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Abstract

Many NLP tasks require processing long con-
texts beyond the length limit of existing pre-
trained models. To scale these models to
longer text sequences, many efficient long-
range attention variants have been recently pro-
posed. Despite the abundance of research in
this direction, it is difficult to gauge the rel-
ative effectiveness of these models in practi-
cal use cases, e.g., if we apply these models
following the pretrain-and-finetune paradigm.
In this work, we aim to conduct a thorough
analysis of these emerging models with large-
scale and controlled experiments. For each at-
tention variant, we pretrain large-size models
using the same long-doc corpus and then fine-
tune these models for real-world long-context
tasks. Our findings reveal pitfalls of a widely-
used long-range benchmark and show that the
other efficient attentions fail to outperform
the simple local-window attention after stan-
dard pretraining. Further analysis of local-
attention variants suggests that even the com-
monly used attention-window overlap is not
necessary to achieve good downstream results
— using disjoint local attentions, we are able
to build a simpler and more efficient long-doc
QA model that matches the performance of
Longformer (Beltagy et al., 2020) with half of
its pretraining compute.'

1 Introduction

The quadratic complexity of Transformer archi-
tectures makes it prohibitive to apply large state-
of-the-art pretrained models to full-length docu-
ments. To efficiently handle longer text while
still maintaining the capacity of attention-based
models, a long list of efficient attention variants
have been proposed and many claim to effec-
tively capture long-range dependencies. Typical
paradigms of these architecture innovations involve

'The code to replicate our experiments can be

found at https://github.com/pytorch/fairseq/
tree/main/examples/xformers

learnable sparse attention patterns (Kitaev et al.,
2020; Tay et al., 2020; Roy et al., 2021), fixed lo-
cal patterns (Beltagy et al., 2020; Ainslie et al.,
2020; Zaheer et al., 2020) and attention matrix
approximation methods (Wang et al., 2020; Choro-
manski et al., 2021; Xiong et al., 2021). While
most of these studies have reported numbers on
long sequence inputs, they tend to adopt quite dif-
ferent benchmarks. For instance, Reformer (Ki-
taev et al., 2020) is tested on the 64k-chunk en-
wik8 dataset for unidirectional language model-
ing; Performer (Choromanski et al., 2021) reports
masked language modeling (MLM) perplexity on
the PG-19 book corpus and protein sequences; Lin-
former (Wang et al., 2020) reports MLP perplex-
ity with various input length, while most of the
documents in their pretrain corpus are short doc-
uments.”> The divergence of evaluation protocols
makes it hard to compare the relative performance
of each attention variant and it is also unknown
how they perform well in more practical use cases,
which typically involve large-scale pretraining and
downstream finetuning.

Other lines of work such as Longformer (Belt-
agy et al., 2020) and ETC (Ainslie et al., 2020)
conduct experiments on real-world long-context
tasks such as long document QA and summariza-
tion. These methods only test fixed local atten-
tion patterns, i.e., each token can only attend to a
small set of nearby tokens. To reduce the pretrain-
ing cost, these models are all initialized from the
RoBERTza (Liu et al., 2019) checkpoint® before fur-
ther long-doc pretraining. While this paradigm is
useful to achieve strong downstream performance,
it is not ideal for a fair comparison of all available
attention mechanisms, since some of the models
use different parametrization that is incompatible

ZShort documents are concatenated to form long se-
quences.

By extending the position embeddings and reusing all
other parameters.
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with the vanilla transformer attention.

A recently proposed benchmark (Tay et al.,
2021), named long-range arena (LRA), aims to
address the lack of unified evaluation with a bun-
dle of long-sequence tasks. However, the text-
related tasks in this benchmark are either automat-
ically generated or artificially lengthened by en-
forcing byte-level inputs, making them rather syn-
thetic. With a fixed byte-level vocabulary and pre-
specified model size, all models are trained from
scratch with the same epoch limit on each dataset.
While the evaluation protocol is consistent across
architectures, this setup still deviates from the com-
mon paradigm of applying Transformer models,
i.e., standard tokenization like BPE or wordpiece,
large-scale pretraining followed and task-specific
finetuning (Devlin et al., 2019). Thus, an impor-
tant question yet to be addressed is whether the
results on these artificial datasets are indicative of
real-world long-context tasks.

In this work, our goal is to better under-
stand the effectiveness of various attention mech-
anisms through a systematic study on practical
long-context tasks. Instead of only relying on
language modeling or synthetic tasks, we test
each model under the standard pretraining-and-
finetuning paradigm. For a fair comparison, we
implement these attentions under a unified frame-
work and test them using the same Transformer
architecture* used by RoBERTa-large. We pre-
train all models using a large corpus that contains
mostly long documents and then finetune them on
tasks like long-document question answering, full
document retrieval, and text classification. Our
experiments show the discrepancies between the
commonly used LRA benchmark and downstream
results (after pretraining). Additionally, our analy-
sis on the best local attention models allows us to
further simplify these models and results in a more
efficient long-context encoder. More specifically,
the key findings of this paper include:

* With proper tuning, we find that all the tested
models can achieve similar level of perfor-
mance on the LRA benchmark while their per-
formance diverges significantly on large-scale
pretraining and downstream tasks;

* In our experiments, the other attention
paradigms barely outperform the class of sim-

“We only modify the attention calculation within the multi-
head attention blocks
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Figure 1: Attention pattern visualization of two types
of local attentions: Left: Local window attention as
in Longformer, with window size 2; Right: Blockwise
local window attention with block size 2. The rows
represent the tokens in the sequence and the columns
represent the tokens being attended to.

ple local attentions on downstream tasks when
using similar pretraining compute;

* As aresult of our further analysis of the best
performing attention variants, we are able to
build a long-doc QA model that is on-par with
Longformer while being 2x more efficient.

2 Preliminaries of Tested Attention
Variants

We study three classes of efficient attentions:

Fixed local patterns. These methods restrict
each token to only attend a local window of to-
kens. The long-range interactions are achieved by
the depth of the model. We consider two variants
of these models, the token-wise local window at-
tention (Local Window) proposed in Beltagy et al.
(2020) where each token attends to the same num-
ber of tokens on each side, and a simplified and
easy-to-implement blockwise version (Blockwise
LW) (Zaheer et al., 2020) where each token attends
to tokens in the same block and half of the tokens
in the left/right blocks. A visualization comparing
these two models is shown in Figure 1.

Learnable sparse attention patterns. Instead of
relying on the inductive bias of locality, methods
like Reformer (Kitaev et al., 2020) and Sinkhorn
Attention (Tay et al., 2020) allow the model to adap-
tively select tokens to attend to. Briefly, Reformer
uses a learnable hashing function to bucket the se-
quence and each token only attends to tokens in
the same bucket; Sinkhorn uses a learnable sorting
function to learn a permutation of the segments and
each token will attend to tokens in its segment, and
the corresponding segment after permutation.
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Kernel-based/Low-rank methods. This class of
methods use matrix approximation methods to ap-
proximate the full attention function. For sequence
length L and the hidden dimension d, Linformer
(Wang et al., 2020) simply uses a projection ma-
trix (L X k) to reduce the length of key and value
feature matrix, i.e., from L x dto k x d (k < L).
Nystrom (Xiong et al., 2021) attention adopts a
classic matrix approximation method which recon-
structs the full attention matrix using a sampled
sub-matrix. Performer (Choromanski et al., 2021)
eliminates the need of explicitly calculating the
L x L attention matrix by using a random feature
method that can approximate the softmax kernel
with only dot-product operations.

Hybrid attention. In addition to these representa-
tive methods in each class, our study also includes
the more recent Long-Short attention (Zhu et al.,
2021) which has a similar compression compo-
nent as in Linformer and combines it with local at-
tentions. Unlike Linformer’s compression compo-
nent which is simply implemented as a standalone
projection matrix, Long-Short proposes an input-
dependent compression layer, which can adaptively
reduce the sequence length.

A note on global tokens. For many practical
NLP tasks, e.g., classification or entailment, the
final layer of the model usually requires a single
sequence-level representation as input. For local
attention models, it is common practice (Beltagy
et al., 2020; Zaheer et al., 2020) to mark a single
or a small number of tokens as global tokens and
allow these tokens to attend to and be attended
by all other tokens. Without incurring much com-
putational cost, these global tokens are important
to get better sequence representations and achieve
good downstream results. While the mechanism
of global tokens has not been used in models with
learnable attention patterns, it is straightforward
to augment Reformer and Sinkhorn with global
tokens using gather operations in standard neu-
ral network packages, as their attention scores are
still calculated by dot product and softmax oper-
ations. Thus, in our experiments, except for the
kernel-based/low-rank methods, we augment all
other models with global tokens to offset the poten-
tial performance gap resulting from this trick.

3 Experiment Setup

We restrict our studies to encoder-only models
and leave the analysis of generative models to fu-
ture work. We begin by implementing a collec-
tion of efficient attentions with a unified frame-
work (Lefaudeux et al., 2021), which allows us
to plug these models into our pretraining-and-
finetuning pipeline in a consistent fashion.

3.1 LRA Experiments

Following recent work on efficient long-range at-
tentions, we take the LRA benchmark as our first
set of experiments. As our focus here is on NLP
tasks, we consider a subset of LRA tasks with text
inputs, i.e., the ListOps, IMDB sentiment analysis,
and text matching tasks. All tasks are formulated as
classification problems: ListOps requires the model
to predict the correct output of an expression (10-
way classification), sentiment analysis is to predict
the positive/negative labels of IMDB reviews and
text matching aims to predict citation links between
papers. We follow the hyperparameter settings of
recent work (Xiong et al., 2021; Zhu et al., 2021).
Two-layer Transformer encoders are used across all
tasks and enough training updates are allowed to en-
sure convergence’. Note that this is different from
the setup proposed in the original LRA benchmark,
where different tasks adopt different model sizes. It
is observed from recent work that two-layer models
with smaller dimensions are sufficient to achieve
similar or better results than previously reported
results. The final classification layer is added on
top of the representations of [CLS] tokens which
are prepended to each sequence.

3.2 Pretraining and Downstream Tasks

For practical NLP application, large-scale self-
supervised training has become an indispensable
ingredient to fully unlock the power of Transformer
models. In terms of the experiment scale and test-
ing settings, there is a clear gap between LRA’s
setup and how we apply state-of-the-art Trans-
former models in practice. For the second set of
experiments, we aim to test these models at scale
and investigate whether the results on the LRA
benchmark are accurate indicators for real-world
long-context tasks after standard large-scale pre-
training and finetuning.

5The limit of training updates is arbitrarily set in LRA and
various work have reported hugely improved results on the
text matching task, simply by running more training steps.
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Pretraining Resource. Following Beltagy et al.
(2020), we compile a corpus that contains mostly
long documents, including Stories (Trinh and Le,
2018), RealNews (Zellers et al., 2019), Books cor-
pus (Zhu et al., 2015) and English Wikipedia. To
make the experiments manageable and relevant for
standard GPU hardware, we restrict each model’s
memory usage close to the 16GB threshold when
taking 4,096 tokens in each training batch. We
control the batch size and training update across
all models: we use a batch size of 256 sequences
(2% tokens) and pretrain each model using the
standard masked language modeling objective for
100k updates. We find that all models’ training
curves almost stabilize after this amount of training
steps. We use 32 A100 GPUs for pretraining and
all model runs are finished within around 2 days.

Pretraining Architecture In contrast to Long-
former (Beltagy et al., 2020) and Bigbird (Zaheer
et al., 2020) where the models are initialized from
RoBERTza before pretraining on long documents,
we pretrain these models from scratch, as our goal
here is to ensure fair comparison and not all archi-
tectures can reuse weights from a standard trans-
former model. In particular, Nystrom and Per-
former do not use the standard dot-product and
softmax to compute attention probabilities, mak-
ing their parameters not compatible with common
models like RoOBERTa or BERT. Furthermore, other
models like Linformer or LongShort introduce ad-
ditional parameters inside the attention module.
In our initial experiments, we observe initializing
from the RoBERTa put these models at a significant
disadvantage compared to other models (e.g., local
window attention) that are more compatible with
vanilla transformers. Apart from the expanded posi-
tion embedding matrix and the attention blocks, the
architecture hyperparameters are consistent with
RoBERTa-large. For both LRA and the large-scale
experiments, we adopt the pre layer-normalization
trick (Xiong et al., 2020) for feedforward and at-
tention blocks. This usually results in better per-
formance in LRA and turns out to be essential for
several models in the pretraining experiments.® See
additional model-specific architecture settings and
models’ average memory usage in the Appendix.

Downstream Datasets and Metrics. We con-
sider practical tasks that naturally involve long

®Linformer and Performer cannot reach reasonable per-
plexity without pre-layer normalization.

documents. We test extractive QA over long docu-
ments, long document classification, and document
retrieval. For the first two tasks, we use TriviaQA
and Hyperpartisan classification respectively, both
of which have been used in existing long Trans-
former work (Beltagy et al., 2020). For full docu-
ment retrieval, we construct the dataset based on
recent open-domain QA work (Lee et al., 2019)
that uses passage-level retrievers. We take an ex-
isting passage corpus from Karpukhin et al. (2020)
and reconstruct the document-level corpus. We
consider a document to be positive if it includes
the answer passage. We reported token-level an-
swer exact match and F1 for extractive QA and
the classification accuracy for Hyperpartisan. For
the retrieval task, for the ease of experiments, we
reported the mean reciprocal rank on the dev set’,
which has been shown to correlate well with fi-
nal retrieval metric like answer recall (Oguz et al.,
2021). We conduct grid search for all tasks and
report the best dev results. Given the small size
of the Hyperpartisan dataset, we reported averaged
results from 4 random seeds.

Task-specific Architectures for Finetuning.
We use standard architectures for the finetuning
tasks: for extractive QA, a single-layer MLP span
predictor is added on top of the output token
representations; the classification task uses a
binary MLP classifier that takes the [CLS] vector
as input. For retrieval, we share the query and
document encoder using our pretrained models
and use dot-product of the [CLS] vectors as the
similarity score. For models that are compatible
with global tokens, we use all the question tokens
as global tokens in the QA task and use a single
global token at the start of the sequences for
both classification and retrieval. Except for the
Hyperpartisan dataset, the document lengths of the
other two datasets usually exceed 4,096 tokens
after tokenization. In these cases, we drop the
tokens outside the models’ position range. We
put further implementation details and each task’s
length statistics in the Appendix.

4 Results and Analysis
4.1 Models Perform Similarly in LRA

We report our reimplemented LRA results in Ta-
ble 1. While previous work (Tay et al., 2021) has
"For each question, the ground-truth document will be

ranked with all documents (both positive and negative) corre-
sponding to the dev-set questions.
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Model ListOps Text Matching | Avg Acc | GFlops
Learnable attention pattern

Sinkhorn 37.6 638 80.4 60.6 0.289
LSH 37.9 62.5 80.5 60.3 0.273
Low-rank/kernel-based approximation

Linformer 37.7 61.9 78.4 59.3 0.271
Nystrom 37.9 66.1 81.0 61.7 0.256
Performer 37.1 66.1 79.8 61.0 0.205
Hybrid attention

Long-Short | 37.7 657 816 | 617 | 0.199
Fixed attention pattern

Local Window 374  65.7 81.6 61.6 0.153
Blockwise LW | 374  65.6 81.3 61.4 0.146

Table 1: LRA (the text-input subsets) results with our reimplementations. We did not observe significant perfor-
mance gaps between different attention variants and simple local attentions remain strong compared to the best

Nystrom attention.

shown a clear performance gap between different
models, we find that with proper tuning, the results
of several models could be significantly improved,
(e.g., Sinkhorn, Linformer, Reformer, Performer)
and there is no significant performance gap be-
tween any of the models when using a similar level
of compute (measure by FLOPS). It is worth not-
ing that these improved results are not obtained
by increasing the complexity of models (e.g., by
using larger bucket size in Sinkhorn), as our im-
plementation either uses similar or smaller size
models compared to existing work. Also note that
while the single global token we added to Sinkhorn
and LSH might be essential for some performance
gains, it only brings trivial computation overhead.

4.2 Pretraining and Downstream Tasks

We now evaluate these models on practical bench-
marks that involve real-world long documents. As
shown in Table 2, after we scale up the experi-
ments and control the memory consumption of
each model, we see more clear differences be-
tween these models than what we observe in LRA.
Clearly, fixed local attentions remain to be strong
baselines. However, in contrast to LRA, we ob-
serve local attentions are significantly better than
the other attention variants, for both pretraining
perplexity and downstream task results. The only
exception in terms of the pretraining perplexity is
the hybrid Long-Short attention, which already in-
tegrates a local attention component: it achieves

better perplexity than fixed local attentions, but the
downstream results are at most on par with much
simpler models like Blockwise LW. It is worth not-
ing that while we only control the training updates
and memory usage in Table 2, the conclusion still
holds if we control the training time of each model:
We compare the training perplexity of Blockwise
LW attention and other faster models with fixed
training time in Table 3.

Even though our LRA experiments also study
tasks with text inputs, we see clear discrepancies
between the two sets of experiments. Apart from
models with fixed local attention patterns, improve-
ments on these text LRA tasks often do not trans-
fer to the standard scaled pretraining-finetuning
experiments. For instance, while Performer can
outperform most of the non-local attention meth-
ods on LRA, it performs poorly on both large-scale
MLM and downstream long-context tasks. Sim-
ilarly, while Nystrom is significantly better than
LSH in LRA on average, we observe the oppo-
site trend in Table 2. Among the three tasks, only
ListOps is loosely aligned with the MLM perplex-
ity. However, the gaps between each model on this
task are still too narrow to be indicative.

Given that large-scale pretraining has become
the gold-standard paradigm to build state-of-the-art
NLP models. Our findings here call for a more
careful and reliable evaluation of lots of existing
and emerging long-range attentions. On the other
hand, our results also reveal that the local context
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Models MLM Pretraining Downstream Tasks

PPL | kword/sec 1 | TriviaQA Doc Retrieval Hyperpartisan
Learnable attention pattern
Sinkhorn 4.03 11.8 63.3/68.5 80.9 95.0
LSH 3.63 10.0 62.9/67.5 83.6 92.2
Low-rank/kernel-based approximation
Linformer 4.14 24.6 59.8/65.2 80.3 88.7
Nystrom 3.79 9.5 51.5/57.3 83.1 89.5
Performer 5.58 17.2 24.5/31.9 66.8 94.9
Hybrid attention
Long-Short | 3.36 84 | 66.5/71.4 84.5 91.5
Fixed local attention pattern
Sliding Window | 3.47 9.2 65.6/70.7 83.2 95.3
Blockwise LW 3.39 13.5 68.1/72.9 85.0 95.0

Table 2: MLM pretraining and downstream task results.

Model | MLM Train Perplexity
Linformer 4.31
Performer 6.36
Blockwise LW 4.04

Table 3: Training perplexity of our best fixed local at-
tention and other faster attention variants. Each model
uses similar GPU memory and training time.

might still be highly essential even in long context
tasks. In the following section, we conduct further
analysis on local attention models and attempt to
identify the key ingredients of building strong NLP
models for downstream long-context tasks.

4.3 Analysis on Local Attentions

As we have seen in §4.2, models that compute ex-
act attention for local contexts around each token
achieve better results. Moreover, the Blockwise
LW variant performs the best even it does not guar-
antee a balanced left and right context window for
each token. Given these intriguing findings, we
aim to investigate the following questions: How
effective are the long-range mechanism in local
attention models? and Whether the studied long-
context tasks still mostly rely on locality bias?

Ablation Study. In the Blockwise LW model,
there are two mechanisms that enable long-range
connections: the global tokens and the attention
window overlap, i.e., each token will additionally
attend to half the tokens in the neighboring blocks,
and the receptive field increases with model depth.

While both are adopted as common practice in ex-
isting work (Zaheer et al., 2020; Beltagy et al.,
2020), we study the isolated effect of each compo-
nent in both pretraining and finetuning experiments.
For the non-overlap variant, we increase the block
size by a factor of 2 such that the amount of to-
kens each token attends to remains the same. We
show the results in Table 4. Surprisingly, we see
different stories in terms of MLLM pretraining and
downstream tasks. While both mechanisms are
useful for achieving lower MLM perplexity, only
the global-token mechanism seems important for
downstream tasks. Note that in the document re-
trieval tasks, removing both mechanisms results in
slightly better performance. Now the model is only
able to use the first block of the whole document
for retrieval. While this seems to suggest that this
task is highly local and involves strong positional
bias®, the gap might be too trivial to be conclu-
sive. Additionally, we only use a single global
token for this task, it is likely that assigning more
global tokens, e.g., at passage boundaries, could
bring additional improvements. Investigating the
particular task further is beyond scope of this work.
In terms of the effect of attention-window overlap,
it is expected that this scheme is crucial for lower
perplexity: it not only enables more distant depen-
dencies but also reduces the number of "boundary
tokens" which can only attend to one side of the
context. However, it is counter-intuitive that the

8The answer context appears at the beginning of the
Wikipedia page.
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Model \ MLM PPL  TriviaQA  NQ Doc Retrieval =~ Hyperpartisan
Blockwise LW 3.39 68.1/72.9 85.0 95.0
- w/o overlap 3.52 68.4/73.2 86.3 96.5
- w/o overlap & global tokens 3.54 56.5/61.0 85.4 94.6

Table 4: Ablation of the Blockwise LW Model.

overlapping attention links between neighboring
blocks, which adds more long-range information,
result in worse downstream performance. Also,
note that this observation is consistent for all the
tasks we studied. There are two possible implica-
tions of this finding: 1) the tested tasks still highly
depend on locality bias, i.e., most of the impor-
tant information can be captured solely from the
local bias, or 2) the overlapping scheme is not ef-
fective at capturing the long-range dependency in
downstream tasks. To confirm either hypothesis,
we conduct another set of experiments with models
that have access to different sizes of context.

On Locality Bias. We take the non-overlapping
variant and experiment with various block sizes to
see whether longer context is important to studied
tasks. We show the results in Table 5 and the pre-
training curves in Figure 2. While the long-range
connections brought by the attention overlap is not
helpful for downstream results, we see that increas-
ing the local block sizes does consistently improve
both pretraining and downstream performance al-
though the improvement becomes modest beyond
block size 256. It is also interesting that the mod-
els with smaller block sizes converge faster at the
early stage of pretraining. This suggests a staged
pretraining process might be more efficient than
directly training from long sequences, which aligns
with Press et al. (2021)’s finding on unidirectional
LMs. Overall, this set of experiments suggests that
increasing model’s capabilities to capture a longer
context is generally helpful for both pretraining and
downstream tasks. However, using overlapping at-
tention windows is not an effective way to make use
of more context. Thus, we hypothesize the MLM
perplexity improvements of overlapping local atten-
tions might mainly come from the reduction of the
“boundary” tokens instead of the ability to capture
long-range dependencies. For downstream tasks,
the issue of “boundary" tokens is not that essential
and the introduction of the overlapping attention
windows might disrupt the effective modeling of
local context, as the attention module needs to ex-
tract both local and distant information from the

Blocksize \ Val PPL TriviaQA Ans F1

64 4.16 68.9
128 3.74 70.7
256 3.52 73.2
512 3.39 73.5

Table 5: Pretraining and long-doc QA results of the
non-overlapping blockwise attention.

—-— blocksize = 64
blocksize = 128
- blocksize = 256
blocksize = 512

Perplexity

10000 20000 30000 40000 50000 60000 70000 80000
Training update steps

Figure 2: Pretraining curves of the non-overlapping
block attentions with various context windows.

same set of tokens.’

Initializing from Existing Short Models.
While we train all models from scratch for the sake
of fair comparison, existing state-of-the-art long
context models like Longformer (Beltagy et al.,
2020) or BigBird (Zaheer et al., 2020) usually
initialize their longer models from an extensively
pretrained short model like RoOBERTa (Liu et al.,
2019). With simple techniques like positional
embedding copying, a strong long-context encoder
can be initialized without the need of pretraining
from scratch. To test our findings from the above
analysis in this setting, we follow the same scheme

°As the depth of the model increase, the tokens’ represen-
tation will be added information of more distant tokens.

Blocksize | Speed T | Ans EM/F1
Longformer (64k) | 6.6k | 73.1/77.8
Blockwise LW w/o overlap (64k) | 14.8k | 73.2/77.9

Table 6: Comparing with Longformer with TriviaQA
when initializing the models from RoBERTa. Speed is
measure by thousand word per second at pretraining.
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but use the non-overlapping block attention
as discussed in §4.3. We compare this model
with Longformer (based on Sliding Window
attention) as it uses the same long-doc corpus and
pretrain-and-finetune pipeline (e.g., packages and
downstream data processing) as our experiments. '
Same as our setting in §4.2, here we control the
batch size and number of training updates: we
use a batch size of 64 and train the model for
64k steps. Note that as we drop the attention
window overlaps, the model is 2x more efficient
than Longformer: Given the same window/block
size B and sequence length L, the complexity
of the non-overlapping block attention is L x B
compared to Longformer’s 2L x B. We show the
TriviaQA results in Table 6, where the speed is
measured by words per second during pretraining.
With only half of the pretraining compute, our
model with disjoint attention blocks achieves
slightly better performance than Longformer. This
confirms that our findings of the attention overlap
from the above section are still valid when the
models are not trained from scratch.

5 Related Work

Long-Range Context in Language Models.
Various studies have investigated the effective us-
age of distant context in unidirectional language
models. Khandelwal et al. (2018) look into the con-
text usage of LSTM LMs and find that these models
are only capable to make full use of the nearby 50
tokens and the longer range context is only roughly
captured, i.e., excluding detailed information such
as word orders. Similarly, O’Connor and Andreas
(2021) studies the mid- and long-range context us-
age in transformer LMs, by manipulating the order-
ing and lexical information in the text. Their experi-
ments show that while long-range context is usually
helpful, most of the usable information is carried
by local ordering statistics and non-function words
instead of detailed content like sentence orders.
These observations provide a possible explanation
of our ablation experiments in §4.3 that adding
overlaps to attention windows does not yield better
downstream results, despite allowing the capture
of more long-range interaction. Press et al. (2021)
observe diminishing returns as they increase the
context length when using sliding windows at infer-

"Note that while BigBird has a similar overlapping local
attention and outperforms Longformer, it uses a larger corpus,

more pretraining compute and different finetune pipelines,
making a direct comparison difficult.

ence time. They propose a staged training paradigm
that train LMs from smaller context to longer ones.
This paradigm can more efficiently use the training
compute and achieves lower perplexity compared
to directly training with long sequences. Given that
models with smaller attention windows converge
faster at early training steps (Figure 2), the staged
training might also benefit MLM pretraining but
further investigation is required to validate whether
it can also bring downstream improvements.

Other Long-Range Architectures. Instead of
modifying the attention calculation, other work
proposes to augment transformers with parametric
long-term memories. Transformer-XL (Dai et al.,
2019) maintains frozen activations of previous to-
kens in memory and uses them as additional inputs.
To handle the shift of positional information of
these activations, it also requires a relative position
encoding mechanism which brings additional com-
putation cost. The Compressive Transformer (Rae
et al., 2020) takes a similar scheme but proposes
to use compression modules to account for even
further memories. Both methods cannot be directly
applied to long-context understanding tasks. Under
the scheme of kernel-based methods, Katharopou-
los et al. (2020); Peng et al. (2021); Schlag et al.
(2021) also attempt to linearize the softmax with
kernel methods. The core ideas of these methods
are similar to Performer and they only differ in the
choice of kernel functions. Outside of the trans-
former families, a recent work (Lei, 2021) proposes
to augment recurrent LMs with minimal attention
blocks. It is more efficient while achieving stronger
LM perplexity compared to Transformer-XL. How-
ever, it is still unknown whether this model scales
as well as transformer architectures.

6 Conclusion

We present a systematic study of recent proposed ef-
ficient attention variants on real-world long-context
NLP tasks. In contrast to existing work, we are
the first to test these models with a set of unified
and large-scale experiments. Our results reveal
the gap between a widely used benchmark and
practical downstream tasks after conducting large-
scale pretraining. Among all the studied attention
methods, we find that the simplest local attentions
outperform other complex attention paradigms on
downstream tasks. We also show that existing local-
attention models can be further simplified by re-
moving the attention-window overlap, resulting in
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a faster model that achieves similar or better re-
sults. Importantly, our work calls for more careful
and practical evaluation protocols while developing
long-context NLP models.
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A Appendix

Downstream Task ‘ Hyperparameter Grid

TriviaQA learning rate: /e-5, 3e-5, 5e-6;
warmup ratio: 0%, 10% of total steps;
random seed: 42, 3, 4321,

batch size: 32;

max epochs: 10

NQ Doc Retrieval | learning rate: /e-5, Se-6, 3e-5;
random seed: 42, 3;
batch size: §;

max epochs: 10

learning rate: /e-5, 3e-5;
random seed: 42, 3, 5, 1992;
batch size: 8;

max epochs: 40

Hyperpartisan

Table 7: Hyperparamters of downstream finetuning.

TriviaQA
AveragelPgs5¢,

769.812,067.0 | 3,333.9111,444.3 | 6,732.9117,493.4

NQ doc Retrieval
AveragelPgs5¢,

Hyperpartisan
AveragelPgs59,

Table 8: Document length statistics in the tested down-
stream datasets.

Downstream Task Details. On TriviaQA, there
are usually multiple matched spans in the docu-
ment, we train the model to maximize the marginal-
ized probability of all matched spans. The predic-
tion head in the classification task is defined as a
2-layer MLP with tanh activations. For the retrieval
task, we follow existing passage retrieval methods
and use in-batch documents as negative retrieval
targets. The loss is simply a cross-entropy loss de-
fined over the scores of all documents in the batch.
All the models are finetuned using the Adam opti-
mizer with linear decays. We conduct grid search
for all the tested models. The hyperparameters for
all the three tasks are shown in Table 7. In Table 8,
we show the average and the 95% percentile of the
document lengths in each dataset. As mentioned in
the main text, we drop the tokens exceeding 4,096
tokens.

Pretraining Details. Our pretraining pipeline is
implemented with fairseq!'. We control the mem-
ory usage of each model by adjusting model-
specifc hyperparameters. The details in shown in
Table 9. Due to different model designs, we are not
able to exactly control the memory consumption.

"https://fairseq.readthedocs.io/en/
latest/

However, the tested local attentions typical requires
less GPU memory than all the other models.
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Model | Avg Memory Usage (GB)  Architecture Setting

Sinkhorn 14.2 block size: 128

LSH 18.2 num of hash functions: 4; chunk size: 16

Linformer 17.2 compression ratio: 8

Nystrom 16.3 num of landmarks: 256; convolution kernel size: 35;
Performer 14.2 random feature dimension: 256; kernel function: relu
Long-Short 16.3 block size: 128; num of landmarks: 32

Sliding Window 15.3 attention window size: 256

Blockwise LW 15.1 block size: 128; overlap: 64

Blockwise LW w/o global toks 14.7 block size: 128

Blockwise LW w/o overlap 13.4 block size: 256

Blockwise LW w/o overlap & global 13.2 block size: 256

Table 9: Model-specific architecture settings and each model’s GPU memory usage when feeding in a single
sequence of 4,096 tokens.
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