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Abstract

As a fundamental task in natural language pro-
cessing, named entity recognition (NER) aims
to locate and classify named entities in unstruc-
tured text. However, named entities are always
the minority among all tokens in the text. This
data imbalance problem presents a challenge to
machine learning models as their learning ob-
jective is usually dominated by the majority of
non-entity tokens. To alleviate data imbalance,
we propose a set of sentence-level resampling
methods where the importance of each train-
ing sentence is computed based on its tokens
and entities. We study the generalizability of
these resampling methods on a wide variety
of NER models (CRF, Bi-LSTM, and BERT)
across corpora from diverse domains (general,
social, and medical texts). Extensive experi-
ments show that the proposed methods improve
performance of the evaluated NER models es-
pecially on small corpora, frequently outper-
forming sub-sentence-level resampling, data
augmentation, and special loss functions such
as focal and Dice loss.1

1 Introduction

In natural language processing, named entity recog-
nition (NER) is an important task both on its own
and for numerous downstream tasks such as entity
linking and question answering. NER has an in-
herent data imbalance problem: named entities of
interest are almost always the minority among ir-
relevant (Other type) tokens in a text corpus. Table
1 shows the prevalent imbalanced nature of NER
corpora from multiple domains. As shown in Table
1, entity tokens (tokens associated with any named
entity) account for 3.9-16.6% of all tokens in any
of these corpora. Within entity tokens, the most
frequent entity type may cover 2-200 times more
tokens than the least frequent entity type. At the
sentence level, 23-85% sentences contain at least

1The source code is available at https://github.
com/XiaoChen-W/NER_Adaptive_Resampling.

one entity, suggesting that 15-77% sentences con-
tain no entity at all.

Data imbalance is even more severe in real-world
bespoke NER tasks, which directly motivated this
work. For example, given full-text articles from
a medical subfield, domain experts may wish to
recognize only those concepts related to specific as-
pects of the subfield (e.g., symptoms and medicine
related to a specific disease). Compared to all to-
kens in the full text, extremely few tokens are anno-
tated with any entity type. Because domain experts
have limited availability, annotated corpus are usu-
ally small in such tasks. As a result, some rare
entity types may have less than 10 tokens across
the corpus. Such severe data imbalance and scarcity
makes many NER models suffer.

Data imbalance in NER challenges machine
learning-based models because their learning ob-
jective is dominated by entities of the majority type
(Other), causing the model to be reluctant to predict
the types of interest. Various techniques have been
studied to tackle this challenge. Active learning
was applied to collect a more balanced dataset at
annotation time (Tomanek and Hahn, 2009). Spe-
cial loss functions including focal loss (Lin et al.,
2017) and Dice loss (Li et al., 2019) are proposed to
deal with data imbalance. Data augmentation was
shown to be effective by enriching entity-bearing
sentences through methods like segment shuffling
and mention replacement (Dai and Adel, 2020; Is-
sifu and Ganiz, 2021; Wang and Henao, 2021).

The classical method for alleviating data imbal-
ance is resampling (upsampling the minority class
or downsampling the majority class) and its close
relative, cost-sensitive learning (assigning larger
weight to the minority class or smaller weight to
the majority class in the learning objective) (He
and Garcia, 2009). A natural question is: Can we
apply resampling to address the data imbalance
problem in NER? It turns out that unlike classi-
fication tasks, applying resampling to sequence
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Domain NER Corpus
# of

Tokens

# of
Entity
Types

% of Least vs.
Most Freq. Type

Entity Tokens

% of All
Entity
Tokens

# of
Sent.

% of Sent.
w/ Entities

Social WNUT 59,570 6 0.43 vs. 1.59 5.03 3,394 36.18
General GMB subset 66,161 8 0.03 vs. 4.00 15.03 2,999 85.40
Medical AnEM 71,697 11 0.03 vs. 1.08 3.91 2,815 35.38
Medical CADEC 121,307 5 0.21 vs. 6.65 15.76 5,719 58.86
General CoNLL 204,567 4 2.26 vs. 5.46 16.64 14,986 74.28
Medical n2c2 ADE 813,277 9 0.19 vs. 2.34 10.89 65,293 22.73
General OntoNotes 2,200,865 18 0.01 vs. 2.59 10.89 115,812 50.11

Table 1: Imbalance ratio statistics in NER corpora from different domains. Corpora references: WNUT (Derczynski
et al., 2017); GMB subset (Bos et al., 2017); AnEM (Ohta et al., 2012); CADEC (Karimi et al., 2015); CoNLL
(Sang and De Meulder, 2003); n2c2 ADE (Henry et al., 2020); OntoNotes (Ralph et al., 2013). ‘Sent.’ = Sentences;
‘Freq.’ = Frequent.

tagging tasks like NER is not straightforward. Re-
cent work attempted sub-sentence-level resampling
– dropping tokens from the majority class either
at random (Akkasi, 2018) or using heuristic rules
(Akkasi et al., 2018; Akkasi and Varoglu, 2019;
Grancharova et al., 2020). These methods were
shown to perform well with shallow NER mod-
els – conditional random fields with local n-gram
and word shape features. However, sub-sentence-
level resampling inevitably destroy the structure of
complete sentences and distort the contextual infor-
mation around entities of interest. Complete sen-
tences are essential for state-of-the-art NER mod-
els based on contextual word representations, e.g.,
deep Transformers (Devlin et al., 2018). As shown
in our experiments, incomplete sentences gener-
ated by sub-sentence-level resampling often hurt
the performance of deep NER models.

In this paper, we propose sentence-level resam-
pling methods for NER, an underexplored problem
in this area. As sentences are the natural units
of data in NER, sentence-level resampling leaves
the contextual information intact in a natural sen-
tence needed by deep models like Transformers.
Since a sentence may contain a mixture of entities
whose types have different levels of rareness, tradi-
tional resampling method for imbalanced classifi-
cation (e.g., inverse probability resampling) cannot
be applied. Instead, we develop a set of methods
for computing integer-valued importance score for
a sentence based on its entity composition, and
resample the sentence accordingly. Experiments
show that our methods can improve performance of
a variety of NER models and are especially effec-
tive on tasks with small annotated corpora, which

is often seen in real-world bespoke NER tasks.

2 Related Work

2.1 Learning from Imbalanced Data
Class imbalance is a long-standing problem in
machine learning tasks, posing challenges to re-
searchers and practitioners in many domains (King
and Zeng, 2001; Lu and Jain, 2003; He and Garcia,
2009; Moreo et al., 2016). Classes in real-world
data often have highly skewed distribution, leading
to substantial gaps between majority and minority
classes. While the positive (minority) class is often
of interest, the lack of positive examples makes
classifiers conservative, i.e., they incline to predict
all example as the negative (majority) class. This
often results in a low recall of the positive class.
Because only a small number of examples are pre-
dicted as positive, precision of the positive class
tends to be high or unstable. Such a low-recall,
high-precision pattern often hurts the F1-score, the
standard metric that emphasizes a balanced preci-
sion and recall (Juba and Le, 2019). This perfor-
mance pattern is observed not only in classification
tasks, but also in NER tasks where named entity
tokens are the minority compared to non-entity to-
kens (Mao et al., 2007; Kuperus et al., 2013).

Researchers have proposed various techniques
for imbalanced learning, including resampling and
cost-sensitive learning (He and Garcia, 2009). Both
aim to re-balance the representation of different
classes in the loss function, such that the classifier
is less conservative in making positive predictions.
In principle, by equating per-instance resampling
frequency with per-instance cost, resampling can
be implemented as cost-sensitive learning. How-
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ever, resampling can be applied to models that do
not support cost-sensitive learning, making it con-
veniently applicable to all models.

2.2 Resampling in Sequence Tagging Tasks
Resampling (and cost-sensitive learning) can be
conveniently used in classification and regression
tasks where a model makes pointwise predictions
(a single categorical or scalar value). Each exam-
ple has a clearly defined sampling rate (or cost)
according to its class label. However, in sequence
tagging tasks like NER (more broadly, structured
prediction tasks (BakIr et al., 2007; Smith, 2011)),
a model predicts multiple values for a sequence
(or structured output). For sequence learning al-
gorithms such as linear-chain conditional random
fields, while the learning objective is formulated
at the sequence level, the evaluation metrics are
defined at the entity span level. This makes it non-
trivial to determine the sampling rate (or cost) for
a sequence that contains tokens from both majority
and minority entity types. Simply resampling enti-
ties by stripping surrounding context is problematic
as sequence tagging algorithms depend on context
to make predictions. Recent works proposed to ran-
domly or heuristically drop tokens from sentences
to re-balance NER data, which had success using
conditional random fields and shallow n-gram fea-
tures (Akkasi, 2018; Akkasi and Varoglu, 2019;
Grancharova et al., 2020). However, these methods
distort the syntactic and semantic structure of com-
plete sentences, which may generate low-quality
data for models that are capable of capturing long-
distance linguistic dependencies (e.g. BERT) and
hurt performance of those models. In this work, we
focus on resampling strategies that leaves sentences
intact.

2.3 Loss Functions for Imbalanced Data
Recent literature proposed special loss functions
for tackling data imbalance, including focal loss
(Lin et al., 2017) and Dice loss (Li et al., 2019).
They increase the cost of ‘hard positives’ where
the correct label has low predicted probability and
decrease the cost of ‘easy negatives’ where the cor-
rect label has high predicted probability. However,
these loss functions do not fully address data im-
balance in NER. First, the formulation does not
always emphasize the loss of minority-class tokens
– majority-class tokens can also be hard to classify,
and minority-class tokens can also be easy to clas-
sify. Second, these loss functions only work on

token-wise prediction outputs. They cannot work
on sequence-level outputs generated by conditional
random fields, which is commonly used in NER.
Our resampling methods can be seen as estimat-
ing sentence-level losses with explicit emphasis on
sentences containing minority-class tokens.

3 Resampling Strategy Design

For a sequence tagging task like NER, resampling
cannot be as simple as what it is in classification
and regression tasks, in which data points can be
individually replicated, discarded, or synthesized.
In NER, named entities cannot be resampled out
of context. The surrounding context of named enti-
ties – albeit tokens from the irrelevant Other type –
should be considered as well. Resampling named
entities with context is a double-edged sword: pre-
serving context will help NER models, but too
much context increases the amount of non-entity
tokens and aggravates the data imbalance problem.
The goal of sentence-level resampling is to find the
balance between too little and too much context ac-
companying named entities in complete sentences.

3.1 Sentence Importance Factors in NER

Intuitively, sentences that are worth resampling are
those that are more important towards constructing
a balanced NER dataset. We start by proposing
factors that influence the importance of a sentence
in resampling. These factors share the theoretical
foundation of retrieval functions in information
retrieval (Fang et al., 2004). A retrieval function
evaluates the utility of a document with respect
to the query terms it contains. By direct analogy,
sentence importance score measures the utility of a
sentence with respect to the entities it contains.

Count of entity tokens. Regardless of entity
types, a sentence containing more entity tokens
is more important than a sentence filled with non-
entity tokens. This factor mirrors term frequency
in retrieval functions (Salton and Buckley, 1988).

Rareness of entity type. The general idea of re-
sampling for minority classes says that the rarer an
entity type is, the more times we should resample
sentences containing this type of entity. This fac-
tor mirrors inverse document frequency in retrieval
functions (Salton and Buckley, 1988).

Density of tokens labeled as any entity. Includ-
ing too much context can aggravate the imbalance
problem. While the absolute count of entity tokens
matters, the density of entity tokens in a sentence
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(number of entity tokens compared to the length of
a sentence) should also be concerned. The higher
the density, the more important a sentence. This
factor mirrors document length normalization in
retrieval functions (Singhal et al., 1996).

Diminishing marginal utility. If one sentence
contains twice as many tokens with a specific en-
tity type as the other sentence with the same length,
does that mean the first sentence is twice as impor-
tant as the second? In reality, an entity may contain
numerous tokens, or a sentence may include multi-
ple entities of the same type. Twice as many tokens
from the same entity type may not offer twice as
much information (for the same reason why too
many tokens from the Other type is not helpful).
Therefore, as the number of tokens from the same
entity type increases, they generate diminishing
marginal utility to a sentence. This factor mirrors
diminishing marginal gain of repeated query terms
in retrieval functions (Fang et al., 2004).

3.2 Resampling Functions
Based on the above importance factors, we design
a suite of functions fs ∈ Z+ to determine the num-
ber of times a sentence s should be resampled in
a NER training set. These functions incorporate
progressively more factors discussed previously.

In a given corpus, let us denote the set of all
entity types except for the majority type Other as
T . Let c(t, s) be the count of tokens with entity
type t ∈ T in sentence s. We define the resampling
function with respect to the smoothed count (sC)
of all entity tokens as

f sC
s = 1 +

∑

t∈T
c(t, s) . (1)

Here,
∑

t∈T c(t, s) is the total number of entity
tokens in sentence s. ‘+1’ is to avoid removing
entity-less sentences from the training set, in remi-
niscence of add-one smoothing in empirical proba-
bility estimates. It guarantees that all training sen-
tences are resampled as least once. This smoothing-
like process maintains consistency between train-
ing and test sets. If the training set contains entity-
less sentences, it is highly likely that the test set
will contain entity-less sentences as well.

The next function incorporates entity rareness
factor. The rareness rt of an entity type t ∈ T is
measured as the self-information of the event that
any token carries this type:

rt = − log2

∑
s∈S c(t, s)

N
,

where S is the set of all sentences in the training
set, and therefore

∑
s∈S c(t, s) is the total number

of tokens with entity type t. N is number of all
tokens (including Other tokens) in the training set.
By introducing the rareness of an entity type we
propose another function called the smoothed re-
sampling incorporating count and rareness (sCR):

f sCR
s = 1 +




√∑

t∈T
rt · c(t, s)




. (2)

Ceiling function ⌈·⌉ ensures f sCR
s ∈ Z+. Square

root is to slow down the increase of f sCR
s when an

entity type t is extremely rare (when rt is large).
According to the density factor in the previous

section, the length of sentence s plays a role in
determining the density of entity tokens within a
sentence. Let ls be the length of sentence s mea-
sured in number of tokens. We define the following
function called the smoothed resampling incorpo-
rating count, rareness, and density (sCRD):

f sCRD
s = 1 +

⌈∑
t∈T rt · c(t, s)√

ls

⌉
. (3)

We use
√
ls instead of ls to slow down the decrease

of f sCRD
s when a sentence is too long.

Lastly, we incorporate the diminishing marginal
utility factor and propose a function called the nor-
malized and smoothed resampling incorporating
count, rareness, and density (nsCRD):

fnsCRD
s = 1 +

⌈∑
t∈T rt ·

√
c(t, s)√

ls

⌉
. (4)

Here,
√
c(t, s) applies a sublinear increasing

function on c(t, s) to implement the diminishing
marginal utility when a sentence contains many
tokens with the same type.

In summary, we proposed four functions for
determining resampling frequencies for each sen-
tence, representing four resampling methods.

4 Experimental Evaluation

Resampling should be a domain- and model-
agnostic strategy in tackling data imbalance. There-
fore, the goal of our experiments is to evaluate if
the proposed resampling methods are effective in
an extensive array of NER corpora and base models.
Towards this goal, we apply the four resampling
methods (together with baseline methods) on three
representative NER models (each has two variants),
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and evaluate the resulting models on four corpora
from diverse domains.

4.1 Evaluation Metric
We use span-level strict-match macro-averaged F1
score as our main evaluation metric. Other is not
viewed as an entity type. Macro-averaged metrics
emphasize a balanced treatment of all entity types,
which align with our main goal. See Appendix C
for micro-averaged and per-entity-type results.

4.2 Compared Methods
We compare the following baseline methods for
dealing with data imbalance in NER.

Original corpus: training data untreated.
Balanced undersampling: We implement the

algorithm proposed in (Akkasi et al., 2018) as a
representative of sub-sentence-level resampling.

Data augmentation: The data augmentation
techniques that includes all transformations as pro-
posed in (Dai and Adel, 2020).

Focal loss(Lin et al., 2017), Dice loss (Li et al.,
2019): We apply these loss functions on token-
wise predictions made by a softmax output layer.
Note that they are not applicable to sequence-level
predictions made by a CRF output layer.

sC, sCR, sCRD, nsCRD: the four resampling
methods proposed in this work.

4.3 NER Corpora
We select four corpora from different domains. The
first three are of small scale, representing bespoke
NER tasks in practice where entity types are task-
specific and annotation efforts are limited.

AnEM (Ohta et al., 2012): The Anatomical En-
tity Mention (AnEM) corpus consists of 500 doc-
uments selected randomly from citation abstracts
and full-text papers concerning both health and
pathological anatomy. With only 3.91% entity to-
kens and 35.38% sentences having any entity, this
is a very imbalanced corpus in Table 1.

WNUT (Derczynski et al., 2017): This is a so-
cial domain corpus released in the 2017 Workshop
on Noisy User-generated Text (W-NUT). It con-
tains noisy user-generated texts found in social me-
dia, online review, crowdsourcing, web forums,
clinical records, and language learner essays. This
is another very imbalanced corpus in Table 1.

GMB subset (Bos et al., 2017; Kaggle, 2018):
The Groningen Meaning Bank (GMB) corpus con-
sists of public domain English texts with corre-
sponding syntactic and semantic representations.

The GMB subset is extracted from the larger GMB
2.0.0 corpus which is built specially for NER.

To test the generalizability of our methods, we
also include a standard NER benchmark dataset.

CoNLL (Sang and De Meulder, 2003): The
CoNLL-2003 English news NER corpus.

For AnEM, WNUT, and CoNLL, we use their
pre-existing training/test split. For GMB subset,
we use 3:1 training/test split.

4.4 Base NER Models and Variants
To comprehensively evaluate the combinations
of our upstream resampling strategies with many
downstream sequence tagging models, we select
the following models:

Shallow Model. We construct shallow NER
models that use pretrained word embeddings as
per-word feature vectors. We consider two variants:
one using a softmax output layer making token-
wise predictions; the other using a CRF (condi-
tional random fields) output layer making sequence-
level predictions. Considering domains of the cor-
pora, we select embeddings trained on biomedical
literature (Huang et al., 2016), tweets (Glove-27B-
twitter-27B),2 and Wikipedia+news (Glove-6B),3

for AnEM, WNUT, and datasets from general do-
main (GMB subset and CoNLL), respectively. All
are 50-dimensional embeddings. CrfSuite4 is ap-
plied with default hyperparameters.

Bi-LSTM (Bidirectional Long Short-Term
Memory). LSTM is a special recurrent neural net-
work architecture in which the vanishing gradient
problem can be effectively mitigated. Bi-LSTM
consists of two LSTMs taking inputs in both for-
ward and backward directions. Even though more
recent models (e.g., GPT-2, BERT) are shown to
outperform Bi-LSTM, it is still regarded as one
of the most prevalent tools for solving sequence
tagging problems. We implement two variants of
Bi-LSTM: one with a softmax output layer mak-
ing token-wise predictions; the other with a CRF
decoding layer5, to ensure the local consistency of
output tags. Different from the default hyperparam-
eters, batch size and number of epochs are set to
32 and 20, respectively. Embeddings are used in
the same way as in the shallow models above.

BERT (Bidirectional Encoder Representa-
tions from Transformers). BERT is widely re-

2http://nlp.stanford.edu/data/glove.twitter.27B.zip
3http://nlp.stanford.edu/data/glove.6B.zip
4https://github.com/scrapinghub/python-crfsuite
5https://github.com/guillaumegenthial/sequence_tagging

2155



Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 27.36 52.39 41.76 45.21 58.60 57.68
Balanced undersampling 24.17 52.06 21.22 26.19 62.59 63.03
Data augmentation 22.78 53.20 40.73 41.05 61.34 63.38
Focal loss 27.65 40.73 58.39
Dice loss 25.87 2.31 47.36

sC 30.39 52.13 44.69 47.55 62.86 65.47
sCR 30.94 53.38 48.37 48.90 65.22 62.41
sCRD 29.98 50.67 45.69 44.31 61.70 60.50
nsCRD 30.57 53.41 39.54 46.10 64.63 62.59

Table 2: Macro F1 scores on AnEM. The three NER models using either softmax or CRF output layer are reported.
‘ ’ means that focal loss and Dice loss do not apply to CRF outputs. In each column, the highest F1-score is shown
in boldface and the second highest is shown in underline.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 14.56 4.31 18.27 18.46 37.67 39.98
Balanced undersampling 16.94 4.45 15.81 16.68 33.73 30.86
Data augmentation 11.05 4.49 20.10 10.06 35.03 36.08
Focal loss 14.25 17.73 39.20
Dice loss 15.74 15.26 31.62

sC 16.20 4.58 16.90 19.21 37.16 49.44
sCR 15.94 4.39 21.52 21.40 44.60 45.06
sCRD 15.95 4.94 17.15 19.80 43.82 42.34
nsCRD 16.06 4.62 18.31 23.71 41.65 41.71

Table 3: Macro-averaged F1-scores on the WNUT corpus. See the caption of Table 2 above for details.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 28.71 41.42 45.73 44.91 50.20 54.32
Balanced undersampling 29.56 40.52 41.73 42.70 57.01 56.89
Data augmentation 27.53 41.24 47.63 49.76 54.78 55.25
Focal loss 28.47 41.25 53.66
Dice loss 33.42 40.16 52.10

sC 29.17 41.34 44.52 48.39 54.52 54.58
sCR 29.85 40.39 45.85 46.91 52.96 54.33
sCRD 30.99 41.54 44.60 48.07 52.72 55.12
nsCRD 29.37 41.76 46.16 45.69 55.14 54.60

Table 4: Macro-averaged F1-scores on the GMB subset corpus. See the caption of Table 2 above for details.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 42.66 67.71 75.78 78.63 88.20 88.45
Balanced undersampling 42.55 66.77 66.36 76.54 86.91 86.75
Data augmentation 42.73 67.06 77.70 77.31 87.98 88.37
Focal loss 43.47 77.24 88.44
Dice loss 48.58 72.80 88.82

sC 42.20 66.84 76.82 75.03 88.94 88.81
sCR 42.22 66.63 77.72 74.13 88.36 89.11
sCRD 42.98 66.97 78.06 77.63 88.30 88.61
nsCRD 41.98 67.04 78.80 78.87 87.58 88.03

Table 5: Macro-averaged F1-scores on the CoNLL corpus. See the caption of Table 2 above for details.
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garded as the most significant improvement in nat-
ural language processing. Its outstanding capabil-
ity of learning contextualized word representations
makes it the representative of advanced NER model
in this work. Again, we implement two variants
of BERT: one with a softmax output layer making
token-wise predictions; the other with a CRF de-
coding layer6. Default hyperparameters are used.
More implementation details are in Appendix A.

4.5 Results and Discussion

Macro-averaged F1-scores of different methods ap-
plied to four corpora and three base NER models
are reported in Tables 2-5.

Our goal is not to compete with state-of-the-
art methods on these corpora. Instead, we aim to
present an interesting and underexplored problem
(sentence-level resampling for NER) and a set of
simple yet promising methods. In principle, our
proposed resampling methods are model-agnostic
and can provide an additional performance boost
for a variety of NER models. We observe the fol-
lowing trends in Tables 2-5.

Overall performance of our resampling meth-
ods: Across Tables 2-5, our methods (sC, sCR,
sCRD, nsCRD) generally performed well, achiev-
ing the highest or second highest F1-scores in al-
most every column (except for the condition ‘Shal-
low model, Softmax’ on CoNLL). Although no
specific method consistently outperforms others
in every condition, it is clear that sentence-level
resampling is overall a promising approach to tack-
ling the data imbalance problem in NER. The best
resampling method depends on the specific base
model, output layer, and corpus used. Just as the
best hyperparameter values have to be empirically
determined, so could be the most suitable resam-
pling method. Fortunately, all our resampling meth-
ods are simple and straightforward, which allows
for convenient experimentation.

Shallow vs. deep models: We observe a clear
trend that shallow models using word embedding as
features and softmax/CRF as the output layer under-
perform deep models such as Bi-LSTM and BERT.
We view this as a sanity check. Bi-LSTMs and
BERT can learn word representations that account
for long-distance dependencies, and BERT should
be even more powerful with contextual word repre-
sentations pretrained on massive texts.

Softmax vs. CRF output layer: Using the

6https://github.com/kyzhouhzau/BERT-NER

same base model, CRF output layer often (but not
always) outperforms softmax output layer. The
performance gap is larger on shallow models and
small corpora (AnEM, WNUT, GMB) than on deep
models and large corpus (CoNLL). Indeed, Bi-
LSTM and BERT are capable of learning word
representations that account for long-distance word
dependencies, reducing the benefit of tag dependen-
cies offered by a CRF layer. Similar observation
was made by previous work (Devlin et al., 2018).
An exception is the combination (WNUT, Shallow
model), where the CRF layer suffered from severe
overfitting caused by noisy text and extremely im-
balanced data distribution in WNUT corpus.

Small vs. large corpus: On small corpora
(AnEM, WNUT, GMB subset), our resampling
methods usually outperform the original corpus
baseline by a big margin. These benefits become
less salient on large corpus (CoNLL). This implies
that our methods are especially effective when the
corpus is small and annotations are few. As corpus
size gets large, even rare entity types are covered by
many examples and therefore sufficiently trained.

Sub-sentence resampling and data augmen-
tation: Sub-sentence resampling (balanced under-
sampling) has large variance in its performance. In
some cases it gives the highest gain (GMB subset,
BERT model), and in other cases it performs worse
than just using the original corpus (all corpora,
Bi-LSTM models). It suggests that sub-sentence
resampling is highly sensitive to the corpus and
model choice. Data augmentation also shows high
variance in its performance. It gives the highest
gain on (GMB subset, Bi-LSTM model), and per-
forms worse than the original corpus on (WNUT,
BERT model). Sentences generated by data aug-
mentation generally have correct syntax but garbled
semantics (e.g., one entity is replaced by another
same-type, out-of-context entity). The nonsensical
sentences may confuse NER models. In contrast,
whole-sentence resampling methods give more sta-
ble improvements over the original corpus baseline
largely because they preserve the naturalness of
resampled sentences.

Focal loss and Dice loss: These loss functions
are applicable only on pointwise predictions made
by the softmax output layer. A major trend is that
their performance tend to be unreliable across sce-
narios. We attribute this behavior to the difficulty
in optimizing these losses. For shallow models,
we optimize them by feeding gradients of either
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loss function (see Appendix B for their derivation)
into a L-BFGS optimizer (Liu and Nocedal, 1989)
in Scikit-Learn. As shown in the (Shallow model,
Softmax) column of GMB subset and CoNLL cor-
pora, the two loss functions (especially the Dice
loss) performed well. For deep models (Bi-LSTM
and BERT), we rely on TensorFlow’s automatic dif-
ferentiation and Adam gradient descent optimizer
(Kingma and Ba, 2014) because manually deriving
gradients for deep models is infeasible. The two
loss functions sometimes give poor performance.
The Bi-LSTM model with Dice loss failed com-
pletely on AnEM (F1-score: 2.31). A possible
explanation is that Dice loss is non-convex and it
may be difficult for first-order optimizers in current
deep learning toolkits (e.g. Adam in TensorFlow)
to find high-quality local minima than second-order
methods like L-BFGS.

Precision and recall: To illustrate performance
changes in terms of precision and recall, Figure
1 visualizes the changes before and after resam-
pling as displacement vectors in precision-recall
plots with F1-score contour lines. Some arrows are
pointing to the upper right corner of the plots, indi-
cating the associated methods improve F1-score by
improving both precision and recall. Other arrows
point to the upper left, indicating the associated
methods increase recall at the sacrifice of precision.
In this case, most of our methods improve macro-
averaged precision and recall of the BERT model
on WNUT. See Appendix C.2 for more details.

4.6 Effect on Training Corpus Size

Table 6 shows the effect of training corpus size as
a result of resampling or data augmentation. These
factors are the average across four corpora.

The balanced undersampling method drops to-
kens from sentences, and therefore reduces training
corpus size. Data augmentation method doubles the
corpus size as many sentences are paraphrased into
multiple versions. Our proposed methods increases
corpus size by a slightly larger factor because sen-
tences that contain rare entity types are resampled
multiple times. Although increased training corpus
size leads to increased training time, note that our
methods are especially suitable for scenarios where
the annotated corpus is small and hence the training
time is still relatively short.
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Figure 1: Displacement vectors of F1-scores in
precision-recall plots for WNUT corpus. ‘BUS’: bal-
anced undersampling. ‘DA’: data augmentation. All
models use softmax output layer. The downward curves
are contours of F1-scores in the precision-recall space.
Each NER model (Shallow, Bi-LSTM, BERT) is associ-
ated with a cluster of vectors sharing the same starting
point in the space, which represents the performance on
the original corpus.

Methods Size increase factor

Original corpus 1.00
Balanced undersampling 0.32
Data augmentation 2.00

sC 3.80
sCR 4.60
sCRD 3.91
nsCRD 2.82

Table 6: Effect of data resampling/augmentation meth-
ods on training corpus size. The factors are averaged
across four evaluated corpora.

5 Conclusion and Future Work

Our proposed sentence resampling methods gener-
alize well across diverse NER corpora and models.
They enjoy the following advantages:

Model-agnostic: Since resampling only manip-
ulates datasets and not models, the proposed meth-
ods can be directly applied to any NER model,
requiring no knowledge of its functioning or any
change to it. Resampling is also more convenient
than cost-sensitive learning as the latter still re-
quires changing the model training process.

Domain-agnostic: Compared with data pre-
processing methods such as data augmentation,
sentence-level resampling methods are simple and
do not require domain- or language-specific ma-
nipulations such as synonym replacement, saving
practitioners from excessive data engineering.
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Note that data augmentation and sentence-level
resampling (and resampling methods in general)
are complementary methods for improving NER
model training. Data augmentation improves the
semantic richness of training instances by expand-
ing the coverage of training data in the input fea-
ture space, while sentence-level resampling refines
the importance weighting of training instances by
bridging the gap between the training objective
and evaluation metrics. Therefore, they work in
orthogonal directions. This points to a promising
direction for future work: to explore the two line of
methods in combination rather than in competition.

Various other avenues exist for future work.
First, further theoretical and empirical research can
explore more effective resampling functions that
deliver consistently better performance across cor-
pora and base NER models. Second, more corpora
and models can be examined under these resam-
pling strategies to evaluate their generalizability.
Third, the variance of performance in different sce-
narios may potentially relate to characteristics of
specific corpora. Future research may seek for
corpora-level statistics that can assist practitioners
in selecting the appropriate resampling methods.
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A Implementation Details

A.1 Software and Hardware Environment
All the deep learning models are implemented in
Tensorflow 1.12.0 environment.

Softmax regression (or multinomial logistic re-
gression) model is from Scikit-Learn package in
version 0.23.2. The CRF model is implemented by
the package sklearn-crfsuite in version of 0.3.6.

Data resampling and CRF training/evaluation
were performed on 2.60 GHz Intel CPUs and 8GB
RAM. Bi-LSTM and BERT training/evaluation
were performed on GPUs (GeForce GTX1080 8GB
and Tesla V100 16GB).

A.2 Hyperparameters for Machine Learning
Models

For shallow models and BERT, all hyperparameters
are set by default. For details of them, please see
documents of sklearn, crfsuite and BERT-NER.

For Bi-LSTM, we adjust a few of parameters as
there are some drawbacks of the default settings:
20 is not a commonly used number for batch size,
and loss of Bi-LSTM model fails to converge under
some circumstances. So we set them to 32 and
20, instead of default values 20 and 15. Other
hyperparameters are applied according to default
settings.

For the fairness in the comparison, we do not
alter any hyperparameters while switching resam-
pling methods and loss functions without changing
dataset and models. We believe that it is totally
appropriate in the process of comparing, despite
that better performance of specific methods may
be obtained after tuning hyperparameters, which
beyond the scope of this exploring research.

A.3 Hyperparameters for Loss Functions
There are two hyperparameters in the focal loss
and Dice Loss, determining converging speed and
smooth degree. For focal loss, we set γ to 2, as
what authors of (Lin et al., 2017) recommend. Ac-
cording to (Li et al., 2019), it is appropriate to set
γ of Dice loss to 1 for the purpose of smoothing.
In our implementation of loss function in shallow
model, this setting is found effective. However,
while using it in deep learning model, its effective-
ness cannot be ensured. Hence, we adopt another
setting of γ = 10−5 in the tensor computing and
obtain better results compared with those obtained
with a larger γ.

B Derivation of Loss Function Gradients
for Softmax Regression

When using the shallow model with softmax output
layer and focal/Dice loss functions, we optimize
the model parameters by the quasi-Newton method
L-BFGS provided by Python Scikit-Learn. This
approach requires us to provide the gradients of
current model parameters. Below we show our
derivation of these gradients.

Notations and Preliminaries. Scalar values are
denoted by non-bold, lowercase letters such as x.
Row vectors are denoted by bold, lowercase letters
such as x. Matrices are denoted by bold, uppercase
letters such as X.

Softmax regression has the following compo-
nents:

• Feature vector: x ∈ Rm,x =
[x1, · · · , xi, · · · , xm].

• Label vector: y ∈ {0, 1}k,y =
[y1, · · · , yj , · · · , yk]. If the ground truth is
the c-th class, 1 ≤ c ≤ k, then yc = 1, and
yj = 0 if j ̸= c.

• Weight vector for the j-th class: wj ∈
Rm,wj = [wj1, · · · , wji, · · · , wjm].

• Weight matrix W ∈ Rm×k, W =
[w⊤

1 , · · · ,w⊤
j , · · · ,w⊤

k ]. “⊤” is the trans-
pose operation. w⊤ is the transpose of w,
which is a column vector.

• Bias for the the j-th class: bj ∈ R.

• Predicted probability vector: p ∈ [0, 1]k,p =
[p1, · · · , pj , · · · , pk].

pj = Pr(yj = 1|x) (5)

=
exp(⟨wj ,x⟩+ bj)∑k

j′=1 exp(⟨wj′ ,x⟩+ bj′)
(6)

⟨w,x⟩ is the inner product of vector w and
vector x.

One can verify that the partial derivative of pc
with respect to wji, the weight of the j-th class, the
i-th dimension, is the following:

∂pc
∂wji

= [1{j = c} − pj ] pcxi (7)
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B.1 Focal Loss Gradient
Suppose the ground truth is the c-th class for a
given example x.

LFL(x,y) = −(1− pc)
γ log pc (8)

∂LFL(x,y)

∂wji
(9)

=− ∂

∂pc
[(1− pc)

γ log pc] ·
∂pc
∂wji

(10)

=−
[
−γ(1− pc)

γ−1 log pc +
(1− pc)

γ

pc

]
· ∂pc
∂wji

(11)

=−
[
−γ(1− pc)

γ−1 log pc +
(1− pc)

γ

pc

]

· [1{j = c} − pj ]pcxi (12)

=− [−γpc(1− pc)
γ−1 log pc + (1− pc)

γ ]

· [1{j = c} − pj ]xi (13)

=ac[pj − 1{j = c}]xi (14)

Here we set

ac = −γpc(1− pc)
γ−1 log pc + (1− pc)

γ (15)

to reduce notational clutter. ac has nothing to do
with i or j; it only has to do with c, the index of
the ground truth label for the training example x.
When γ = 0, ac = 1. When γ > 0, ac decreases
when pc increases from 0 to 1. This means the
gradient for an easy example (when pc is close to
1) have a smaller magnitude than the gradient for a
hard example (when pc is close to 0).

Generalizing the scalar gradient in Equation (14)
to matrix gradient, we have

∂LFL(x,y)

∂W
= ac · x⊤(p− y) . (16)

The shape of ac · x⊤(p − y) is m × k, the same
shape as W.

An important note is that here ac is specific to
that single example x, which has ground truth la-
bel yc = 1. If we have n different training ex-
amples x(1), · · · ,x(n), then every example will
have a different ac value: a

(1)
c , · · · , a(n)c . Let’s

create a diagonal matrix Ac ∈ Rn×n, Ac =

diag(a
(1)
c , · · · , a(n)c ).

If we have n training examples, then the fea-
ture matrix X ∈ Rn×m, the label matrix Y ∈
{0, 1}n×k, and the predicted probability matrix
P ∈ [0, 1]n×k. We have:

∂LFL(X,Y)

∂W
= X⊤Ac(P−Y) . (17)

The shape of X⊤Ac(P−Y) is m× k, the same
as W.

B.2 Dice Loss Gradient
Dice loss computes per-class F-1 scores. Suppose
the ground truth is the c-th class for a given exam-
ple x.

LDL(x,y) (18)

=
k∑

j′=1

[
1− 1{c = j′} γ + 2pc

γ + p2c + 1

+1− 1{c ̸= j′} γ

γ + p2j′

]
(19)

=1− γ + 2pc
γ + p2c + 1

+
∑

j′ ̸=c

[
1− γ

γ + p2j′

]
(20)

=k − γ + 2pc
γ + p2c + 1

−
∑

j′ ̸=c

γ

γ + p2j′
(21)

Take gradient with respect to wji, the weight of
the j-th class, the i-th dimension.

∂LDL(x,y)

∂wji
(22)

=− ∂

∂pc

[
γ + 2pc

γ + p2c + 1

]
· ∂pc
∂wji

−
∑

j′ ̸=c

∂

∂pj′

[
γ

γ + p2j′

]
· ∂pj′
∂wji

(23)

=− 2(γ + p2c + 1)− (γ + 2pc)2pc
(γ + p2c + 1)2

· ∂pc
∂wji

−
∑

j′ ̸=c

−γ · 2pj′
(γ + p2j′)

2
· ∂pj′
∂wji

(24)

=− 2(γ + p2c + 1)− (γ + 2pc)2pc
(γ + p2c + 1)2

· [1{j = c} − pj ]pcxi

−
∑

j′ ̸=c

−γ · 2pj′
(γ + p2j′)

2
· [1{j = j′} − pj ]pj′xi

(25)

=− 2(1− pc)(1 + γ + pc)pc
(γ + p2c + 1)2

· [1{j = c} − pj ]xi

(26)
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+
∑

j′ ̸=c

γ · 2p2j′
(γ + p2j′)

2
· [1{j = j′} − pj ]xi (27)

=ac[pj − 1{j = c}]xi −
∑

j′ ̸=c

bj′ [pj − 1{j = j′}]xi

(28)

Here we set

ac =
2(1− pc)(1 + γ + pc)pc

(γ + p2c + 1)2
(29)

bj′ =
γ · 2p2j′

(γ + p2j′)
2

(30)

ac depends on the ground truth label of example x.
bj′ depends on the current predicted probabilities
for x.

Generalizing the scalar gradient in Equation (28)
to matrix gradient, we have

∂LDL(x,y)

∂W
(31)

=x⊤ac(p− y)

− x⊤



· · · ,

∑

j′ ̸=c

bj′ [pj − 1{j = j′}], · · ·
︸ ︷︷ ︸

j=1,··· ,k




(32)

=x⊤ac(p− y)− x⊤v (33)

v is a vector specific to the example x.
If we have n training examples, then the fea-

ture matrix X ∈ Rn×m, the label matrix Y ∈
{0, 1}n×k, and the predicted probability matrix
P ∈ [0, 1]n×k. We have:

∂LDL(X,Y)

∂W
= X⊤Ac(P−Y)−X⊤V (34)

where V has shape n×k, and the l-th row in matrix
V is a k dimensional vector computed in the same
manner as Equation (32) with respect to the l-th
training example, 1 ≤ l ≤ n .

C Additional Performance Analysis

C.1 Micro-averaged Metrics
In the main paper we reported macro-averaged F1
scores for each dataset. To provide a more com-
plete comparison of performance changes, here we
report micro-averaged F1 scores in Tables 7-10.
Micro-averaged metrics lump together all named
entities without distinguishing their types, and
therefore the majority types have more influence
on these metrics than minority types. Overall, the
trend is consistent with the macro-averaged met-
rics. Sentence-level resampling methods tend to
deliver more stable gains and generally outperform
baseline methods.

C.2 Per-Entity-Type Metrics
To further examine the impacts of our method on
entity types, we also report per-entity-type preci-
sion, recall, and F1 scores for each dataset in Tables
11-14. We compare the performance of using the
original corpus and a representative of our meth-
ods (sCR). Red up-arrows (↑) means sCR obtains
better precision/recall/F1 score compared to using
the original corpus.

Here we observe that at the level of entity types,
either precision and recall simultaneously improve
or drop, or precision improves at a slight cost of
recall. It is rare that recall improves at the cost of
precision (only the GPE type in Table 13). This
pattern indicates that the BERT-CRF model trained
on the original corpus has many ‘false negatives’
(tagging entity tokens as “other”). In other words,
the model is extremely reluctant to predict non-
other entity types. Our sentence-level resampling
methods encourage the model to correctly assign
entity types to more tokens. Another trend is that
improvements on small corpora (AnEM, WNUT,
GMB subset) are more salient than on large corpus
(CoNLL). Note that sentence resampling does not
necessarily favor minority entity types as all entity
types are very rare already, compared to the Other
tokens (see the last column of Tables 11-14, “Token
%”).
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Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 33.96 56.74 55.94 58.81 67.02 66.69
Balanced undersampling 31.12 56.03 24.95 30.90 69.62 69.38
Data augmentation 32.70 56.80 53.12 56.19 68.09 71.63
Focal loss 28.89 53.12 68.24
Dice loss 35.62 8.62 64.50

sC 35.00 55.75 57.03 59.24 70.90 70.55
sCR 35.25 55.89 57.12 60.37 71.76 69.71
sCRD 34.04 55.65 55.57 57.02 70.22 69.57
nsCRD 35.28 56.87 54.08 58.52 71.08 69.82

Table 7: Micro-averaged F1-scores on AnEM. The three NER models using either softmax or CRF output layer are
reported. ‘ ’ means that focal loss and Dice loss do not apply to CRF outputs. In each column, the highest F1-score
is shown in boldface and the second highest is shown in underline.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 21.74 5.28 27.89 29.32 61.31 60.70
Balanced undersampling 22.77 5.69 22.51 24.64 53.70 51.66
Data augmentation 17.33 5.47 28.73 14.37 60.00 61.86
Focal loss 21.62 30.23 62.18
Dice loss 24.01 29.53 57.14

sC 22.74 5.62 25.49 28.55 63.54 64.62
sCR 23.25 6.48 31.38 27.76 65.67 65.99
sCRD 23.09 6.01 27.74 32.69 66.02 64.68
nsCRD 23.17 5.68 28.83 34.29 62.00 63.41

Table 8: Micro-averaged F1-scores on the WNUT corpus. See the caption of Table 7 above for details.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 50.60 66.67 75.92 76.87 80.43 81.68
Balanced undersampling 50.94 66.18 70.91 73.86 77.87 78.41
Data augmentation 49.09 66.13 74.75 76.17 81.48 81.86
Focal loss 49.84 72.44 81.61
Dice loss 57.70 70.46 80.02

sC 50.68 66.32 75.85 77.11 81.26 81.16
sCR 51.68 66.09 74.76 76.29 80.45 82.12
sCRD 51.12 66.58 72.43 74.21 80.71 81.09
nsCRD 50.76 66.87 73.38 74.62 81.69 81.54

Table 9: Micro-averaged F1-scores on the GMB subset corpus. See the caption of Table 7 above for details.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 42.47 71.11 79.84 81.03 92.08 92.23
Balanced undersampling 43.22 70.43 71.46 76.75 90.97 90.78
Data augmentation 42.37 70.84 81.87 81.40 91.96 92.33
Focal loss 43.78 81.53 92.15
Dice loss 48.77 77.51 91.94

sC 43.42 70.86 81.10 78.70 92.53 92.48
sCR 42.77 70.57 82.26 78.18 91.88 92.59
sCRD 44.48 70.84 82.29 81.36 91.93 92.07
nsCRD 43.24 70.67 83.05 83.42 91.37 91.87

Table 10: Micro-averaged F1-scores on the CoNLL corpus. See the caption of Table 7 above for details.
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Original corpus sCR

Entity Type P R F P R F Token %

Developing anatomical structure 86.96 90.91 88.89 87.50↑ 95.45↑ 91.30↑ 0.03
Immaterial anatomical entity 24.14 23.33 23.73 40.00↑ 40.00↑ 40.00↑ 0.06
Anatomical system 52.17 85.17 64.86 41.38↓ 85.71↑ 55.81↓ 0.08
Organism subdivision 42.86 54.00 47.79 64.44↑ 58.00↑ 61.05↑ 0.16
Cellular component 26.37 27.27 26.81 41.79↑ 31.82↑ 36.13↑ 0.21
Tissue 35.62 52.34 42.46 46.97↑ 52.54↑ 49.60↑ 0.27
Organism substance 57.58 77.87 66.21 74.62↑ 80.83↑ 77.60↑ 0.30
Organ 78.95 75.47 77.17 78.47↓ 71.07↓ 74.59↓ 0.35
Pathological formation 62.18 65.54 63.82 72.73↑ 59.46↓ 65.43↑ 0.51
Multi-tissue structure 50.17 60.08 54.68 56.45↑ 57.61↓ 57.02↑ 0.86
Cell 77.02 79.07 78.03 79.79↑ 76.33↓ 78.02↓ 1.08

Macro-avg 54.00 62.89 57.68 62.19↑ 64.44↑ 62.41↑ -

Table 11: Per-entity-type precision (P), recall (R), and F1 scores (F) on AnEM corpus using BERT-CRF model.

Original corpus sCR

Entity Type P R F P R F Token %

Corporation 33.33 66.67 44.44 20.00↓ 33.33↓ 43↓ 0.43
Creative work 0 0 0 100.00↑ 20.00↑ 33.33↑ 0.55
Product 33.33 33.33 33.33 25.00↓ 16.67↓ 20.00↑ 0.55
Group 30.77 12.90 18.18 47.37↑ 29.03↑ 36.00↑ 0.66
Location 70.00 72.41 71.18 91.30↑ 72.41 80.76↑ 1.27
Person 71.11 74.42 72.72 76.19↑ 74.42 75.29↑ 1.59

Macro-avg 39.76 43.29 39.98 59.98↑ 40.98↓ 45.06↑ -

Table 12: Per-entity-type precision (P), recall (R), and F1 scores (F) on WNUT corpus using BERT-CRF model.

Original corpus sCR

Entity Type P R F P R F Token %

NAT 0 0 0 0 0 0 0.03
ART 12.00 10.34 11.11 0↓ 0↓ 0↓ 0.07
EVE 26.67 36.36 30.77 35.71↑ 45.45↑ 40.00↑ 0.11
GPE 54.38 52.49 53.41 54.20↓ 52.99↑ 53.59↑ 1.58
TIM 76.69 88.73 88.27 77.22↑ 89.71↑ 83.00↑ 2.40
ORG 74.39 77.06 76.72 77.43↑ 75.76↓ 76.59↓ 3.31
PER 86.87 87.31 87.09 88.56↑ 89.90↑ 89.22↑ 3.56
GEO 93.19 93.19 93.19 92.26↓ 92.26↓ 92.26↓ 4.00

Macro-avg 53.27 55.68 54.32 53.17↓ 55.86↑ 54.33↑ -

Table 13: Per-entity-type precision (P), recall (R), and F1 scores (F) on GMB subset using BERT-CRF model.

Original corpus sCR

Entity Type P R F P R F Token %

MISC 77.26 81.76 79.44 82.61↑ 82.49↑ 82.54↑ 2.26
LOC 92.17 92.50 92.33 91.76↓ 91.49↓ 91.62↓ 4.07
ORG 86.16 88.83 87.47 85.92↓ 88.59↓ 87.23↓ 4.92
PER 94.44 94.66 94.55 95.11↑ 94.97↑ 95.03↑ 5.46

Macro-avg 87.51 89.44 88.45 88.85↑ 89.38↓ 89.11↑ -

Table 14: Per-entity-type F1 scores on CoNLL using BERT-CRF model.
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