minor and CERES w/o Cond still outperforms
baseline pretrained language models. Hence, the
Graph-Conditioned Transformer in the pretraining
stage helps the Item Transformer Encoder to learn
better item-level embeddings that can be used for
more effective leveraging of session information in
the downstream tasks.

Graph Neural Networks Improve Representa-
tion of Sessions. In CERES w/o GNN, we pretrain
a CERES model without a Graph Neural Network.
Specifically, CERES w/o GNN skips the neighbor-
hood information aggregation for items, and uses
item-level embeddings obtained by the Item Trans-
former Encoder directly as latent conditioning to-
kens. We train and finetune this model with the
same setup as CERES. Without GNN, the model’s
performance is consistently lower than CERES,

225

Method map@1 recall@1 map@32 recall@32 map@64 recall@64
BERT 55.609 55.353 66.386 90.511 66.481 95.073
RoBERTa 66.506 65.754 74.516 93.248 74.561 95.438
Electra 62.321 62.365 62.985 68.296 63.122 74.318
Product-Bert 66.827 66.393 74.611 94.404 74.641 96.046
SQSP-Bert 63.942 64.872 72.232 91.241 72.307 94.891
CERES 75.481 75.456 81.121 95.255 81.16 96.898

Table 3: The performance of different methods for Entity Linking, after fine-tuning with 30,000 training sessions.

achieving 93.453%, 71.231%, 80.26% MAP@64
in three downstream tasks, observing a 1.13% per-
formance drop. This shows that GNN’s aggrega-
tion of information can help item-level embeddings
encode more session-level information, improving
performance in downstream tasks.

Model Efficiency. CERES has additional few
GNN and Transformer layers attached to the end of
the model. The additional layers bring ∼20% addi-
tional inference time compared to standard BERT
with 12 layers and 768 hidden size.

5 Related work

Pretrained language models such as BERT (Devlin
et al., 2018), BART (Lewis et al., 2019), ELEC-
TRA (Clark et al., 2020), RoBERTa (Liu et al.,
2019) have pushed the frontiers of many NLP tasks
by large margins. Their effectiveness and efficiency
in parallelism have made them popular and general-
purpose language encoders for many text-rich appli-
cations. However, they are not designed to model
relational and graph data, and hence are not the
best fit for e-commerce session data.

Researchers have also sought to enhance text
representations in pretrained models with knowl-
edge graphs (Shen et al., 2020; Liu et al., 2020;
Yao et al., 2019; Sun et al., 2020, 2021). While
these models consider a knowledge graph struc-
ture on top of text data, they generally use entities
or relations in knowledge graphs to enhance text
representations, but cannot encode arbitrary graph
structures. This is not sufficient in session-related
applications as session structures are ignored.

Many works have been proposed to learn pre-
trained graph neural networks. Initially, methods
were proposed for domain-specific graph pretrain-
ing (Hu et al., 2019a,b; Shang et al., 2019). How-
ever, they rely on pre-extracted domain-specific
node-level features, and cannot be extended to ei-
ther session data or text data as nodes. Recently,
many works have been proposed to pretrain on gen-
eral graph structure (Hu et al., 2020; You et al.,
2020; Qiu et al., 2020a). However, they cannot
encode the semantics of text data as nodes.

Contextual information in sessions have been

shown beneficial to various related recommenda-
tion tasks, such as product recommendation (Wu
et al., 2019b; Dehghani et al., 2017; Jannach and
Ludewig, 2017; Gupta et al., 2019) and query
rewriting (Li et al., 2017; Cucerzan and White,
2007). Many existing session-based recommenda-
tion methods seek to exploit the transitions between
items (Yap et al., 2012; Rendle et al., 2010; Wang
et al., 2018; Li et al., 2017) and considering ses-
sions as graphs (Xu et al., 2019; Ruihong et al.,
2021; Wang et al., 2020).

6 Limitations and Risks

This paper limits the application of CERES to ses-
sion data with text descriptions. CERES has the po-
tential of being a universal pretraining framework
for arbitrary heterogeneous data. For example, ses-
sions can include product images and customer
reviews for more informative multimodal graphs.
We leave this extension for future work.

Session data are personalized experience for cus-
tomers and could cause privacy issues if data are
not properly anonymized. In application, the model
should be used to avoid exploitation or leakage of
customers personal profiles and preferences.

7 Conclusion

We proposed a pretraining framework, CERES,
for learning representations for semi-structured e-
commerce sessions. We are the first to jointly
model intra-item text and inter-item relations in ses-
sion graphs with an end-to-end pretraining frame-
work. By modeling Graph-Conditioned Masked
Language Modeling, our model is encouraged to
learn high-quality representations for both intra-
item and inter-item information during its pretrain-
ing on massive unlabeled session graphs. Further-
more, as a generic session encoder, our model
enabled effective leverage of session information
in downstream tasks. We conducted extensive
experiments and ablation studies on CERES in
comparison to state-of-the-art pretrained models
and recommendation systems. Experiments show
that CERES can produce higher quality text rep-
resentations as well as better leverage of session

226

graph structure, which are important to many e-
commerce related tasks, including product search,
query search, and query understanding.

8 Acknowledgement

This work was supported in part by NSF IIS-
2008334, IIS-2106961, CAREER IIS-2144338,
and ONR MURI N00014-17-1-2656.

References
Kevin Clark, Minh-Thang Luong, Quoc V Le, and

Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. arXiv preprint arXiv:2003.10555.

Silviu Cucerzan and Ryen W White. 2007. Query sug-
gestion based on user landing pages. In Proceedings
of the 30th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 875–876.

Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca,
and Pascal Fleury. 2017. Learning to attend, copy,
and generate for session-based query suggestion.
In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, pages
1747–1756.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Priyanka Gupta, Diksha Garg, Pankaj Malhotra,
Lovekesh Vig, and Gautam M Shroff. 2019.
Niser: Normalized item and session representa-
tions with graph neural networks. arXiv preprint
arXiv:1909.04276.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zit-
nik, Percy Liang, Vijay Pande, and Jure Leskovec.
2019a. Pre-training graph neural networks. arXiv
preprint arXiv:1905.12265.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zit-
nik, Percy Liang, Vijay Pande, and Jure Leskovec.
2019b. Strategies for pre-training graph neural net-
works. arXiv preprint arXiv:1905.12265.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei
Chang, and Yizhou Sun. 2020. Gpt-gnn: Genera-
tive pre-training of graph neural networks. In Pro-
ceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Min-
ing, pages 1857–1867.

Dietmar Jannach and Malte Ludewig. 2017. When re-
current neural networks meet the neighborhood for
session-based recommendation. In Proceedings of
the Eleventh ACM Conference on Recommender Sys-
tems, pages 306–310.

Surya Kallumadi, Tracy Holloway King, Shervin Mal-
masi, and Maarten de Rijke. 2021. Ecom’21: The
sigir 2021 workshop on ecommerce. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2685–2688.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren,
Tao Lian, and Jun Ma. 2017. Neural attentive
session-based recommendation. In Proceedings of
the 2017 ACM on Conference on Information and
Knowledge Management, pages 1419–1428.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert:
Enabling language representation with knowledge
graph. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 2901–2908.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki
Nakagawa. 2001. Effective personalization based
on association rule discovery from web usage data.
In Proceedings of the 3rd international workshop on
Web information and data management, pages 9–15.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang,
Hongxia Yang, Ming Ding, Kuansan Wang, and
Jie Tang. 2020a. Gcc: Graph contrastive coding
for graph neural network pre-training. In Proceed-
ings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining,
pages 1150–1160.

Ruihong Qiu, Zi Huang, Jingjing Li, and Hongzhi
Yin. 2020b. Exploiting cross-session information
for session-based recommendation with graph neu-
ral networks. ACM Transactions on Information Sys-
tems (TOIS), 38(3):1–23.

Steffen Rendle, Christoph Freudenthaler, and Lars
Schmidt-Thieme. 2010. Factorizing personalized
markov chains for next-basket recommendation. In
Proceedings of the 19th international conference on
World wide web, pages 811–820.

227

Qiu Ruihong, Huang Zi, Chen Tong, and Yin
Hongzhi. 2021. Exploiting positional information
for session-based recommendation. arXiv preprint
arXiv:2107.00846.

Junyuan Shang, Tengfei Ma, Cao Xiao, and Jimeng
Sun. 2019. Pre-training of graph augmented trans-
formers for medication recommendation. arXiv
preprint arXiv:1906.00346.

Tao Shen, Yi Mao, Pengcheng He, Guodong Long,
Adam Trischler, and Weizhu Chen. 2020. Ex-
ploiting structured knowledge in text via graph-
guided representation learning. arXiv preprint
arXiv:2004.14224.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi
Chen, Yanbin Zhao, Yuxiang Lu, et al. 2021. Ernie
3.0: Large-scale knowledge enhanced pre-training
for language understanding and generation. arXiv
preprint arXiv:2107.02137.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0:
A continual pre-training framework for language un-
derstanding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 8968–
8975.

Shoujin Wang, Liang Hu, Longbing Cao, Xiaoshui
Huang, Defu Lian, and Wei Liu. 2018. Attention-
based transactional context embedding for next-item
recommendation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32.

Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-
Ling Mao, and Minghui Qiu. 2020. Global context
enhanced graph neural networks for session-based
recommendation. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 169–
178.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang,
Xing Xie, and Tieniu Tan. 2019a. Session-based rec-
ommendation with graph neural networks. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 346–353.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang,
Xing Xie, and Tieniu Tan. 2019b. Session-based rec-
ommendation with graph neural networks. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 346–353.

Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S
Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang, and
Xiaofang Zhou. 2019. Graph contextualized self-
attention network for session-based recommenda-
tion. In IJCAI, volume 19, pages 3940–3946.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion. arXiv
preprint arXiv:1909.03193.

Ghim-Eng Yap, Xiao-Li Li, and S Yu Philip. 2012. Ef-
fective next-items recommendation via personalized
sequential pattern mining. In International confer-
ence on database systems for advanced applications,
pages 48–64. Springer.

Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksom-
batchai, Chuck Rosenburg, and Jure Leskovec. 2019.
Hierarchical temporal convolutional networks for
dynamic recommender systems. In The world wide
web conference, pages 2236–2246.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. 2020. Graph
contrastive learning with augmentations. Advances
in Neural Information Processing Systems, 33:5812–
5823.

Hanchu Zhang, Leonhard Hennig, Christoph Alt,
Changjian Hu, Yao Meng, and Chao Wang.
2020. Bootstrapping named entity recognition in e-
commerce with positive unlabeled learning. arXiv
preprint arXiv:2005.11075.

228

Attribute Value
Title Pour-over Coffee Maker

Bullet Description Just coffee maker.
Color N/A
Brand Chemex

Manufacturer Chemex
Product Type Coffee Maker

Table 4: Example Product Table. Each product is
guaranteed to have a title. Most products have bul-
let descriptions, which can be split into multiple en-
tries. Products could have other attributes, such as
color, brand, product type, etc. as well.

A Details on Session Data

A.1 Product Attributes.

A product is represented with a table of attributes.
Each product is guaranteed to have a product title
and bullet description. In this paper, we regard
the product title as the representative sequence of
the product, called “product sequence”. A product
may have additional attributes, such as product
type, color, brand, and manufacturer, depending on
specific products.

A.2 Alternative Pretraining Corpora

In this section we introduce alternative pretrain-
ing corpora that encode information in a session,
including products and queries, but not treating
sessions as a whole.

A.2.1 Product Corpus

In this corpus, we gathered all product information
that appeared in the sessions from August 2020 to
September 2020. Each product will have descrip-
tions such as product title and bullet description,
and other attributes like entity type, product type,
manufacturer, etc. Particularly, bullet description
is composed of several lines of descriptive facts
about the product. All products without titles are
removed. Each of the remaining product forms a
paragraph, where the product title comes as the first
sentence, followed by the entries of bullet descrip-
tions each as a sentence, and product attributes.

An example document in this corpora is as fol-
lows:

[Title] product title
[Description] description
[Product Type] product type
[Color] color

A.2.2 Single-Query Single-Product (SQSP)
Corpus

In this corpus, we treat each session as a document
and each query-product pair as a sentence. A query-
product pair in the document are the pairs of queries
and products that are either viewed or clicked with
the given queries. A query-product pair looks like
the follows:

[SEARCH] search keywords
[TITLE] product title
[DESCRIPTION] description
[ENTITY_TYPE] entity type

where the first [SEARCH] special token indicates
a field of query keywords, and [TITLE] indicates
fields of product information starting with product
tittles. In this corpus, we model the one-to-one
relation between queries and products.

A.2.3 Session Corpus
In this corpus, we treat each session as a document
and sequentially put text representations of items
in a session to the document with special tokens in-
dicating the fields of items. An example document
looks like the follows:

[SEARCH] keywords 1
[SEARCH] keywords 2 [CLICK]
[TITLE] product 1
[SEARCH] keywords 3
[PURCHASE]
[TITLE] product 2

In this example, the customer first attempted to
search with keywords 1 and then modified the key-
words to keywords 2. The customer then clicked on
product 1. At last, the customer modified his search
to keywords 3 and purchased product 2. In this cor-
pus, session information is present in a document,
but the specific relations between elements are not
specified. The comparison of different datasets are
in Table 5.

A.3 Alternative Pretraining Methods
We introduce the alternative pretraining models.

• Product-Bert. It is pretrained on the Product
Corpus. Specifically, we treat each product
in the Product Corpus as an article. Product
titles is always the first sentence, followed by
paragraphs of bullet descriptions, which can
contain multiple sentences. Then, each addi-
tional product attribute is a sentence added
after the bullet descriptions.

229

Corpus Product Info Query Info Relational Session Context
Product 3 7 7 7

SQSP 3 3 3 7

Session-Corpus 3 3 7 3

Session-Graph 3 3 3 3

Table 5: Comparision of different pretraining dataset. Product Corpus has access only to product information.
SQSP models on the queries and query-product relations, without access to session context. Session Corpus has
access to contextual information in a session, but does not model on relations between objects. Session-Graph has
access to all information and models on the relational nature of nodes in the session graph.

Product Bert is trained for 300,000 steps, with
a 12-layer transformer with a batch size of
6144 and peak learning rate of 1e-3, 1% linear
warm-up steps, and 1e−2 linear weight decay
to a minimum learning rate of 1e-5.

• SQSP-Bert. It is pretrained on SQSP Cor-
pus. The SQSP Bert uses the same Trans-
former backbone as Product Bert. Given each
query-product pair, SQSP feeds the text pair
sequence to the Transformer for token embed-
dings for masked language modeling loss. In
addition to language modeling, for each query-
product pair, we sample a random product for
the query as a negative query-product pair.
The text pair sequence of the negative sample
is also fed to the Transformer. Then, a dis-
criminator is trained in the pretraining stage
to distinguish the ground-truth query-product
pairs and randomly sampled pairs. The dis-
criminator’s classification loss should serve as
a contrastive loss.

SQSP Bert is trained with the same configura-
tion of Product Bert.

B Details on Evaluation Metrics

Mean Average Precision. Suppose that for a ses-
sion, m items are relevant and N items are retrieved
by the model, the Average Precision (AP) of a ses-
sion is defined as

AP@N =
1

min(m,N)

N∑

k=1

P (k)rel(k), (4)

where P (k) is the precision of the top k re-
trieved items, and rel(k) is an indicator function
of whether the kth item is relevant. As we have at
most one relevant item for each session, the above
metric reduces to 1

r , where r is the rank of the rele-
vant item in the retrieved list, and k =∞ when the
relevant item is not retrieved. MAP@N averages

AP@N over all sessions,

MAP@N =
1

|S|
∑

s∈S

1

rs
(5)

where rs is the rank of the relevant item for a spe-
cific session s. MAP in this case is equivalent to
MRR.

Mean Average Precision by Queries (MAPQ).
Different from MAP, MAPQ averages AP over last
queries instead of sessions. SupposeQ is the set of
unique last queries, and S(q), q ∈ Q is the set of
sessions whose last queries are q, then the average
precision for one query q is

1
∑k

i=1 rel(k)

N∑

k=1

min(1,

∑
rs≤k rel(k)

k
) (6)

then we sum over all queries to obtain MAPQ@N.

Mean Reciprocal Rank by Queries (MRRQ).
MRRQ averages MRR over session last queries
instead of sessions.

MRRQ@N =
1

|Q|
∑

q∈Q
max
s∈S(q)

(rs) (7)

Recall. Recall@N calculates the percentage of
sessions whose relevant items were retrieved
among the top N predictions.

230

