
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2189 - 2201

July 10-15, 2022 ©2022 Association for Computational Linguistics

Locally Aggregated Feature Attribution on Natural Language Model
Understanding

Sheng Zhang1 Jin Wang2 Haitao Jiang3 Rui Song2,3

1AWS AI Labs, 2Amazon Core AI
3Department of Statistics, North Carolina State University

{zshe, jiwngn}@amazon.com, {hjiang24, rsong}@ncsu.edu

Abstract
With the growing popularity of deep-learning
models, model understanding becomes more
important. Much effort has been devoted to
demystify deep neural networks for better in-
terpretability. Some feature attribution meth-
ods have shown promising results in computer
vision, especially the gradient-based methods
where effectively smoothing the gradients with
reference data is key to a robust and faithful
result. However, direct application of these
gradient-based methods to NLP tasks is not
trivial due to the fact that the input consists
of discrete tokens and the “reference” tokens
are not explicitly defined. In this work, we
propose Locally Aggregated Feature Attribu-
tion (LAFA), a novel gradient-based feature
attribution method for NLP models. Instead of
relying on obscure reference tokens, it smooths
gradients by aggregating similar reference texts
derived from language model embeddings. For
evaluation purpose, we also design experi-
ments on different NLP tasks including Entity
Recognition and Sentiment Analysis on public
datasets as well as key feature detection on a
constructed Amazon catalogue dataset. The su-
perior performance of the proposed method is
demonstrated through experiments.

1 Introduction

With the growing popularity of deep-learning mod-
els, model understanding becomes more and more
critical in many folds. In one aspect, model un-
derstanding helps us understand what the model
is doing by identifying crucial features among un-
structured raw data. For example, Shrikumar et al.,
2017 utilized the model explainability technique to
discover motifs in regulatory DNA elements from
distinct molecular signatures in the field of Ge-
nomics. In another aspect, model understanding
helps people audit or debug the deep models. An
interesting example is that Ribeiro et al. (Ribeiro
et al., 2016) found that their image classification
model sometimes misclassifies a husky as a wolf.

The model explainability tool reveals that their
model relies on the snow in the background rather
than the appearance when distinguishing the two
animals. More importantly, model understanding
helps gain trust when making important decisions
based on the model. In the NLP domain, deep
language models are quickly evolving and show
superior performance in various benchmark tasks.
However, even experts struggle to understand the
mechanism of complex language models.

Much effort has been devoted to demystifying
the “black box” of deep models. A natural idea is
through feature attribution, explaining the model
by attributing the prediction to each input feature
according to how much it affects the model output,
of which two main directions emerge. One is model
agnostic approaches including Shapley regression
values (Shapley, 1953) and LIME (Ribeiro et al.,
2016). We can apply these methods regardless of
the model structure, however, they could suffer
from computational inefficiency in the scenario of
high dimensional input space and complex deep
models when making inferences across all possible
permutations or with small perturbations in the
local neighborhood.

Another direction is model-specific approaches
which look into the internal model mechanism to
understand specific models. Gradient-based feature
attribution models are often adopted to explain neu-
ral networks since gradients can be easily accessed
through back-propagation, which gives a great com-
putational advantage over model-agnostic methods.
Since the gradient map itself is often noisy and
challenging to interpret, most gradient-based meth-
ods aim to stabilize the feature attribution score
by smoothing the gradients or learning from the
reference data (Sundararajan et al., 2017; Smilkov
et al., 2017; Lundberg and Lee, 2017). However, di-
rect application of these gradient-based methods to
NLP problems is not trivial, due to the fact that the
input consists of discrete tokens and the “reference”

2189

tokens are not explicitly defined.
In this paper, we propose Locally Aggregated

Feature Attribution (LAFA), a novel gradient-
based approach that leverages sentence-level em-
bedding as a smoothing space for the gradients,
motivated by the observation that the feature attri-
bution is often shared by similar text inputs. For
example, key features in product descriptions on an
online marketplace are often shared by similar prod-
ucts. We implement a neighbor-searching method
to ensure the quality of neighboring sentences.

Furthermore, to evaluate feature attribution meth-
ods in NLP, we consider two situations. For
datasets with golden labels of feature score, we
use the Area Under Curve (AUC) or Pearson corre-
lation as the performance metric. As for datasets
without golden labels, we conduct a similar evalua-
tion task following prior works (Shrikumar et al.,
2017; Lundberg and Lee, 2017) by masking tokens
with high importance scores and find the change in
the predicted log-odds.

In summary, our contributions are threefold:
First, we build a novel context-level smooth gradi-
ent approach for feature attribution in NLP. The key
ingredients of our method are constructing an ap-
propriate aggregation function over the smoothing
space. Second, to the best of our knowledge, this
is the first proposal to conduct numerical studies
on multiple NLP tasks, including Entity Recogni-
tion and Sentiment Analysis, for feature attribution.
Third, our method achieves superior performance
compared with the state-of-the-art feature attribu-
tion methods.

The paper is organized as follows. Section 2
elaborates the current challenges of feature attri-
bution in NLP and recaps the preliminaries about
gradient-based feature attribution approaches. The
proposed feature attribution method is described
in section 3, followed by a review of other exist-
ing approaches in Section 4. The evaluation tasks
and the application results on NLP are presented in
Section 5.

2 Feature Attribution in NLP

Challenge Direct application of gradient-based
methods to NLP problems is not trivia. There are
three main challenges. First, NLP models consist
of non-differentiable discrete input tokens, hence
the gradient hook can only reach out to the embed-
ding space and gradient-based feature attribution
methods are not directly applicable to word tokens.

Second, the reference data in NLP are difficult
to define. It is studied by Sundararajan. et al (Sun-
dararajan et al., 2017) that using the gradient as the
feature attribution may suffer from the problems of
model saturation or thresholding. Model saturation
means the perturbation of some elements in the
input cannot change the output, and the threshold-
ing problem indicates discontinuous gradients can
produce misleading importance scores. Such prob-
lems can be addressed by comparing the difference
between the gradient of input and reference data.
The guiding principle to select reference data is to
ask ourselves that “what am I interested in mea-
suring differences against?” For example, in the
tasks of binary classification on DNA sequence in-
puts, the reference data are chosen as the expected
frequencies of DNA sequence or randomly shuf-
fling the original sequence. However, in NLP tasks,
randomly shuffling texts as reference may not be
grammatically sensible.

Lastly, we note that the evaluation of the lan-
guage model is much more challenging than the
explanations of the images. In the image applica-
tion, the important features of an image obtained
from feature attribution methods can be visually
validated by checking the composition of objects.
However, the detected important features in lan-
guage may require more domain knowledge to val-
idate.

Problem Definition Feature attribution task can
be formally formulated as follows. A deep model
F is provided to be explained, which is fine-tuned
on dataset X . The input sentence is denoted as
X0 = (w1, w2, .., wT)

T where wi represents i-th
word. The goal for feature attribution is to deter-
mine function M(·) by quantifying the importance
score of each word M(x) = (m1,m2, ..,mT)

T ,
where mi denotes the importance score for wi.

Simple Gradient as Feature Attribution As il-
lustrated in the first challenge above, in NLP mod-
els, directly taking derivative on each word is in-
feasible due to the non-differentiable embedding
layer. We can resolve the challenge as follows.

The fist layer of the NLP model usually maps
input discrete tokens to embedding from a pre-
defined dictionary.

h0,i = emb(wi), i = 1, 2, .., T, (1)

where h0,i ∈ Rd represents the word embedding
for wi. This step is non-derivative. But we can

2190

Input sentence of Interest:

Dataset:

Step 1

Localization …

Similar texts:

Step 2

Gradient

…

Step 3

Aggregation

Output

Step 1 Step 2

Deep Model:

Step 3

Figure 1: Upper panel shows the overview of LAFA methods; Lower panel provides a motivating example of
LAFA method. In this motivating example, the input text is a description of computer. The key features of the
computer should include “Brand”, “CPU type” and “RAM size”. The simple gradient method may miss certain
feature, such as “RAM size” in the example, while the gradients on similar texts can provide more contexts. The
proposed method is constructed to aggregate the information from similar texts summarized in Algorithm 1.

obtain the derivative of output with respect to the
word embedding:

S(H0) = ∂F/∂H0 ∈ RT×d, (2)

where H0 = (h0,1, h0,2, .., h0,T)
T ∈ RT×d. Then,

we consider the feature attribution score of a token
M(X) ∈ RT as the sum of squares of the gradients
with regard to each word embedding dimension:

M(X)i =
d∑

j=1

S(H0)
2
i,j , i = 1, 2, .., T. (3)

However, simply using the gradients of one to-
ken as feature attribution would lead to noisy re-
sults (Sundararajan et al., 2017). The next section
describes a novel feature attribution approach that
smoothes the gradients by leveraging similar input
texts.

3 The Proposed Framework: LAFA

The proposed method contains three steps: (1) find
the appropriate neighbors of the input text for gra-
dient smoothing; (2) calculate the gradients of texts
as well as neighbors; (3) aggregation of the gra-
dients. The proposed framework is summarized
in the upper panel of Figure 1. One motivating
example is shown in the lower panel of Figure

1. In this motivating example, the input text is a
description of computer. The key features of the
computer should include “Brand”, “CPU type” and
“RAM size”. The simple gradient method may miss
certain feature, such as “RAM size” in the exam-
ple, while the gradients on similar texts can provide
more contexts. The proposed method is constructed
to aggregate the information from similar texts.

Step I: Context-level Localization Given the
input text X0 ∈ X , where X denotes the input
datasets, the goal is to find similar texts Xsim =
{X1, X2, .., XM} ⊂ X such that the feature attri-
butions of X0 and Xj ∈ Xsim are similar under a
defined similarity metric.

To obtain similar texts Xsim, we first define an
encoder that maps the text with discrete word to-
kens to a continuous embedding vector; then, in
the embedding space, similar texts are found in
the neighbor of X0. To be specific, let Hencoder

denote the mapping from input to one of the hidden
layers in deep model F . Xsim can be obtained by
choosing closest texts in the dataset as follows:

X ∈ X
s.t. ||Hencoder(X)−Hencoder(X0)||2 < ϵ

(4)

where || · ||2 represents L2 norm. ϵ is a threshold
score to guarantee that founded neighbors are simi-

2191

lar to the center text X0 to improve the faithfulness
of aggregation. In our application, a fixed quantile
served as the cut-off rate of L2 distance for all pos-
sible pairs is chosen as the threshold score to filter
the nearest-neighbor result. During inference time,
we apply the hidden layer encoder Hencoder to all
the input datasets and index, then using FAISS 1

(Johnson et al., 2017) offline. FAISS is an efficient,
open-source library for similarity search and clus-
tering on dense vectors, which can be applied to
large-scale vectors.

The output of this step, Xsim can be viewed as
the reference data to smooth the feature attribution
of X0, which addresses the second challenge listed
in Section 2.

Step II: Taking Gradients According to Equa-
tion (3), the gradient of Xi can be denoted
as M(Xi) := (mi,0,mi,1, ..,mi,Ti)

T for i =
0, 1, .., ,M where Ti represent the token length of
Xi. To be noticed that our proposed method can
be easily extended to variants of simple gradient
including smooth gradient or integrated gradient
methods (Smilkov et al., 2017; Sundararajan et al.,
2017) in Step II.

Step III: Aggregation over Multiple Feature
Attribution Our goal is to smooth the gradient
M(X0) by aggregating the gradients of similar text
inputs:

MLAFA(X0) =AGGREGATE(M(X0);

M(X1), ..,M(XM))
(5)

Since the lengths of X0, X1,..,XM may vary, the
lengths of gradients M(X0), M(X1),..,M(XM)
are different as well. Consequently, aggregation by
simply taking the average is infeasible. Following
the intuition that, the tokens with high gradients in
Xsim should be important in X0, we propose the
following aggregation function:

MLAFA(X0) = M(X0) + λ(E(w0,1;Xsim), ..,

E(w0,T ;Xsim))T ,

(6)

where λ is a hyper-parameter for leveraging the
feature attribution from similar inputs. E(w;Xsim)
is a scalar representing the importance of token w
obtained from the neighbor inputs Xsim. Formally,

1https://github.com/facebookresearch/
faiss (MIT license)

it can be defined as

E(w;Xsim) =
1

|Xsim|

|Xsim|∑

i=1

Ti∑

k=1

mi,k × k(h, hi,k)

Ti
,

(7)
where h, hi,k are the word embedding of w and
wi,k as in Equation (1) respectively, and k(·, ·) is a
kernel function (Hofmann et al., 2008) (examples
of kernel function are listed in the Appendix E.).
According to Equation (7), if word w and wi,k have
a high similarity, then inner product between the
embeddings h and hi,k in the kernel space would
be large, which would assign a large weight to
the corresponding importance score mi,k. On the
contrary, dissimilar word wi,k in Xsim has little
effect to the word w in E(w;Xsim). The whole
process is summarized in Algorithm 1.

Algorithm 1 Feature attribution method with
smoothing over similar inputs.

1: Input: Text of interest X0, input datasets X ,
and fine-tuned deep model F .

2: Output: Feature attribution of X0

3: Step I: Localization
4: Construct encoder H which maps from input

space to the space of hidden layer in F .
5: Obtain the similar texts set Xsim =

{X1, X2, .., XM} of X0 according to Equa-
tion (4).

6: Step II: Taking Gradient
7: Calculate the gradient of texts X0, X1, .., XM

according to Equation (3).
8: Step III: Aggregation
9: Smooth the gradient of text of interest over the

gradient of similar texts according to Equation
(6).

10: Output the aggregated gradient MLAFA(X0)
as the feature attribution.

Discussion of Faithfulness One important cri-
teria for model explainability method is “faithful-
ness”, which refers to how accurately it reflects the
true reasoning process of the model (Jacovi and
Goldberg, 2020). In our proposed method, the orig-
inal input X0 is infused with similar texts in the
input dataset X for better interpretation. Since the
deep model F is also trained on X , using similar
texts Xsim ⊂ X to facilitate explanation will not
violate the faithfulness.

In the localization step (Step I), out of the con-
sideration about faithfulness, we do not use popular

2192

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

bi-encoder frameworks, such as S-BERT (Reimers
and Gurevych, 2019) or DenseRetrival (Karpukhin
et al., 2020), to obtain similar neighbors. Because
it will involve an extra black box model when ex-
plaining deep model F .

4 Related Work

In NLP, transformer-based models yield great suc-
cessfulness and some works focus on explaining
the attention mechanism. For example, Serrano and
Smith, 2019 and Jain and Wallace, 2019 inspected
a single attention layer and found out that attention
weights only weakly and inconsistently correspond
to feature importance; Wiegreffe and Pinter, 2019
argued that we cannot separate the attention layer
and should view the entire model as a whole. In
this section, We mainly review the gradient-based
methods for feature attribution.

Feature Attribution on Single Input Simonyan
et al (Simonyan et al., 2013) computed the
“saliency map” denoted as Simple Gradient from
the derivative of the output with respect to the input
in an image classification task. In the NLP appli-
cation, “saliency map” is obtained as the deriva-
tive of the output with respect to the word embed-
ding as in Equation (2). However, “saliency map”
can be visually noisy. Several methods are pro-
posed to improve the gradient method from differ-
ent perspectives. Gradient*Input method (Shriku-
mar et al., 2017) improves the visual sharpness of
the “saliency map” by multiplying gradient with
the input itself. In NLP, we can write it as:

SGrad∗Input(H0) = H0 × S(H0)

MGrad∗Input(X)i =

d∑

j=1

SGrad∗Input(H0)
2
i,j .

Layerwise Relevance Propagation method (Bach
et al., 2015) is shown to be equivalent to the Gra-
dient*Input method up to a scaling factor. Smooth
Gradient method (Smilkov et al., 2017) smoothes
the feature attribution score by adding random
noises to the input and taking average of the gradi-
ents from noisy inputs, formally:

SSmoothGrad(H0) ≈
1

N

N∑

k=1

S(H0 + ϵk),

ϵk ∼ N(0, σ2),

MSmoothGrad(X)i =
d∑

j=1

SSmoothGrad(H0)
2
i,j .

Guided Backpropagation method (Springenberg
et al., 2014) modifies the back-propagation to pre-
serve negative gradients in the ReLU activation
layer which also sharpens the “saliency map” visu-
ally. Other methods, such as Grad-CAM or Guided-
CAM (Selvaraju et al., 2017), are applicable to spe-
cific architecture of neural networks in the field of
computer vision.

Since language models like BERT do not con-
tain specific architecture utilized in Guided Back-
propagation or Grad-CAM method, we ignore the
mathematical formulation here.

Feature Attribution on Input with Reference
Data Integrated Gradient method computes the
feature score by integrating the gradients from sin-
gle pre-determined reference input to the target
input (Sundararajan et al., 2017). In computer vi-
sion problems, black image is usually considered as
the reference data, and integrating gradients from
the black image to the input image represents the
feature attribution of the input image. In NLP prob-
lems, we can define the i-th element of feature
attribution as:

SInteGrad(H0)ij

≈
H0,ij −H ′

ij

N

N∑

k=1

S(H ′ + k
H0 −H ′

N
)ij ,

MInteGrad(X)i =

d∑

j=1

SInteGrad(H0)
2
i,j .

where H ′ denotes the embedding of reference text.
SHAP-Gradient method which combines ideas

from Integrated Gradient and Smooth Gradient into
a single expected value equation (Lundberg and
Lee, 2017) . To be specific, the feature attribution
is defined from:

SShapGrad(H0)

≈ 1

N

N∑

k=1

S(αkH0 + (1− αk)Hk),

MShapGrad(X)i =
d∑

j=1

SShapGrad(H0)
2
i,j .

where αk ∼ U(0, 1) denotes uniform distribution
from zero to one, Hk ∈ Href denotes the embed-
ding of reference text.

DeepLIFT (Shrikumar et al., 2017) assigns the
feature score by comparing the difference of con-
tribution between input and some reference inputs

2193

via gradient. As discussed in (Lundberg and Lee,
2017), DeepLIFT can be considered as an approxi-
mation of Shapley Value estimation. Specifically,
as in the application of SHAP 2, the feature attri-
bution of SHAP-Deep as a variant of DeepLIFT is
defined as:

SShapDeep(H0) ≈
1

N

N∑

k=1

S(Hk)× (H0 −Hk).

MShapDeep(X)i =

d∑

j=1

SShapDeep(H0)
2
i,j .

5 Experiments

In this section, we compare the proposed method
to the state-of-the-art feature attribution methods
under different use cases.

5.1 Case I: Feature Attribution on Relation
Classification Model

Dataset Precison Recall F1
NYT10 94.8 93.3 94.1
Webnlg 93.6 82.5 87.7

Table 1: Fine-tuned result on multi-label relation classi-
fication task.

Motivation Relation Classification is beneficial
to downstream problems, including question an-
swering and knowledge graph (KG) construction
tasks (Wen et al., 2016; Dhingra et al., 2016; Dong
et al., 2020). With the development of deep lan-
guage model, existing relation extraction methods
have achieved significant performance in relation
classification task (Soares et al., 2019; Wei et al.,
2019). We hope to better understand the features
in the text that help deep language model to clas-
sify the relations. In this use case, we fine-tune a
deep language model with relation as labels. With
the fine-tuned model, the feature attribution tech-
nique is applied to identify the entities in the text
as important features.

Data We use the public available datasets NYT10
(Riedel et al., 2010) and Webnlg (Gardent et al.,
2017) for numerical study. Zeng et al., 2018
adapted the original dataset for relation extrac-
tion task. We follow the same setting as in
Zeng et al., 2018, i.e. NYT10 dataset contains

2https://github.com/slundberg/shap (MIT
License)

56,196/5,000/5,000 plain texts in train/val/test set,
24 relation type, averaged 2.01 relational triples in
each text. Webnlg dataset contains 5,019/500/703
plain texts in train/val/test set, 211 relation type,
averaged 2.78 relation triples in each text.

Language Model We fine-tuned BERT-base
models to classify the relations for NYT10 and
Webnlg datasets, respectively. We use the plain
text as input X , and relations as multi-class label
Y in the model fine-tuning. Since multiple rela-
tions may exist in single text, we use the Sigmoid
activation in the output layer. Mean Square Error
(MSE) is used as loss objective and Adam (Kingma
and Ba, 2014) is adopted as the optimizer. The mi-
cro Precision, Recall and F1 results are reported in
Table 1 with 0.5 threshold of output score. From
the result, the F1 scores are high for both NYT10
and Webnlg dataset, hence we can apply feature
attribution methods to the fine-tuned models and
identify the important features in the text which
help to classify the relations.

AUC
Method NYT Webnlg
Rand 0.498 (0.143) 0.501 (0.121)
SimpleGrad 0.949 (0.071) 0.670 (0.135)
InputGrad 0.953 (0.061) 0.713 (0.120)
InteGrad 0.948 (0.077) 0.663 (0.126)
SmoothGrad 0.960 (0.064) 0.664 (0.142)
SHAP + Zero 0.805 (0.213) 0.670 (0.133)
SHAP + Ref. 0.872 (0.169) 0.675 (0.133)
LAFA 0.958 (0.060) 0.724 (0.115)

Table 2: Feature attribution result on Relation Classifi-
cation model (Case I). Top two results are highlighted
in bold.

Evaluation Metric In datasets, NYT10 and
Webnlg, the positions of entities in triples are pro-
vided. Therefore, we can constructed the golden
feature attribution label as follow. For text X =
(w1, w2, .., wT)

T and triple (s, r, o), where subject
s = (wi, .., wj) and object o = (wk, .., ws) are
words shown in the text from positions i to j and
k to s, respectively. The gold labels of feature
attribution for relation r is constructed as

Mgold(X) = (0, .., 0, 1, .., 1, 0, ..., 0, 1, .., 1, ..0)T

where we set 1 from positions i to j as well as k to
s and set 0 on other positions.

We use the evaluation metric Area under Curve
(AUC) to compare the feature attribution M·(X)

2194

https://github.com/slundberg/shap

Pearson Correlation
Method SST-2 SST
Rand 0.039(0.074) 0.040(0.072)
SimpleGrad 0.441(0.083) 0.430(0.081)
InputGrad 0.456(0.080) 0.448(0.078)
InteGrad 0.468(0.071) 0.454(0.072)
SmoothGrad 0.484(0.073) 0.471(0.073)
SHAP + Zero 0.400(0.087) 0.392(0.085)
SHAP + Ref. 0.279(0.093) 0.278(0.091)
LAFA 0.494(0.070) 0.481(0.070)

Table 3: Feature attribution result on Sentiment Analysis
Model (Case II).

and Mgold(X) for the test dataset. AUC ranges
from 0 to 1, higher AUC represents the the fea-
ture attribution result is closer to the gold feature
attribution.

Main Results The results of AUC under differ-
ent methods are summarized in Table 2. The popu-
lar feature attribution methods are listed and com-
pared. More introduction about the competitors
can be found in Section 4. “Rand”, as a baseline
method, denotes that the feature score is randomly
assigned, therefore, the AUC score is about 0.5.
InputGrad method performs better than the Simple-
Grad, showing the effeteness of Taylor approxima-
tion of layer-wise relevance propagation. “SHAP
+ Zero” means zero references are used in SHAP
and “SHAP + Ref.” means Xsim is used as ref-
erences. SHAP-based methods show low AUC
values, because such methods aggregate the gradi-
ents of input and reference by simply taking aver-
age aggregation (see details in Section 4), which
is not meaningful in NLP tasks. From the result,
our method LAFA achieves a superior performance
in Webnlg dataset and comparable performance
in NYT dataset, which indicates that our feature
attribution method can identify entities well.

5.2 Case II: Feature Attribution on Sentiment
Analysis

Motivation The goal of the sentiment classifi-
cation task is to classify a text into a sentiment
categories such as positive or negative sentiment
(Aghajanyan et al., 2021; Raffel et al., 2019; Jiang
et al., 2020). In this use case, we hope to explain
the deep sentiment classification model and obtain
sentiment factors that drive the model to identify
the sentiment.

Data The Stanford Sentiment Treebank (SST)
(Socher et al., 2013) is a sentiment analysis dataset
collected from English movie reviews (Pang and
Lee, 2005). For all 9, 645 sentences in SST, Ama-
zon Mechanical Turk labeled the sentiment for
words/phrases/sentences yielded from the Stanford
Parser (Manning et al., 2014) on a scale between
1 and 25. SST-2 is first introduced by GLUE
(Wang et al., 2018), a famous multi-task bench-
mark and analysis platform for natrual language
understanding, which took a subset from the SST
and applied a two-way split (positive or negative)
on sentence-level labels. Owing to the fact that
the train/validation/test split are aligned between
SST and SST-2, we can run gradient-based meth-
ods on the either one of them. Note that we are only
working with the test split for both data sets, which
contains 2210 and 1821 sentences respectively.

Language Model We use a popular and publicly
available Distill-BERT (Sanh et al., 2019) model
which is fine-tuned on SST-2 3. The accuracy of the
Distill-BERT model on SST and SST-2 is 86.6%
and 92.4% respectively.

Evaluation Metric We extract word-level senti-
ments from the phrase structure tree (PTB) in SST
dataset. We take an absolute value after centraliza-
tion to yield the golden label Mgold(X). Pearson
correlation coefficient, ρ , is the evaluation metric
for feature attribution Mgold(X) and M·(X). The
correlation ρ takes value from the range from −1
to 1, and a higher ρ means better feature attribution
result.

Main Results The main results of the correla-
tion are summarized in Table 3. Popular feature
attribution methods are listed and compared. To
leverage the problem that some words can have op-
posite meaning when their sentiment are different,
we only limited the sentences neighbor for same
category. Based on the preliminary experiment, we
choose the second layer with 10 neighbors and 0.39
cut-off rate, more details about preliminary exper-
iment can be found in Appendix D that using all
layers of DistilBERT as the encoder will improve
the performance.

From the result Table 3, it is interesting to point
out that the DistilBERT model fine-tuned on SST-2
does not perform equally well on the remaining
sentences in SST, so the explanation we yield also

3https://huggingface.co/distilbert-base-uncased-
finetuned-sst-2-english

2195

https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

has lower correlation for all methods compared
with the SST-2. Some example and analysis when
LAFA works and fails in this dataset by showing
neighbor sentences can be found in Appendix B.

We can find out that the InputGrad method
outperform SimpleGrad on SST/SST2 as well.
SmoothGrad method achieves a good result by in-
troducing random noise. From our observation,
Sharpley-Value based methods, “SHAP + Zero”
and “SHAP + Ref.” can identify important features
with a good chance but may include several irrele-
vant tokens leading to higher variance. Our method
LAFA achieves a superior performance in larger
average correlation and smaller variance on both
SST-2 and SST data sets.

5.3 Case III: Feature Attribution on
Regression Model

Motivation Amazon’s online stores contain rich
information about millions of products in product
title, brand and description. We hope to better
understand the trendy features that affecting price
directly from such unstructured raw data, without
the need for human labelers / data cleaning. In
this application, we fine-tuned a deep language
model with price as labels and aim to understand
important factors from product descriptions with
the given language model.

Data We collected the product catalog data of
about one million products in personal computer
category on Amazon’s online store. We concate-
nate product’s title, brand, bullet points and descrip-
tion as the input X , and use product price as the
label Y .

Language Model We use BERT-base model and
fine-tuned on collected catalog data for price re-
gression.

Evaluation Metric To evaluate the performance
of feature attribution methods without golden la-
bels, we follow a similar idea as in work (Shriku-
mar et al., 2017; Lundberg and Lee, 2017) where
the difference of prediction log-odds are measured
by deleting pixels with highest importance scores.
In our application, we first randomly select 200
input texts within a threshold of 1% prediction er-
ror as evaluation set. For each input text, we then
mask p% of the tokens with highest feature attri-
bution scores according to different feature attri-
bution methods. Then we obtain new prediction
result from the masked text denoted as ŷmasked and

calculate the new mean absolute percentage error
(MAPE). Higher value of MAPE means that the
corresponding method excels in picking important
features.

Figure 2: Feature attribution result on Case III. Compar-
isons of MAPE under different mask proportion.

Main Results The results are shown in Figure
2 where x-axis is the mask proportion p, and y-
axis is MAPE. We observe that the random method
has very low MAPE, because randomly masking
the input texts will not affect the predicted result
as much as the other feature attribution methods.
ShapDeep and ShapGrad also have low MAPE
values since simply taking average as aggregation
is meaningless in NLP tasks. Other competing
methods have similar performances on this case
study and non of these performs better than others
in a wide range of mask ratio. The proposed LAFA
method outperforms other methods by significant
margin with masking proportion from 5% to 50%,
which demonstrates that smoothing over context-
level neighbors helps to highlight the important
features in similar type of products.

6 Conclusion

This paper presents a novel locally aggregated fea-
ture attribution method in NLP, which efficiently
captures the important features by leveraging simi-
lar input texts in the embedding space. We focused
on feature attribution of single input based on a
fine-tuned model instead of training a language
model, henceforth the computation time is of less
concern.

One limitation of the LAFA model is that it re-
quires informative neighbor sentences that carry
similar information. Otherwise, aggregating infor-
mation from other sentences could be misleading.
Experiments in our datasets show that our method
is effective, but the improvements gained from the

2196

LAFA varies among different datasets based on the
information that neighbor carries.

There are several future directions worthy of
study. Firstly, labeling feature attribution result in
the NLP requires massive human labor, and few
datasets are available with golden feature attribu-
tion label. Developing new evaluation techniques
to further measure model performance is interest-
ing to investigate. Also, readable feature attribution
results could help human beings to develop more
business applications. For example, developing a
key-value pair like processor-i5 as important fea-
ture can provide a more plausible feature attribution
result to customers.

References
Armen Aghajanyan, Anchit Gupta, Akshat Shrivas-

tava, Xilun Chen, Luke Zettlemoyer, and Sonal
Gupta. 2021. Muppet: Massive multi-task rep-
resentations with pre-finetuning. arXiv preprint
arXiv:2101.11038.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wo-
jciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation. PloS one, 10(7):e0130140.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2016.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. arXiv preprint
arXiv:1609.00777.

Xin Luna Dong, Xiang He, Andrey Kan, Xian Li, Yan
Liang, Jun Ma, Yifan Ethan Xu, Chenwei Zhang,
Tong Zhao, Gabriel Blanco Saldana, et al. 2020. Au-
toknow: Self-driving knowledge collection for prod-
ucts of thousands of types. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2724–2734.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for nlg micro-planning. In 55th annual meet-
ing of the Association for Computational Linguistics
(ACL).

Thomas Hofmann, Bernhard Schölkopf, and Alexan-
der J Smola. 2008. Kernel methods in machine learn-
ing. The annals of statistics, pages 1171–1220.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable nlp systems: How should we
define and evaluate faithfulness? arXiv preprint
arXiv:2004.03685.

Sarthak Jain and Byron C Wallace. 2019. Attention is
not explanation. arXiv preprint arXiv:1902.10186.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2177–2190, Online. Association
for Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Scott Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. arXiv
preprint arXiv:1705.07874.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. arXiv preprint cs/0506075.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–
1144.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 148–163. Springer.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

2197

https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. 2017. Grad-cam: Visual explanations
from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference
on computer vision, pages 618–626.

Sofia Serrano and Noah A Smith. 2019. Is attention
interpretable? arXiv preprint arXiv:1906.03731.

Lloyd S Shapley. 1953. A value for n-person games.
Contributions to the Theory of Games, 2(28):307–
317.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International
Conference on Machine Learning, pages 3145–3153.
PMLR.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2013. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda
Viégas, and Martin Wattenberg. 2017. Smoothgrad:
removing noise by adding noise. arXiv preprint
arXiv:1706.03825.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling,
and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. arXiv
preprint arXiv:1906.03158.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin Riedmiller. 2014. Striving for sim-
plicity: The all convolutional net. arXiv preprint
arXiv:1412.6806.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, and
Yi Chang. 2019. A novel cascade binary tagging
framework for relational triple extraction. arXiv
preprint arXiv:1909.03227.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Mil-
ica Gasic, Lina M Rojas-Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young. 2016. A network-based
end-to-end trainable task-oriented dialogue system.
arXiv preprint arXiv:1604.04562.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not
not explanation. arXiv preprint arXiv:1908.04626.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu,
and Jun Zhao. 2018. Extracting relational facts by
an end-to-end neural model with copy mechanism.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 506–514.

2198

http://arxiv.org/abs/1703.01365

Appendix:

A Model Implementation Detail

All experiments are conducted with eight NVIDIA
Tesla V100 GPUs with 2.5 GHz (base) and 3.1
GHz (sustained all-core turbo) Intel Xeon 8175M
processors.
Case I For LAFA, we adopt the cosine function
as the kernel function and hyper-parameter with
λ = 1 and SimpleGrad is implemented and aggre-
gated by M(x) in Equation (5).
Case II For LAFA, we adopt the Polynomial
function as the kernel function k(·, ·) = I(·, ·) and
hyper-parameter with λ = 0.44 and SmoothGrad
is chosen and aggregated by M(x) in Equation (5).

For gradient-based model with hyper-
parameters, we tuned them on the first 100
sentences in the test set. From the grid [10, 25, 50],
we choose 25 as the integral iteration and the
smooth candidates.
Case III The indicator function as the kernel
function k(·, ·) = I(·, ·) with λ = 1 as hyper-
parameter is adopted for LAFA. Neighbor informa-
tion is aggregated by M(x) in Equation (5) from
the SimpleGrad.

B Example of Neighbor Sentences found
by Case Studies

B.1 Relation Extraction

In Figure 3, we show two examples in NYT and
Webnlg with their neighbors. We can observe that
detected neighbor sentences have a similar mean-
ing, which can be utilized as a reference to help
extract the key features from the original sentence.

Center Input:

Neighbor 1:

Neighbor 2:

Neighbor 3:

Center Input:

Neighbor 1:

Neighbor 2:

Neighbor 3:

Example of Neighbors for NYT Dataset :

Example of Neighbors in Webnlg Dataset :

Figure 3: Example of neighbors for NYT and Webnlg.
The head and tail entities are highlighted with red color.

B.2 Sentiment Analysis

In SST-2, finding informative neighbors for every
sentence is difficult because top sentences may not
contain similar tokens, thus does not help. For this
reason, we used a cut-off value for this data set
to filter out non-informative sentences. In figure
4 we can find two examples from SST, one with
“informative” good neighbors but another without
them. Here for the word “informative” we use a
quote because we are judging them based on our
human understanding.

Figure 4: Example of neighbors for the SST data set.
Sentiment factors found by SimpleGrad are highlighted
with red color.

C Examples of Different Feature
Attribution Methods under Multiple
Cases

Here we provide an example in Cases I and II. In
Figure 5, LAFA identified locations and “lived” as
the important factors for relation extraction, and the
importance of the “Atlantic City” and “Bader Field”
is stronger than the backbone SimGrad because of
aggregation.

D Experiment on Different Layer as
Neighbor Encoder

Denote the size of Xsim as M , the choice of which
can be a critical and challenging task. Intuitively,
an overly small M would lead to under-smoothing
because the target text cannot incorporate enough
information from the neighbors. On the contrary,
an overly large M would cause over-smoothing by
introducing too much noise.

2199

Random

SimpleGrad

InputGrad

InteGrad

SmoothGrad

Gold

Shap

Shap-Deeplift

LAFA

Figure 5: Examples of Case Study I. Important factors
are highlighted with red color.

SimpleGrad

Grad*Input

SmoothGrad

InteGrad

ShapGrad

ShapDeep

LAFA

Figure 6: Examples of Case Study III. Important fea-
tures are highlighted with red color.

To clarify the neighbor searching process and
the difference in the result using different layers,
we show some experiments below.

Admittedly, we can directly use the WordPiece
embedding as the encoder, which is the input of
BERT-based models and enable us to find neigh-
bors in the sense of “Word Similarity”. However,
since the same word can have different meanings in
different sentences, and thus different importance
in yielded gradients, we might need to use another
layer in the BERT model as the encoder to incorpo-
rate contextual information.

We separate the layer search process into two
cases depending on the availability of a set of la-
bels that categorizes similar contents into the same
group. Generally speaking, both cases recommend
the middle layer as the encoder based on our expe-
rience.

D.1 When extra labels are not available
In the case of SST data, we do not have anything to
group similar sentences, so we need to try for differ-

(hidden layer 5 is chosen)

Figure 7: Precision Result in Case Study III

ent possible layers and find the one that performs
the best.

Here we fixed the max number of neighbors as
10 and uses 0.05 quantile of sampled similarities
as the cut-off rate to filter those neighbors that are
not “actually close”. We use the SimpleGrad and
the SmoothGrad as the baseline for comparison on
the first 100 sentences in the test set.

From table A1 we can find out that LAFA is a
generally good method that always beats the base-
line when we use the smooth gradient as the base-
ment method. Layer 2 performs the best among
candidates. The combination of SmoothGrad and
Layer w is the final choice and we showed the re-
sults on entire SST in the main result part. From
here we can find out that for all seven layers, in-
formation from faithful neighbors can bring some
useful information to an existing sentence.

Method SST_first100 Method SST_first100
SimpleGrad 0.457(0.074) SmoothGrad 0.481(0.064)
SpG + LAFA + L1 0.457(0.073) SmG + LAFA + L1 0.488(0.063)
SpG + LAFA + L2 0.458(0.072) SmG + LAFA + L2 0.490(0.063)
SpG + LAFA + L3 0.456(0.072) SmG + LAFA + L3 0.489(0.065)
SpG + LAFA + L4 0.456(0.072) SmG + LAFA + L4 0.478(0.064)
SpG + LAFA + L5 0.454(0.072) SmG + LAFA + L5 0.479(0.063)
SpG + LAFA + L6 0.454(0.073) SmG + LAFA + L6 0.483(0.065)
SpG + LAFA + L7 0.456(0.074) SmG + LAFA + L7 0.481(0.059)

Table A1: Feature Attribution Result on first 100 test
cases in SST, using simple and smooth gradient as base-
lines

D.2 When we have extra label
The performance of encoders can be evaluated by
the similarity between text X0 and similar texts
Xsim obtained from Equation (4). In this applica-
tion, we use the product category or subcategory
which is an additional source of labels produced by
Amazon to construct a proxy metric to evaluate the

2200

Figure 8: Comparisons for different kernel functions in Case III.

similarity. Define the metric of precision as:

Precision =
1

M

M∑

j=1

I(c(Xj) = c(X0)), (8)

where c(·) denotes the category or subcategory
of the corresponding product, I(·) is the indica-
tor function. A high precision represents that the
text found Xsim are similar to the text of interest
X0.

In the numerical study, we randomly sample
10, 000 inputs texts and obtain their correspond-
ing neighbor texts from Equation (4) with M = 10
using each of the 12 hidden layers in BERT as
the encoder Hencoder under L2 norm. Figure 7
shows the precision result from different encoders,
where we observe that the fifth hidden layer has
the highest precision in terms of both category and
subcategory, which is consistent with the intuition
that the middle layer is a trade-off of token-alike
and output-alike inputs. In the following experi-
ment, we adopt the fifth layer as the encoder. In
general, when no external labels are provided, we
may choose a different encoder depending on the
use case.

E Ablation Study on Kernel Function

In Case III, we conduct an ablation study with dif-
ferent choices of kernel functions using different
mask ratio to find out if different kernel yields dif-
ferent learning speed:

1. Radial basis function kernel (RBF) :

kRBF (a, b) = exp(−||a− b||2/l2),

where larger hyper-parameter l indicates
lower impact from neighbors and vice versa.
In the numerical study, we choose l = 2 based
on the range of embedding a and b.

2. Cubic kernel (Cubic):

kCubic(a, b) = (γaT b+ c0)
d,

where γ = 7, c0 = 0 and d = 3, smaller γ
means lower impact from neighbors.

3. Cosine kernel (Cosine):

kCos(a, b) = aT b/||a|||b|||

This kernel function havee no parameter.

4. Laplacian kernel (Laplacian):

kLaplacian(a, b) = exp(−||a− b||1/l2),

in the numerical study, we choose l = 2.

5. L2 norm based similarity (L2):

kL2(a, b) = 1/clip(||a− b||2, λleft, λright),

where clip(·, λleft, λright) denotes clip func-
tion with λleft = 0.3 and λright = 3 as clip
boundary in numerical study.

6. Indicator function based similarity (Indica-
tor):

kIndicator(a, b) = I(a, b),

where I(·, ·) denotes indicator function.

The results are shown in Figure 8. We observe
that no single kernel function outperforms all other
kernel functions under all mask ratios in this study.
Indicator function shows a good performance when
the masked ratio is greater than 10%, while RBF
kernel shows a good performance when the masked
ratio is smaller than 5%. This can due to the reason
that the indicator function only aggregates identical
words and this conservative manner helps when we
lost most important words.

2201

