
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2001 - 2012

July 10-15, 2022 ©2022 Association for Computational Linguistics

Multi-Relational Graph Transformer for
Automatic Short Answer Grading †

Rajat Agarwal Varun Khurana∗ Karish Grover∗ Mukesh Mohania Vikram Goyal
Indraprastha Institute of Information Technology, Delhi

{rajata, varun19124, karish19471, mukesh, vikram}@iiitd.ac.in

Abstract

The recent transition to the online educational
domain has increased the need for Automatic
Short Answer Grading (ASAG). ASAG auto-
matically evaluates a student’s response against
a (given) correct response and thus has been a
prevalent semantic matching task. Most ex-
isting methods utilize sequential context to
compare two sentences and ignore the struc-
tural context of the sentence; therefore, these
methods may not result in the desired perfor-
mance. In this paper, we overcome this prob-
lem by proposing a Multi-Relational Graph
Transformer, MitiGaTe, to prepare token rep-
resentations considering the structural con-
text. Abstract Meaning Representation (AMR)
graph is created by parsing the text response
and then segregated into multiple subgraphs,
each corresponding to a particular relationship
in AMR. A Graph Transformer is used to pre-
pare relation-specific token embeddings within
each subgraph, then aggregated to obtain a sub-
graph representation. Finally, we compare the
correct answer and the student response sub-
graph representations to yield a final score. Ex-
perimental results on Mohler’s dataset show
that our system outperforms the existing state-
of-the-art methods. We have released our im-
plementation1, as we believe that our model
can be useful for many future applications.

1 Introduction

Grading student work is critical for assessing their
course understanding. However, answer grading
can become monotonous and tedious for teachers.
Automatic Short Answer Grading (ASAG) task is
to assign ordinal scores to student answers, given
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Refining the solution

All stages are influenced except 
setting the program requirements.  If 
a test fails, it can change the whole 
design, implementation, etc of a 
program.

Directly: Refining, coding.  Because 
Refining is right before the Testing 
Phase and Coding is right after the 
Testing Phase.  Indirectly: 
Production, Maintenance. 

Refining the solution, Production 
and Maintenance are all influenced 
by the Testing stage. 

What stages in the software life cycle are 
influenced by the testing stage?

The testing stage can influence both the coding stage (phase 5) 
and the solution refinement stage (phase 7)

Student A Score: 5/5

Student C Score: 3/5 Student D Score: 1.5/5

Model Answer

Student B Score: 4/5

Question

Figure 1: A motivating example for using multiple rela-
tions in automatic short answer grading.

some ‘model’ answer by an academician or instruc-
tor. Figure 1 presents a sample question, model
answer, and student answers from an undergradu-
ate computer science course (Mohler et al., 2011).
One of the early approaches for solving the ASAG
task has been to build models based on human-
designed features (Mohler et al., 2011; Sultan et al.,
2016). Recent works utilize deep learning meth-
ods such as convolutional neural networks (CNNs),
long short-term memory networks (LSTMs), Trans-
former (Vaswani et al., 2017) to learn the represen-
tation of student responses and to avoid designing
features manually (Alikaniotis et al., 2016; Has-
san et al., 2018; Kumar et al., 2017; Riordan et al.,
2017; Yang et al., 2018). Due to semantic het-
erogeneity, the main problem in assessing student
responses given instructor-provided model answers
is a complex natural language understanding task
(the same answer could be articulated in different
ways)(Gomaa et al., 2013).

We hypothesise that a student’s answer will be
considered correct if the keywords in the answer
are in the right relationship with the corresponding
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words from the model answer. As can be seen from
Figure 1, Student A is awarded full marks because
the words like Testing Phase and Coding are ade-
quately associated with words in the model answer
like testing stage and coding phase. However, other
students are awarded partial marks because not a
lot of words in those correspond to some relation
in the model answer, i.e. the decreasing score cor-
responds to the decreasing number of relations in
the model answer being captured in the student re-
sponse. This motivates us to incorporate structural
relationship context information for effective com-
parison. We discuss the various types of relations
captured in detail in the further sections.

This paper applies the principle of short text
matching to solve the problem of grading short
subjective student’s response. The key steps for
textual matching are efficient textual representa-
tion, followed by semantic matching. In literature,
we see that short text matching is broadly based
on two approaches: sequence-based and structure-
based. Sequence-based models fully exploit se-
mantic information of sentences without incorpo-
rating syntactic information (Mueller and Thya-
garajan, 2016), (He et al., 2015; Cer et al., 2018;
Conneau et al., 2017; Agirre et al., 2014). Re-
cent works by (Vashishth et al., 2019; Croce et al.,
2011; Severyn et al., 2013) have found that the
structural information of sentences is beneficial
for sentence representation. Therefore, structure-
based neural networks (Le et al., 2018; Yao et al.,
2019; Huang et al., 2019), (Defferrard et al., 2016;
Liu et al., 2020) exhibit better performance than
sequence-based models. Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2016) can extract
semantic and syntactic information of sentences
simultaneously from the graph. GCN first propa-
gates information among nodes and their neighbors
and then provides node representation by aggre-
gating the received information. However, GCNs
are designed for homogeneous graphs and cannot
handle different types of nodes and relationships in
the graph. Recently there have been attempts to ex-
plore relationships in the graphs. Schlichtkrull et al.
(2018) introduces RGCN to handle relationships
in knowledge graphs by using specific matrices for
each relationship. Nevertheless, it focuses only on
characteristics of the relations and does not study
different types of features associated with a node.

This paper introduces a Multi-Relational Graph
Transformer (MitiGaTe) for ASAG to incorporate

the structural context. We first transform a sentence
into an Abstract Meaning Representation (AMR)
graph (Banarescu et al., 2013). AMR parses a
sentence into a rooted directed graph. Then sub-
graphs are prepared corresponding to the relation-
ships (types of edges) in the original AMR graph.
For each subgraph, MitiGaTe prepares relation-
specific token representations and aggregates them
to obtain a subgraph representation. Finally, these
relation-enriched subgraph representations of the
student and the model answer are matched using
multi-perspective matching (Wang et al., 2017) and
the matching result yields the student score. We
evaluate our model on the benchmark Mohler’s
dataset (Mohler et al., 2011) and it outperforms the
current state of the art models.

Our main contributions can be summarized as
follows:

1. We propose a Graph Transformer-based tech-
nique to incorporate relation-enriched struc-
tural information for ASAG.

2. We also demonstrate that including the se-
mantic representation of a relationship in the
preparation of token embeddings improves the
model’s overall performance.

3. We perform a case study to show that Miti-
GaTe can provide reasonable feedback to stu-
dents explaining the (in)correct parts of the
student answer.

4. MitiGaTe is evaluated through extensive ex-
periments on a benchmarking dataset. The
experimental results verify our proposed
model’s performance.

2 Related Work

ASAG: Traditional methods utilize handcrafted fea-
tures, such as lexical similarity features (Dzikovska
et al., 2013), graph alignment features (Mohler
et al., 2011), n-gram features (Heilman and Mad-
nani, 2013), soft cardinality text overlap features
(Jimenez et al., 2013), averaged word vector text
similarity features (Sultan et al., 2016) and other
shallow lexical features (Ott et al., 2013). More
recently, deep learning approaches have been
utilized for the automatic short answer scoring
task. Mueller and Thyagarajan (2016) proposed
a siamese adaptation of the LSTM network for la-
belled data comprised of pairs of variable-length
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sequences. Zhao et al. (2017) proposed an effi-
cient memory networks-powered automated scor-
ing model. Riordan et al. (2017) explored sim-
ple LSTM and CNN-based architectures for short
answer scoring. Kumar et al. (2017) proposed a
method involving Siamese biLSTMs, a novel pool-
ing layer based on the Sinkhorn distance between
LSTM state sequences, and a support vector ordinal
output layer. However, the approaches mentioned
above do not incorporate the structural information,
and as a result, the matching performed is partly in-
adequate (Croce et al., 2011; Severyn et al., 2013).

Application of GCN on NLP: GCN is a simplified
graph neural network (GNN) introduced by (Kipf
and Welling, 2016) to perform semi-supervised
classification. In NLP, GCN is mainly explored in
tasks such as semantic role labeling (Marcheggiani
and Titov, 2017), machine translation (Bastings
et al., 2017). Yao et al. (2019) first model a whole
corpus as a graph where documents and words are
regarded as nodes. However, most GNNs were
designed for homogeneous graphs and could not
handle different nodes and relations in heteroge-
neous graphs.

Unlike the existing methods, we consider the
role of relations to improve the learning of more
fine-grained node representation.

3 Methodology

We formally define the ASAG short text matching
problem as follows: Given two sentences AM =
{wM

1 , wM
2 , . . . } and AS = {wS

1 , w
S
2 , . . . }, where

AM and AS refers to Model and Student answer
respectively with w as words in the sentence, the
goal of a text-matching model f(AM ,AS) is to
compute the semantic similarity of AM and AS .

In this section, we discuss a graph-based match-
ing model. To create graphs from the input sen-
tences, we first parse each sentence into an AMR
graph (Section 3.1). Further, we prepare subgraphs
Gsub from AMR graphs corresponding to each re-
lation (Section 3.2). The intuition behind subgraph
splitting is to get relation-enriched structural infor-
mation which can improve matching performance
and interestingly can be used to provide a reason-
able feedback to students (Section 5.5). We then
create relation-specific token representation hw,r

from each subgraph and aggregate them to a final
subgraph representation denoted as gϕr,M for model

and gϕr,S for student answer (Section 3.3). Lastly,

we compare them in Section 3.4 to predict the grad-
ing score in Section 3.5.

As shown in Figure 3, our model consists of
five layers namely, Text to AMR conversion, Sub-
graph preparation layer, Graph Transformer En-
coder layer, Subgraph matching layer and lastly,
score prediction layer. We discuss each layer be-
low.

3.1 AMR Parsing

The meaning of a sentence is represented by AMR
as a rooted directed graph. Here, nodes repre-
sent the concepts or predicates and are not always
directly related to words. Edges in AMR repre-
sent the relations between concepts such as sub-
ject/object. AMR provides a high-level abstraction
by capturing meaningful content but ignores func-
tional and inflectional words in a sentence (Xu
et al., 2021).

We choose AMR over dependency parser for
sentence parsing because unlike the dependency
structure of a sentence where each word token is a
node in the dependency tree, AMR concepts and
relations abstract away from actual word tokens.
Content words generally become concepts while
function words either become relations or get omit-
ted if they do not contribute to the meaning of
a sentence, which is more intuitive and suitable
for the ASAG task, unlike dependency parser that
merely extracts grammatical relations between en-
tities. Further, the AMR parser parses semantically
similar but syntactically dissimilar answers into
nearly similar graphs, which ensures that students
who answer differently are not penalised.

We use the AMR Model API2 from amrlib li-
brary to create AMR graphs G = (V, E) of a given
input sentence S. Each node v ∈ V in the AMR
graph represents a concept or predicate. Edge ei,j
denotes the specific relation type between nodes
vi and vj . The details are dicussed in Section 4.2.
AMR Graphs for student answers in Figure 1 are
shown in Appendix A.

3.2 Subgraph Preparation Layer

We transform the original AMR graph into sub-
graphs based on the number of relations or types
of edges in the graph. All the subgraphs have the
same number of nodes as the original graph. How-
ever, only a particular type of edge is enabled, and

2https://bit.ly/amrlibrary
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A location in memory that can 
store a value

Model Answer 

Student Answer 

A block of memory that holds a 
specific type of data

Figure 2: Example to show subgraph splitting and intuition behind using AMR for ASAG task. Similar relations in
model and student answers have similar structures. Example, location and store in model answer are connected as
A0 and similarly block and hold in student answer are connected with A0. This applies to other relations as well.

all other types of edges are disabled in the subgraph
corresponding to relation r.

We first group all edge types into one to get a
homogeneous subgraph referred to as the default
subgraph default. The default subgraph is an undi-
rected graph that contains the complete connected
information in the original graph. Then we split the
input graph into multiple subgraphs according to
the edge types. Figure 2 demonstrates the subgraph
preparation by an example.

AMR uses approximately 100 different relations
to capture the semantics. Thus, it would be in-
efficient to capture all these relations in separate
subgraphs as many of these occur rarely. In this
work, we have used ARG1 and ARG0 relations to
capture primary information, and all remaining re-
lations are grouped as an other relation. We will
be denoting ARG1 and ARG0 relations as A1 and
A0 for the scope of this paper.

With reference to the PropBank3 guidelines, the
A0 label is assigned to arguments which are under-
stood as agents, causers or experiencers. The A1

label is usually assigned to the patient argument,
i.e. the argument which undergoes the change of
state or is being affected by the action. The other
category could include relations for quantities like
:unit, date-entities like :time, and semantic
relations like :consist-of. More information
about the various types of relations captured by
AMR can be found in the original paper (Banarescu
et al., 2013).

3https://verbs.colorado.edu/~mpalmer/
projects/ace/PBguidelines.pdf

Hence, we can denote the collection of these
subgraphs as Gsub, where,

Gsub = {default, A0, A1, other} (1)

3.3 Preparing Node and Subgraph
Representation

In this layer, we prepare a relation-specific sub-
graph representation that reflects the characteristics
of tokens in a particular relation. We perform two
steps: firstly, we prepare relation-specific node rep-
resentation using Graph Transformer and secondly,
all relation-specific node representations are aggre-
gated into a relation-specific subgraph representa-
tion. Below we discuss the process for tokens in
AM and the same process is applied to AS .

3.3.1 Relation-Specific Node Representation
Our model is adapted from the Transformer model
introduced by (Vaswani et al., 2017). It is a
sequence-to-sequence neural architecture origi-
nally used for neural machine translation. It uses
encoder-decoder architecture. The encoder consists
of two sublayers: a self-attention mechanism and
a position-wise feed-forward network. The self-
attention mechanism employs H attention heads,
and each of them learns a distinct attention func-
tion. Finally, the outputs of all attention heads
are concatenated, followed by feed-forward lay-
ers, residual connections and normalization. The
encoder computes the token representations iter-
atively using the output of the previous layer as
input.
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                    AMR

Subgraph Splitting Layer

GTE GTE GTE GTE GTE GTE GTE GTE

Subgraph Splitting Layer

Layer 5 

Layer 4 
Subgraph Matching 

Layer 3 
Graph Transformer Encoder

Layer 2
Subgraph Split

Layer 1 
Text to AMR

def defA0 A1 A1A0other other

                    AMR

Score

Score Prediction

Figure 3: The framework of the proposed model MitiGaTe employs Graph Transformer for learning the structural
context of a sentence. Please refer to Section 3 for more details.

Transformer (Vaswani et al., 2017) treats the
sentence as a fully-connected graph. In MitiGaTe,
we mask the non-neighbor nodes’ attention while
updating each node’s representation. Specifically,
we mask the attention wij for node j ̸∈ N+

i , where
N+

i is the set of neighbors of node i in the graph
including self-loop.

So given the input sequence x = (x1, . . . , xn),
the output representation of node i, denoted as hl+1

i

for l + 1th layer is computed as follows:

hl+1
i = Ol

h||Hk=1(
∑

j∈N+
i

wk,l
ij V

k,lhlj) (2)

el+1
ij = Ol

e||Hk=1(ŵ
k,l
ij ) (3)

wk,l
ij = softmaxj(ŵ

k,l
ij ) (4)

ŵk,l
ij = (

Qk,lhli ·Kk,lhlj√
dk

) · Ek,lelij (5)

where Qk,l, Kk,l, V k,l, Ek,l ∈ Rdk×d, Ol
h, Ol

e

∈ Rd×d are trainable parameter matrices, k = 1 to
H denotes the number of attention heads and || de-
notes concatenation. Following (Dwivedi and Bres-
son, 2020) we explicitly incorporate edge represen-
tation elij to improve attention weights wk,l

ij . This
above mentioned process of Graph Transformer is
applied for each relation r ∈ Gsub. For brevity, we
denote node representation of the last layer as hw,r

where w represents a word and r denotes a specific
relation.

A side point to note is that a subgraph has a sin-
gle type of edge (a homogeneous graph), and there-
fore elij is the same within a Graph Transformer
corresponding to relation r. However, elij gets up-
dated over the layers similar to node representation
hli. We think that it stores a semantic represen-
tation of a relation which helps in improving the
predictions as described in Section 5.3.

3.3.2 Relation-Specific Subgraph
Representation

In particular, this component takes hw,r, r ∈ Gsub

and computes relation-specific subgraph represen-
tation gϕr as a mean of hw,r using following equa-
tion:

gϕr,M =

∑
w∈AM

hw,r

||AM || ,∀r ∈ Gsub (6)

where ||AM || denotes the length of the sentence
or the number of nodes in a subgraph. Similarly,
we create gϕr,S for the subgraphs associated with
student textual sentence.

3.4 Graph Matching Layer

After obtaining all the subgraph representations
which have syntactically and semantically rich in-
formation, we utilize the multi-perspective cosine

2005



distance (Wang et al., 2017) to compare gϕr,M and

gϕr,S

Dr,k = cosine(wcos
k ⊙ gϕr,M , wcos

k ⊙ gϕr,S) (7)

D = [D,Dr,k] (8)

Where k ∈ {1, 2, . . . , P} (P is number of perspec-
tives). wcos

k is a parameter vector, which assigns
different weights to different perspectives. With P
perspectives d1, d2, . . . , dP , the Dr,k is updated to
P size. The concatenation of two vectors is denoted
using [., .], where D is initialized with a Null value
and later it stores the concatenated value of all Dr,k.
D stores the matching score for all relation-specific
subgraphs.

3.5 Score Prediction Layer
Student score Score is calculated by using a fully
connected layer FFN which takes D as input and
has an output layer of a single dimension.

Score = FFN(D) (9)

During training phase we have used RMSE loss,
where yi and ŷi represents the ground truth and
predicted values respectively.

RMSE =

√√√√ 1

n

N∑

i=1

(yi − ŷi)2 (10)

4 Experimental Setup

4.1 Dataset
In our experiments, we use the Mohler’s dataset
(Mohler et al., 2011). It consists of 80 questions
of an undergraduate Data Structures course. 2273
student responses are recorded in the dataset, which
is evaluated independently by two academicians.
We have considered the average scores as model
scores. The score lies within a range of 0 to 5. We
have considered it as a regression problem.

4.2 Data Processing
As described in section 3.1, we use the Model API
from the amrlib library to create Abstract Meaning
Representation graphs G = (V, E) of a given input
sentence S.

It is crucial to note that we consider the AMR
representation as undirected while constructing the
adjacency list. This can be intuitively justified as
if there exists a relation (say A0) between wa and

wb (wa → wb) the same relation justifies wb →
wa, and could thus be helpful in the final score
prediction.

When we parse an original sentence S =
{w1, w2, . . . wn}, we get a directed AMR graph.
Our next step is to convert the AMR to a Net-
workX4 graph. While creating the NetworkX
graphs, the GloVe5 embeddings for all the words i.e.
the nodes in the AMR graph, are embedded as fea-
tures in the NetworkX graph. We apply Principal
Component Analysis (PCA) (Abdi and Williams,
2010) on the original 300D Glove embeddings to
reduce it to a lower dimension. Before feeding into
the graph transformer, we convert all the NetworkX
graphs to DGL format6. A similar procedure is re-
peated for all subgraphs.

It is noteworthy that in some cases, AMR rep-
resentation contains certain phrases like have −
degree, which is actually a combination of
two or more words (have and degree). Such
phrases/words don’t have a GloVe representation
and are thus treated as out-of-vocabulary.

4.3 Parameter Settings
The graph transformer has 2 layers since it gives the
best results as observed in preliminary experiments.
We use 4 attention heads as we observed that
the model performance deteriorates if more/fewer
heads are used as described in Section 5.4. We have
also added self-loops to include each graph node
while updating its representation. The subgraph
representation is the mean of node representations.
We use P = 16 in the graph matching layer, where
P is the number of perspectives defined in Section
3.4.

We employ the RMSProp optimizer to minimize
RMSE loss. The batch size is set to 128 and the
initial learning rate to 0.0007. The ‘ReduceLROn-
Plateau’ scheduler is used to reduce the learning
rate by a factor of 0.5 when the loss stagnates, with
a patience level of 15 epochs. Our implementation
uses PyTorch 7, a popular deep learning framework
in Python. All experiments are run on Intel Xenon
CPU with 1 Nvidia Quadro P5000 GPU.

4.4 Baselines and Metrics
For evaluating MitiGaTe on (Mohler et al., 2011)
dataset, we compare against the following base-

4https://github.com/networkx/networkx
5https://bit.ly/glove300D
6https://www.dgl.ai/
7https://pytorch.org/
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lines. BOW (Mohler et al., 2011) is a simple
model based on Bag Of Words. Tf-idf (Mohler
et al., 2011) is a simple tf-idf similarity between
AM and AS . Sultan et al. (Sultan et al., 2016), a
fast, simple and high performance system which
uses Random Forest classifier. Kumar et al. (Ku-
mar et al., 2017) uses a Siamese LSTM network.
Word2Vec, GloVe and FastText (Gaddipati et al.,
2020) are context independent token embedding
models. ELMO, GPT, BERT and GPT-2 (Gaddi-
pati et al., 2020) are deep learning based context
based token embedding models. GCN (Kipf and
Welling, 2016) performs homogeneous graph con-
volutions. GAT (Hamilton et al., 2017) performs
the attentive weighted sum to update node repre-
sentation. GraphSAGE (Hamilton et al., 2017) is
a framework for inductive representation learning.
All GNN baselines use the default subgraph as in-
put, and have 2 layers. RGCN (Schlichtkrull et al.,
2018) employs relation specific transformation ma-
trix to incorporate relations in the graph.

We use Root mean square error (RMSE) for per-
formance evaluation, which gives a fair assessment
of students’ responses. A lower metric value corre-
sponds to better model.

5 Results and Analysis

In this section, we attempt to answer following
questions: RQ1. How does each subgraph influ-
ence the final results? (Section 5.2) RQ2. Does
incorporating edge representation while comput-
ing node representation improve the final results?
(Section 5.3) RQ3. Can MitiGaTe provide feed-
back to students i.e. Why did a student lose marks?
(Section 5.5)

5.1 Results on Mohler’s Data

Table 1 presents the results of our model on the
Mohler’s dataset. We can see that our model out-
performs all of the previous models by a significant
margin. It demonstrates the importance of incor-
porating relation-enriched structural context in the
tokens for effective text comparison. The existing
baseline models can be categorized as (i) Hand-
crafted features (ii) Deep Learning-based models
(iii) Word Embeddings based on sequential con-
text information (iv) Graph-based, which store the
structural information and relationship information.

ELMo outperforms the other transfer learning
models. It is fundamentally a direct result of the
capacity of the model to assign context-dependent

Model Features RMSE

BOW
SVM Rank 1.042
SVR 0.999

tf-idf SVR 1.022
Sultan LR + SIM 0.887
Kumar Siamese 0.830

Word2Vec
SOWE 1.025
SIM+Verb 1.016

GloVe
SOWE 1.036
SIM+Verb 1.002

FastText
SOWE 1.023
SIM+Verb 0.956

ELMO SOWE 0.978
GPT SOWE 1.082
BERT SOWE 1.057
GPT-2 SOWE 1.065
GCN HG 0.991
GAT AWG 0.974
GraphSAGE HG 0.986
RGCN HtG 0.892
MitiGaTe MRGT 0.762

Table 1: MitiGaTe Evaluation on Mohler Dataset
(Mohler et al., 2011). SVM = Support Vector Machine,
SVR = Support Vector Regression; LR = Length Ratio
between desired answer and student answer; SIM = Sim-
ilarity score; SOWE = Sum Of Word Embeddings; HG
= Homogeneous Graph; AWG = Attention Weighted
Graph, HtG = Heterogeneous Graph, MRGT = Multi-
relational Graph Transformer.

word-vectors. RGCN performs better than other
graph-based baselines because it incorporates the
relation-specific information in the form of a hetero-
geneous graph. Nevertheless, it focuses only on the
characteristics of the relations and does not study
different types of features associated with a node.
Our results establish that incorporating the relation-
enriched structural information (MitiGaTe) con-
tributes to significant performance improvement in
the downstream task. This observation is generic
and can be applied to different applications beyond
ASAG.

5.2 Influence of Subgraphs

In this section, we investigate how each subgraph
influences the final results of our best model Mit-
iGaTe. Table 2 shows the effect of using differ-
ent combinations of relation-specific subgraphs on
the result. Using only the default subgraph im-
plies that the model does not consider the relational
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Model RMSE
MitiGaTe 0.762

Only default 0.968
Only A0 1.017
Only A1 1.020

Only other 1.144
Only default+ other 1.178

Only default+A1 0.949
Only default+A0 0.872

MitiGaTe - A0 0.925
MitiGaTe - default 0.888

MitiGaTe - A1 0.816
MitiGaTe - other 0.794

Table 2: Influence of relation-specific subgraphs on
performance. MitiGaTe uses default + A0 + A1 +
other subgraphs.

information in inputs, i.e., considers a simple ho-
mogeneous graph. We see that it performs better
than GCN (mentioned in Table 1) because it uses
a Graph Transformer encoder. On using A0, A1

and other subgraphs separately, the model perfor-
mance degrades as they capture a subset of the
relations captured by default.

Using the default subgraph along with the pri-
mary relations A0 and A1 improves the perfor-
mance because incorporating multiple relations
supplements the syntactic and semantic informa-
tion. We think that the reason for performance
degradation to 1.178 RMSE on using the other sub-
graph along with default, is that we have stored
all remaining relations available in the AMR under
the other class.

Furthermore we can observe that on removing
the individual subgraphs one-by-one from Miti-
GaTe, the performance deteriorates in all cases.
These results corroborate the hypothesis that utiliz-
ing multi-relational information helps in improv-
ing the overall outcomes. The relation A0 stores
the information related to agents or causers, and
therefore it influences the results the most.

5.3 Influence of Edge Representations

Table 5.3 demonstrates that incorporating the edge
representations in the graph transformer certainly
helps in improving the attention weights, and there-
fore the overall results have improved significantly.
The edge embeddings are initialized with random
values, but they get updated in the layers of the
graph transformer. As stated earlier, we expect

that the edge embeddings store a relation’s seman-
tic representation. From the results, we can infer
that a relation’s semantic representation plays an
essential role in the overall process.

Model RMSE
MitiGaTe w/o edge representation 0.864
MitiGaTe w/ edge representation 0.762

5.4 Analysis of Parameters

We study the impact of the number of transformer
layers and attention heads on MitiGaTe. The results
are summarized in Figure 4. We vary the number
of layers keeping the number of heads fixed as 4.
The performance first improves with increasing lay-
ers as a deeper model receives better information
from multi-hop neighbors. However, too many lay-
ers lead to performance degradation, and we see
that this is due to the over-smoothing problem dis-
cussed by (Li et al., 2018). Next, the number of
attention heads is varied keeping the number of
layers fixed as 2. We observe that more attention
heads improve the performance during training but
are redundant during the testing. This is consistent
with the observation of (Michel et al., 2019).

1 2 3 4 5
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0.80

0.85

0.90

0.95

R
M

SE

1 2 4 8
Heads

0.80

0.85

0.90

R
M

SE

Figure 4: Effect of parameters on RMSE (Layers,
Heads).

5.5 Case Study: Feedback to Students

In addition to scoring a student response, a sig-
nificant focus of the human evaluation is giving
feedback on why a student lost marks. MitiGaTe
matches tokens at the relation-level as illustrated
in Figure 5. Student C scored 3/5 because of the
corresponding matching of words belonging to the
same relation in student and model answers. There
exists the same relation A1 between words refine
and solve, in model answer and words refine and
solution in student answer. Similarly the other and
A0 relations have been highlighted in the Figure 5.
However, the student loses marks because there are
a few relationships between words like code and

2008



Refining the solution, Production and Maintenance are all influenced by the 
Testing stage. 

test

Question

What stages in software life cycle are
 influenced by testing stage?

The testing stage can influence both the coding stage (phase 5) and the 
solution refinement stage (phase 7).

Model Answer

Student C Score: 3/5Model Answer

Student C Score: 3/5

possible and

code

test

s2/stage
influence

refine

mean

p2/phase

solve

5
7

p1/phase

s3/stage

stage

stage

and

all

influence

produce

maintain

refine

solution

Figure 5: Example from Figure 1, demonstrating how
the model performs matching at the relation-level. The
green, red and blue color edges indicate A0, A1, other
relations respectively. Dotted lines denote the relation-
specific token matching. Grey nodes indicate the miss-
ing content, and pink nodes denote the extra informa-
tion provided in student answer.

phase in the model answer, which are not present
in the student response. These relations can be
used to highlight the (in)correct parts of the student
answer. We see that the relational matching infor-
mation intuitively acts as feedback to explain the
final scores.

6 Conclusion

In this paper, we have proposed MitiGaTe for
ASAG. It prepares token embeddings considering
the structural context of a sentence and thus pro-
vides a more efficient matching method by consid-
ering multiple relations at a granular level. Exper-
imental results show that MitiGaTe outperforms
the existing ASAG systems by a significant margin,
and can be extended to give an intuitive feedback
to explain the provided score.

In the future, we would like to investigate how
to deal with long and multi-lingual answers. Our
approach uses an AMR graph, and thus such tasks
will need a compatible AMR parser. We also aim to
incorporate the explainability of the final scoring to
generate more comprehensive evaluator feedback.
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A AMR Representation

In this section, we demonstrate the generated AMR
graphs of the model and student answers shown in
Figure 1.
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Figure 6: Student B: Refining the solution
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Figure 7: Student A: Directly: Refining, coding. Be-
cause Refining is right before the Testing Phase and
Coding is right after the Testing Phase. Indirectly: Pro-
duction, Maintenance.
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Figure 8: Student D: All stages are influenced except
setting the program requirements. If a test fails, it can
change the whole design, implementation, etc of a pro-
gram.
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Figure 9: Student C: Refining the solution, Production
and Maintenance are all influenced by the Testing stage.
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Figure 10: Model Answer: The testing stage can influ-
ence both the coding stage (phase 5) and the solution
refinement stage (phase 7)
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