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Abstract

Event extraction requires high-quality expert
human annotations, which are usually expen-
sive. Therefore, learning a data-efficient event
extraction model that can be trained with only a
few labeled examples has become a crucial chal-
lenge. In this paper, we focus on low-resource
end-to-end event extraction and propose DE-
GREE, a data-efficient model that formulates
event extraction as a conditional generation
problem. Given a passage and a manually de-
signed prompt, DEGREE learns to summarize
the events mentioned in the passage into a nat-
ural sentence that follows a predefined pattern.
The final event predictions are then extracted
from the generated sentence with a determinis-
tic algorithm. DEGREE has three advantages to
learn well with less training data. First, our de-
signed prompts provide semantic guidance for
DEGREE to leverage label semantics and thus
better capture the event arguments. Moreover,
DEGREE is capable of using additional weakly-
supervised information, such as the description
of events encoded in the prompts. Finally, DE-
GREE learns triggers and arguments jointly in
an end-to-end manner, which encourages the
model to better utilize the shared knowledge
and dependencies among them. Our experimen-
tal results demonstrate the strong performance
of DEGREE for low-resource event extraction.

1 Introduction

Event extraction (EE) aims to extract events, each
of which consists of a trigger and several partici-
pants (arguments) with their specific roles, from
a given passage. For example, in Figure 1, a Jus-
tice:Execute event is triggered by the word “execu-
tion” and this event contains three argument roles,
including an Agent (Indonesia) who carries out the
execution, a Person who is executed (convicts), and
a Place where the event occurs (not mentioned in
the passage). Previous work (Yang et al., 2019a;
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Passage: Indonesia will delay the execution of six convicts including an Indian on 

death row after five of them appealed to the Supreme Court for a second review.

Justice:Execute

Justice:Appeal

Person

Plaintiff

Agent

AdjudicatorPlace

Justice:Execute

Agent : Indonesia

Person : convicts

Place : None

Justice:Appeal

Plaintiff : five

Prosecutor : None

Adjudicator : Supreme Court

Place : Indonesia

Figure 1: Two examples of events (Justice:Execute and
Justice:Appeal) extracted from the given passage.

Fincke et al., 2021) usually divides EE into two sub-
tasks: (1) event detection, which identifies event
triggers and their types, and (2) event argument
extraction, which extracts the arguments and their
roles for given event triggers. EE has been shown to
benefit a wide range of applications, e.g., building
knowledge graphs (Zhang et al., 2020), question
answering (Berant et al., 2014; Han et al., 2021),
and other downstream studies (Han et al., 2019a;
Hogenboom et al., 2016; Sun and Peng, 2021).

Most prior works on EE rely on a large amount
of annotated data for training (Nguyen and Grish-
man, 2015; Nguyen et al., 2016; Han et al., 2019b;
Du and Cardie, 2020; Huang et al., 2020; Huang
and Peng, 2021; Paolini et al., 2021). However,
high-quality event annotations are expensive to ob-
tain. For example, the ACE 2005 corpus (Dodding-
ton et al., 2004), one of the most widely used EE
datasets, requires two rounds of annotations by lin-
guistics experts. The high annotation costs make
these models hard to be extended to new domains
and new event types. Therefore, how to learn a
data-efficient EE model trained with only a few
annotated examples is a crucial challenge.

In this paper, we focus on low-resource event
extraction, where only a small amount of training
examples are available for training. We propose
DEGREE (Data-Efficient GeneRation-Based Event
Extraction), a generation-based model that takes
a passage and a manually designed prompt as the
input, and learns to summarize the passage into a
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Prompt

Event Type Description The event is related to conflict and some violent physical act.

Event Keywords Similar triggers such as war, attack, terrorism.

E2E Template
Event trigger is <Trigger>. \n 

some attacker attacked some facility, someone, or some organization by some way in somewhere.

Output Text

Event trigger is detonated. \n Palestinian attacked jeep and soldiers by bomb in Gaza Strip.

Encoder Decoder

Passage Prompt[SEP]

Output Text
Event Trigger detonated

Attacker Palestinian

Target jeep, soldiers

Instrument bomb

Place Gaza Strip

Passage:   Earlier Monday , a 19-year-old Palestinian riding a bicycle detonated a 30-kilo ( 66-pound ) bomb near a 

military jeep in the Gaza Strip , injuring three soldiers.

Query Type:
Conflict:Attack

Figure 2: An illustration of DEGREE for predicting a Contact:Attack event. The input of DEGREE consists of the
given passage and our design prompt that contains an event type description, event keywords, and a E2E template.
DEGREE is trained to generate an output to fill in the placeholders (underlined words) in the E2E template with
triggers and arguments. The final event prediction is then decoded from the generated output.

natural sentence following a predefined template,
as illustrated in Figure 2. The event triggers and
arguments can then be extracted from the generated
sentence by using a deterministic algorithm.

DEGREE enjoys the following advantages to
learn well with less training data. First, the frame-
work provides label semantics via the designed
template in the prompts. As the example in Fig-
ure 2 shows, the word “somewhere” in the prompt
guides the model to predict words being similar
to location for the role Place. In addition, the
sentence structure of the template and the word

“attacked” depict the semantic relation between
the role Attacker and the role Target. With these
kinds of guidance, DEGREE can make more accu-
rate predictions with less training examples. Sec-
ond, the prompts can incorporate additional weak-
supervision signal about the task, such as the de-
scription of the event and similar keywords. These
resources are usually readily available. For exam-
ple, in our experiments, we take the information
from the annotation guideline, which is provided
along with the dataset. This information facilitates
DEGREE to learn under a low-resource situation.
Finally, DEGREE is designed for end-to-end event
extraction and can solve event detection and event
argument extraction at the same time. Leveraging
the shared knowledge and dependencies between
the two tasks makes our model more data-efficient.

Existing works on EE usually have only one or
two of above-mentioned advantages. For exam-

ple, previous classification-based models (Nguyen
et al., 2016; Wang et al., 2019; Yang et al., 2019b;
Wadden et al., 2019; Lin et al., 2020) can hardly
encode label semantics and other weak supervision
signals. Recently proposed generation-based mod-
els for event extraction solved the problem in a
pipeline fashion; therefore, they cannot leverage
shared knowledge between subtasks (Paolini et al.,
2021; Li et al., 2021). Furthermore, their generated
outputs are not natural sentences, which hinders the
utilization of label semantics (Paolini et al., 2021;
Lu et al., 2021). As a result, our model DEGREE

can achieve significantly better performance than
prior approaches on low-resource event extraction,
as we will demonstrate in Section 3.

Our contributions can be summarized as follows:

• We propose DEGREE, a generation-based event
extraction model that learns well with less data
by better incorporating label semantics and
shared knowledge between subtasks (Section 2).

• Experiments on ACE 2005 (Doddington et al.,
2004) and ERE-EN (Song et al., 2015) demon-
strate the strong performance of DEGREE in the
low-resource setting (Section 3).

• We present comprehensive ablation studies in
both the low-resource and the high-resource set-
ting to better understand the strengths and weak-
nesses of our model (Section 4).

Our code and models can be found at https:
//github.com/PlusLabNLP/DEGREE.
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2 Data-Efficient Event Extraction

We introduce DEGREE, a generation-based model
for low-resource event extraction. Unlike previous
works (Yang et al., 2019a; Li et al., 2021), which
separate event extraction into two pipelined tasks
(event detection and event argument extraction),
DEGREE is designed for the end-to-end event ex-
traction and predict event triggers and arguments
at the same time.

2.1 The DEGREE Model

We formulate event extraction as a conditional gen-
eration problem. As illustrated in Figure 2, given a
passage and our designed prompt, DEGREE gener-
ates an output following a particular format. The
final predictions of event triggers and argument
roles can be then parsed from the generated out-
put with a deterministic algorithm. Compared to
previous classification-based models (Wang et al.,
2019; Yang et al., 2019b; Wadden et al., 2019; Lin
et al., 2020), the generation framework provides a
flexible way to include additional information and
guidance. By designing appropriate prompts, we
encourage DEGREE to better capture the dependen-
cies between entities and, therefore, to reduce the
number of training examples needed.

The desired prompt not only provides informa-
tion but also defines the output format. As shown
in Figure 2, it contains the following components:

• Event type definition describes the definition
for the given event type.1 For example, “The
event is related to conflict and some violent phys-
ical act.” describes a Conflict:Attack event.

• Event keywords presents some words that are
semantically related to the given event type. For
example, war, attack, and terrorism are three
event keywords for the Conflict:Attack event. In
practice, we collect three words that appear as
the triggers in the example sentences from the
annotation guidelines.

• E2E template defines the expected output for-
mat and can be separated into two parts. The
first part is called ED template, which is de-
signed as “Event trigger is <Trigger>”, where

“<Trigger>” is a special token serving as a place-
holder. The second part is the EAE template,
which differs based on the given event type. For
example, in Figure 2, the EAE template for a

1The definition can be derived from the annotation guide-
lines, which are provided along with the datasets.

Conflict:Attack event is “some attacker attacked
some facility, someone, or some organization
by some way in somewhere”. Each underlined
string starting with “some-” serves as a place-
holder corresponding to an argument role for a
Conflict:Attack event. For instance, “some way”
corresponds to the role Instrument and “some-
where” corresponds to the role Place. Notice
that every event type has its own EAE template.
We list three EAE templates in Table 1. The
full list of EAE templates and the construction
details can be found in Appendix A.

2.2 Training

The training objective of DEGREE is to gener-
ate an output that replaces the placeholders in
E2E template with the gold labels. Take Figure 2
as an example, DEGREE is expected to replace

“<Trigger>” with the gold trigger (detonated), re-
place “some attacker” with the gold argument for
role Attacker (Palestinian), and replace “some way”
with the gold argument for role Instrument (bomb).
If there are multiple arguments for the same role,
they are concatenated with “and”; if there is no
predicted argument for one role, the model should
keep the corresponding placeholder (i.e, “some-”
in the E2E template). For the case that there are
multiple triggers for the given event type in the
input passage, DEGREE is trained to generate the
output text that contains multiple E2E template
such that each E2E template corresponds to one
trigger and its argument roles. The hyperparameter
settings are detailed in Appendix B.

2.3 Inference

We enumerate all event types and generate an out-
put for each event type. After we obtain the gen-
erated sentences, we compare the outputs with
E2E template to determine the predicted triggers
and arguments in string format. Finally, we apply
string matching to convert the predicted string to
span offsets in the passage. If the predicted string
appears in the passage multiple times, we choose
all span offsets that match for trigger predictions
and choose the one closest to the given trigger span
for argument predictions.

2.4 Discussion

Notice that the E2E template plays an important
role for DEGREE. First, it serves as the control sig-
nal and defines the expected output format. Second,
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Event Type EAE Template
Life:Divorce somebody divorced in somewhere.
Transaction:Transfer-Ownership someone got something from some seller in somewhere.

Justice:Sue somebody was sued by some other in somewhere. The adjudication was judged by
some adjudicator.

Table 1: Three examples of EAE templates for the ACE 2005 corpus.

it provides label semantics to help DEGREE make
accurate predictions. Those placeholders (words
starting with “some-”) in the E2E template give
DEGREE some hints about the entity types of ar-
guments. For instance, when seeing “somewhere”,
DEGREE tends to generate a location rather than a
person. In addition, the words other than “some-”
describe the relationships between roles. For exam-
ple, DEGREE knows the relationship between the
role Attacker and the role Target (who is attacking
and who is attacked) due to E2E template. This
guidance helps DEGREE learn the dependencies
between entities.

Unlike previous generation-based approaches
(Paolini et al., 2021; Li et al., 2020; Huang et al.,
2021), we intentionally write E2E templates in nat-
ural sentences. This not only uses label semantics
better but also makes the model easier to leverage
the knowledge from the pre-trained decoder. In
Section 4, we will provide experiments to demon-
strate the advantage of using natural sentences.

Cost of template constructing. DEGREE does
require human effort to design the templates; how-
ever, writing those templates is much easier and
more effortless than collecting complicated event
annotations. As shown in Table 1, we keep the
EAE templates as simple and short as possible.
Therefore, it takes only about one minute for peo-
ple who are not linguistic experts to compose a
template. In fact, several prior works (Liu et al.,
2020; Du and Cardie, 2020; Li et al., 2020) also use
constructed templates as weakly-supervised signals
to improve models. In Section 4, we will study how
different templates affect the performance.

Efficiency Considerations. DEGREE requires to
enumerate all event types during inference, which
could cause efficiency considerations when extend-
ing to applications that contain many event types.
This issue is minor for our experiments on the two
datasets (ACE 2005 and ERE-EN), which are rela-
tively small scales in terms of the number of event
types. Due to the high cost of annotations, there is
hardly any public datasets for end-to-end event ex-

traction on a large scale,2 and we cannot provide a
more thorough studies when the experiments scale
up. We leave the work on benchmarking and im-
proving the efficiency of DEGREE in the scenario
considering more diverse and comprehensive types
of events as future work.

2.5 DEGREE in Pipeline Framework
DEGREE is flexible and can be easily modified
to DEGREE(PIPE), which first focuses event de-
tection (ED) and then solves event argument ex-
traction (EAE). DEGREE(PIPE) consists of two
models: (1) DEGREE(ED), which aims to exact
event triggers for the given event type, and (2) DE-
GREE(EAE), which identifies argument roles for
the given event type and the corresponding trig-
ger. DEGREE(ED) and DEGREE(EAE) are similar
to DEGREE but with different prompts and output
formats. We describe the difference as follows.

DEGREE(ED). The prompt of DEGREE(ED)
contains the following components:

• Event type definition is the same as the ones
for DEGREE.

• Event keywords is the same as the one for DE-
GREE.

• ED template is designed as “Event trigger is
<Trigger>”, which is actually the first part of
the E2E template.

Similar to DEGREE, the objective of DEGREE(ED)
is to generate an output that replaces “<Trigger>”
in the ED template with event triggers.

DEGREE(EAE). The prompt of DEGREE(EAE)
contains the following components:

• Event type definition is the same as the one
for DEGREE.

• Query trigger is a string that indicates the trig-
ger word for the given event type. For example,

“The event trigger word is detonated” points out
that “detonated” is the given trigger.
2To the best of our knowledge, MAVEN (Wang et al.,

2020) is the only publicly available large-scale event dataset.
However, the dataset only focuses on event detection without
considering event arguments.
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• EAE template is an event-type-specific tem-
plate mentioned previously. It is actually the
second part of E2E template.

Similar to DEGREE, the goal for DEGREE(EAE) is
to generate an outputs that replace the placeholders
in EAE template with event arguments.

In Section 3, we will compare DEGREE with
DEGREE(PIPE) to study the benefit of dealing with
event extraction in an end-to-end manner under the
low-resource setting.

3 Experiments

We conduct experiments for low-resource event
extraction to study how DEGREE performs.

3.1 Experimental Settings

Datasets. We consider ACE 2005 (Doddington
et al., 2004) and follow the pre-processing in Wad-
den et al. (2019) and Lin et al. (2020), resulting
in two variants: ACE05-E and ACE05-E+. Both
contain 33 event types and 22 argument roles. In
addition, we consider ERE-EN (Song et al., 2015)
and adopt the pre-processing in Lin et al. (2020),
which keeps 38 event types and 21 argument roles.

Data split for low-resource setting. We gener-
ate different proportions (1%, 2%, 3%, 5%, 10%,
20%, 30%, and 50%) of training data to study the
influence of the size of the training set and use the
original development set and test set for evalua-
tion. Appendix C lists more details about the split
generation process and the data statistics.

Evaluation metrics. We consider the same crite-
ria in prior works (Wadden et al., 2019; Lin et al.,
2020). (1) Trigger F1-score: an trigger is correctly
identified (Tri-I) if its offset matches the gold one;
it is correctly classified (Tri-C) if its event type also
matches the gold one. (2) Argument F1-score: an
argument is correctly identified (Arg-I) if its offset
and event type match the gold ones; it is correctly
classified (Arg-C) if its role matches as well.

Compared baselines. We consider the follow-
ing classification-based models: (1) OneIE (Lin
et al., 2020), the current state-of-the-art (SOTA) EE
model trained with designed global features. (2)
BERT_QA (Du and Cardie, 2020), which views
EE tasks as a sequence of extractive question an-
swering problems. Since it learns a classifier to
indicate the position of the predicted span, we
view it as a classification model. We also consider

the following generation-based models: (3) TANL
(Paolini et al., 2021), which treats EE tasks as trans-
lation tasks between augmented natural languages.
(4) Text2Event (Lu et al., 2021), a sequence-to-
structure model that converts the input passage to
a tree-like event structure. Note that the outputs
of both generation-based baselines are not natural
sentences. Therefore, it is more difficult for them
to utilize the label semantics. All the implementa-
tion details can be found in Appendix D. It is worth
noting that we train OneIE with named entity an-
notations, as the original papers suggest, while the
other models are trained without entity annotations.

3.2 Main Results

Table 2 shows the trigger classification F1-scores
and the argument classification F1-scores in three
data sets with different proportions of training data.
The results are visualized in Figure 3. Since our
task is end-to-end event extraction, the argument
classification F1-score is the more important metric
that we considered when comparing models.

From the figure and the table, we can observe
that both DEGREE and DEGREE(PIPE) outperform
all other baselines when using less than 10% of the
training data. The performance gap becomes much
more significant under the extremely low data sit-
uation. For example, when only 1% of the train-
ing data is available, DEGREE and DEGREE(PIPE)
achieve more than 15 points of improvement in
trigger classification F1 scores and more than 5
points in argument classification F1 scores. This
demonstrates the effectiveness of our design. The
generation-based model with carefully designed
prompts is able to utilize the label semantics and
the additional weakly supervised signals, thus help-
ing learning under the low-resource regime.

Another interesting finding is that DEGREE and
DEGREE(PIPE) seem to be more beneficial for pre-
dicting arguments than for predicting triggers. For
example, OneIE, the strongest baseline, requires
20% of training data to achieve competitive per-
formance on trigger prediction to DEGREE and
DEGREE(PIPE); however, it requires about 50% of
training data to achieve competitive performance
in predicting arguments. The reason is that the abil-
ity to capture dependencies becomes more impor-
tant for argument prediction than trigger prediction
since arguments are usually strongly dependent on
each other compared to triggers. Therefore, the im-
provements of our models for argument prediction
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Trigger Classification F1-Score (%)

Model Type ACE05-E ACE05-E+ ERE-EN
1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30%

BERT_QA Cls 20.5 40.2 42.5 50.1 61.5 61.3 - - - - - - - - - - - -
OneIE Cls 38.5 52.4 59.3 61.5 67.6 67.4 39.0 52.5 60.6 58.1 66.5 66.4 11.0 36.9 46.7 48.8 51.8 53.5
Text2Event Gen 14.2 35.2 46.4 47.0 55.6 60.7 15.7 38.4 43.9 46.3 56.5 62.0 6.3 25.6 33.5 42.4 46.7 50.1
TANL Gen 34.1 48.1 53.4 54.8 61.8 61.6 30.3 50.9 53.1 55.7 60.8 61.7 5.7 30.8 43.4 45.9 49.0 49.3
DEGREE(PIPE) Gen 55.1 62.8 63.8 66.1 64.4 64.4 56.4 62.5 61.1 62.3 62.5 67.1 32.7 44.5 41.6 50.6 51.1 53.5
DEGREE Gen 55.4 62.1 65.8 65.8 68.3 68.2 49.5 63.5 62.3 68.5 67.6 66.9 27.9 45.5 47.0 53.0 51.7 53.5

Argument Classification F1-Score (%)

Model Type ACE05-E ACE05-E+ ERE-EN
1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30%

BERT_QA Cls 4.7 14.5 26.9 27.6 36.7 38.8 - - - - - - - - - - - -
OneIE Cls 9.4 22.0 26.8 26.8 42.7 47.8 10.4 20.6 29.7 35.5 46.7 48.0 2.6 20.3 29.7 35.1 40.7 43.0
Text2Event Gen 3.9 12.2 19.1 24.9 32.3 39.2 5.7 16.5 21.3 26.4 35.2 42.1 2.3 15.2 23.6 28.7 35.7 38.7
TANL Gen 8.5 17.2 24.7 29.0 34.0 39.2 8.6 22.3 30.4 29.2 34.6 39.0 1.4 20.2 29.5 30.1 35.6 36.9
DEGREE(PIPE) Gen 13.1 26.1 27.6 42.1 40.7 44.0 16.0 26.4 29.9 39.5 41.3 48.5 12.2 29.7 31.4 39.4 41.9 42.2
DEGREE Gen 21.7 30.1 35.5 41.6 46.2 48.7 18.7 34.0 35.7 43.6 48.9 51.2 14.5 28.9 33.4 41.7 42.9 45.5

Table 2: Trigger classification F1-scores and argument classification F1-scores for low-resource event extraction.
Highest scores are in bold and the second best scores are underlined. “Cls” and “Gen” represent classification-
based models and generation-based models, respectively. If the model is a pipelined model, then its argument
predictions are based on its predicted triggers. DEGREE achieves a much better performance than other baselines.
The performance gap becomes more significant for the extremely low-resource situation.
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Figure 3: Trigger classification F1-scores and argument classification F1-scores for low-resource event extraction.
DEGREE achieves a much better performance than other baselines. The performance gap becomes more significant
for the extremely low-resource situation.

are more significant.

Furthermore, we observe that DEGREE is
slightly better than DEGREE(PIPE) under the low-
resource setting. This provides empirical evidence
on the benefit of jointly predicting triggers and ar-
guments in a low-resource setting.

Finally, we perform additional experiments on
few-shot and zero-shot experiments. The results
can be found in Appendix E.

3.3 High-Resource Event Extraction

Although we focus on data-efficient learning for
low-resource event extraction, to better understand
the advantages and disadvantages of our model, we
additionally study DEGREE in the high-resource
setting for controlled comparisons.

Compared baselines. In addition to the EE mod-
els mentioned above: OneIE (Lin et al., 2020),
BERT_QA (Du and Cardie, 2020), TANL (Paolini
et al., 2021), and Text2Event (Lu et al., 2021), we
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Model Type ACE05-E ACE05-E+ ERE-EN
Tri-C Arg-C Tri-C Arg-C Tri-C Arg-C

dbRNN* Cls 69.6 50.1 - - - -
DyGIE++ Cls 70.0 50.0 - - - -
Joint3EE* Cls 69.8 52.1 - - - -
BERT_QA* Cls 72.4 53.3 - - - -
MQAEE* Cls 71.7 53.4 - - - -
OneIE* Cls 74.7 56.8 72.8 54.8 57.0 46.5
TANL Gen 68.4 47.6 68.6 46.0 54.7 43.2
Text2Event* Gen 71.9 53.8 71.8 54.4 59.4 48.3
BART-Gen* Gen 71.1 53.7 - - - -
DEGREE(PIPE) Gen 72.2 55.8 71.7 56.8 57.8 50.4
DEGREE Gen 73.3 55.8 70.9 56.3 57.1 49.6

Table 3: Results for high-resource event extraction.
Highest scores are in bold and the second best scores are
underlined. *We report the numbers from the original
paper. DEGREE has a competitive performance to the
SOTA model (OneIE) and outperform other baselines.

Model Type ACE05-E ACE05-E+ ERE-EN
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

DyGIE++ Cls 66.2 60.7 - - - -
BERT_QA* Cls 68.2 65.4 - - - -
OneIE Cls 73.2 69.3 73.3 70.6 75.3 70.0
TANL Gen 65.9 61.0 66.3 62.3 75.6 69.6
BART-Gen* Gen 69.9 66.7 - - - -
DEGREE(EAE) Gen 76.0 73.5 75.2 73.0 80.2 76.3

Table 4: Results for high-resource event argument ex-
traction. Models predict arguments based on the given
gold triggers. Best scores are in bold. *We report
the numbers from the original paper. DEGREE(EAE)
achieves a new state-of-the-art performance on event
argument extraction.

also consider the following baselines focusing on
the high-resource setting. dbRNN (Sha et al., 2018)
is classification-based model that adds dependency
bridges for event extraction. DyGIE++ (Wad-
den et al., 2019) is a classification-based model
with span graph propagation technique. Joint3EE
(Nguyen and Nguyen, 2019) is a classification-
based model jointly trained with annotations of
entity, trigger, and argument. MQAEE (Li et al.,
2020) converts EE to a series of question answering
problems for argument extraction . BART-Gen (Li
et al., 2021) is a generation-based model focusing
on only event argument extraction.3 Appendix D
shows the implementation details for the baselines.

Results for event extraction. Table 3 shows the
results of high-resource event extraction. In terms
of trigger predictions (Tri-C), DEGREE and DE-
GREE(PIPE) outperforms all the baselines except
for OneIE, the current state-of-the-art model. For
argument predictions (Arg-C), our models have
slightly better performance than OneIE in two out
of the three datasets. When enough training exam-

3We follow the original paper and use TAPKEY as their
event detection model.

Model 10% Data 100% Data
Tri-I Tri-C Tri-I Tri-C

Full DEGREE(ED) 69.3 66.1 75.4 72.2
- w/o Event type definition 67.9 64.4 73.5 70.1
- w/o ED template 68.8 65.8 74.0 70.5
- w/o Event keywords 68.2 64.0 73.5 69.1
- only Event type definition 66.3 63.5 72.6 68.9
- only Event keywords 69.2 63.8 70.8 66.2

Table 5: Ablation study for the components in the
prompt on event detection with ACE05-E.

ples are available, models can learn more sophisti-
cated features from data, which do not necessarily
follow the learned dependencies. Therefore, the ad-
vantage of DEGREE over DEGREE(PIPE) becomes
less obvious. This result justifies our hypothesis
that DEGREE has better performance for the low-
resource setting because of its ability to better cap-
ture dependencies.

Results for event argument extraction. In Ta-
ble 4, we additionally study the performance for
event argument extraction task, where the model
makes argument predictions with the gold trigger
provided. Interestingly, DEGREE(EAE) achieves
pretty strong performance and outperforms other
baselines with a large margin. Combining the re-
sults in Table 3, we hypothesize that event argu-
ment extraction is a more challenging task than
event trigger detection and it requires more train-
ing examples to learn well. Hence, our proposed
model, which takes the advantage of using label se-
mantics to better capture dependencies, achieves a
new state-of-the-art for event argument extraction.

4 Ablation Studies

In this section, we present comprehensive ablation
studies to justify our design. To better understand
the contribution of each component in the designed
prompt and their effects on the different tasks, we
ablate DEGREE(EAE) and DEGREE(ED) for both
low-resource and high-resource situations.

Impacts of components in prompts. Table 5
lists the performance changes when removing the
components in the prompts for event detection
on ACE05-E. The performance decreases when-
ever removing any one of event type definition,
event keywords, and ED template. The results sug-
gest that three components are all necessary.

Table 6 demonstrates how different compo-
nents in prompts affect the performance of event
argument extraction on ACE05-E. Removing
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Model 10% Data 100% Data
Arg-I Arg-C Arg-I Arg-C

Full DEGREE(EAE) 63.3 57.3 76.0 73.5
- w/o Event type definition 60.3 54.4 74.5 71.1
- w/o EAE template 57.0 51.9 73.8 70.4
- w/o Query trigger 55.2 49.9 71.4 69.0
- only Query trigger 51.9 48.1 71.2 69.4
- only EAE template 51.2 46.9 71.4 68.6
- only Event type definition 46.7 42.3 71.4 68.2

Table 6: Ablation study for the components in the
prompt on event argument extraction with ACE05-E.

any one of event type definition, query trigger,
and EAE template leads to performance drops,
which validates their necessity. We observe that
query trigger plays the most important role among
the three and when less training data is given,
the superiority of leveraging any of these weakly-
supervised signal becomes more obvious.

Effects of different template designs. To ver-
ify the importance of using natural sentences as
outputs, we study three variants of EAE templates:

• Natural sentence. Our proposed templates de-
scribed in Section 2, e.g., “somebody was born
in somewhere.”, where “somebody” and “some-
where” are placeholders that can be replaced by
the corresponding arguments.

• Natural sentence with special tokens. It is sim-
ilar to the natural sentence one except for using
role-specific special tokens instead of “some-”
words. For example, “<Person> was born in
<Place>.” We consider this to study the label
semantics of roles.

• HTML-like sentence with special tokens. To
study the importance of using natural sentence,
we also consider HTML-like sentence, e.g.,
“<Person> </Person> <Place> </Place>”.
The model aims to put argument predictions be-
tween the corresponding HTML tags.

The results of all variants of EAE templates on
ACE05-E are shown in Table 7. We notice that
writing templates in a natural language style get
better performance, especially when only a few
data is available (10% of data). This shows our de-
sign’s capability to leverage pre-trained knowledge
in the generation process. Additionally, there are
over 1 F1 score performance drops when replacing
natural language placeholders with special tokens.
This confirms that leveraging label semantics for
different roles is beneficial.

Model 10% Data 100% Data
Arg-I Arg-C Arg-I Arg-C

OneIE 48.3 45.4 73.2 69.3
BART-Gen - - 69.9 66.7
Natural sentence 63.3 57.3 76.0 73.5
Natural sentence w/ special tokens 59.8 55.5 74.7 72.3
HTML-like sentence w/ special tokens 60.8 51.9 74.6 71.4

Table 7: Performances of DEGREE(EAE) on ACE05-E
with different types of templates.

Model 10% Data 100% Data
Arg-I Arg-C Arg-I Arg-C

OneIE 48.3 45.4 73.2 69.3
BART-Gen - - 69.9 66.7
DEGREE(EAE) 63.3 57.3 76.0 73.5
DEGREE(EAE) + variant template 1 61.6 55.5 73.4 70.4
DEGREE(EAE) + variant template 2 63.9 56.9 75.5 72.5

Table 8: Study on the effect of different template con-
structing rules. Experiments is conducted on ACE05-E.

Sensitivity to template design. Finally, we study
how sensitive our model is to the template. In ad-
dition to the original design of templates for event
argument extraction, we compose other two sets
of templates with different constructing rules (e.g.,
different word choices and different orders of roles).
Table 8 shows the results of using different sets of
templates. We observe a performance fluctuation
when using different templates, which indicates
that the quality of templates does affect the perfor-
mance to a certain degree. Therefore, we need to be
cautious when designing templates. However, even
though our model could be sensitive to the template
design, it still outperforms OneIE and BART-Gen,
which are the best classification-based model and
the best generation-based baseline, respectively.

5 Related Work

Fully supervised event extraction. Event ex-
traction has been studied for over a decade (Ahn,
2006; Ji and Grishman, 2008) and most tradi-
tional event extraction works follow the fully su-
pervised setting (Nguyen et al., 2016; Sha et al.,
2018; Nguyen and Nguyen, 2019; Yang et al.,
2019b; Lin et al., 2020; Liu et al., 2020; Li et al.,
2020). Many of them use classification-based mod-
els and use pipeline-style frameworks to extract
events (Nguyen et al., 2016; Yang et al., 2019b;
Wadden et al., 2019). To better leverage shared
knowledge in event triggers and arguments, some
works propose incorporating global features to
jointly decide triggers and arguments (Lin et al.,
2020; Li et al., 2013; Yang and Mitchell, 2016).

Recently, few generation-based event extraction
models have been proposed (Paolini et al., 2021;
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Huang et al., 2021, 2022; Li et al., 2021). TANL
(Paolini et al., 2021) treats event extraction as trans-
lation tasks between augmented natural languages.
Their predicted target—augmented language em-
bed labels into the input passage via using brack-
ets and vertical bar symbols. TempGen (Huang
et al., 2021) is a template-based role-filler entity
extraction model, which generate outputs that fill
role entities into non-natural templated sequences.
The output sequence designs of TANL and Temp-
Gen hinder the models from fully leveraging la-
bel semantics, unlike DEGREE that generates natu-
ral sentences. BART-Gen (Li et al., 2021) is also
a generation-based model focusing on document-
level event argument extraction. They solve event
extraction with a pipeline, which prevents knowl-
edge sharing across subtasks. All these fully su-
pervised methods can achieve substantial perfor-
mance with a large amount of annotated data. How-
ever, their designs are not specific for low-resource
scenarios, hence, these models can not enjoy all
the benefits that DEGREE obtains for low-resource
event extraction at the same time, as we mentioned
in Section 1.

Low-resource event extraction. It has been
a growing interest in event extraction in a sce-
nario with less data. Liu et al. (2020) uses
a machine reading comprehension formulation
to conduct event extraction in a low-resource
regime. Text2Event (Lu et al., 2021), a sequence-to-
structure generation paradigm, first presents events
in a linearized format, and then trains a generative
model to generate the linearized event sequence.
Text2Event’s unnatural output format hinders the
model from fully leveraging pre-trained knowledge.
Hence, their model falls short on the cases with
only extremely low data being available (as shown
in Section 3).

Another thread of works are using meta-learning
to deal with the less label challenge (Deng et al.,
2020; Shen et al., 2021; Cong et al., 2021). How-
ever, their methods can only be applied to event
detection, which differs from our main focus on
studying end-to-end event extraction.

6 Conclusion & Future Work

In this paper, we present DEGREE, a data-efficient
generation-based event extraction model. DEGREE

requires less training data because it better utilizes
label semantics as well as weakly-supervised infor-
mation, and captures better dependencies by jointly

predicting triggers and arguments. Our experimen-
tal results and ablation studies show the superiority
of DEGREE for low-resource event extraction.

DEGREE assumes that some weakly-supervised
information (the description of events, similar key-
words, and human-written templates) is accessible
or not expensive for the users to craft. This as-
sumption may holds for most situations. We leave
the automation of template construction for future
work, which can further ease the needed efforts
when deploying DEGREE in a large-scale corpus.
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A EAE Template Constructing

Our strategy to create an EAE template is first iden-
tifying all valid argument roles for the event type,4

such as Attacker, Target, Instrument, and Place
roles. Then, for each argument role, according to
the semantics of the role type, we select natural
and fluent words to form its placeholder (e.g., some
way for Instrument). This design aims to provide a
simple way to help the model learn both the roles’
label semantics and the event structure. Finally, we
create a natural language sentence that connects all
these placeholders. Notice that we try to keep the
template as simple and short as possible. Table 9
lists all designed EAE templates for ACE05-E and
ACE05-E+. The EAE templates of ERE-EN can
be found in Table 10.

B Training Details of Proposed Model

Given a passage, its annotated event types are con-
sider as positive event types. During training, we
additionally sample m event types that are not
related to the passage as the negative examples,
where m is a hyper-parameter. In our experiments,
m is usually set to 13 or 15.

For all of DEGREE, DEGREE(ED), and DE-
GREE(EAE), we fine-tune the pre-trained BART-
large (Lewis et al., 2020) with Huggingface pack-
age (Wolf et al., 2020). The number of parameters
is around 406 millions. We train DEGREE with
our machine that equips 128 AMD EPYC 7452 32-
Core Processor, 4 NVIDIA A100 GPUs, and 792G
RAM. We consider AdamW optimizer (Loshchilov
and Hutter, 2019) with learning rate set to 10−5 and
the weight decay set to 10−5. We set the batch size
to 6 for DEGREE(EAE) and 32 for DEGREE(ED)
and DEGREE. The number of training epochs is 45.
It takes around 2 hours, 18 hours, 22 hours to train
DEGREE(EAE), DEGREE(ED), and DEGREE, re-
spectively.

We do hyper-parameter search on m,
the number of negative examples, from
{3, 5, 7, 10, 13, 15, 18, 21}, and our prelimi-
nary trials shows that m less than 10 are usually
less useful. For the learning rate and the weight
decay, we tune it based on our preliminary
experiment for event argument extraction from
{10−5, 10−4}, while they are both fixed to 10−5

for all the experiments.
4The valid roles for each event type are predefined in the

event ontology for each dataset, or can be decided by the user
of interest.

C Datasets

We consider ACE 20055 (Doddington et al., 2004)
and ERE6 (Song et al., 2015). Both consider LDC
User Agreement for Non-Members7 as the licenses.
Both datasets are created for entity, relation, and
event extraction while our focus is only event ex-
traction in this paper. In the original ACE 2005
dataset, it contains data for English, Chinese, and
Arabic and we only take the English data for our
experiment. In the original ERE dataset, it contains
data for English, and Chinese and we only take the
English data for our experiment as well.

Because both datasets contain event like Jus-
tice:Execute and Life:Die, it is possible that some
offensive words (e.g., killed) would appear in the
passage. Also, some real names may appear in the
passage as well (e.g., Palestinian president, Mah-
moud Abbas). How to accurately identify these
kinds of information is part of the goal of the
task. Therefore, we do not take any changes on
the datasets for protecting or anonymizing.

We split the training data based on documents,
which is a more realistic setup compared to splitting
data by instance. Table 11 lists the statistics of
ACE05-E, ACE05-E+, and ERE-EN. Specifically,
we try to make each proportion of data contain as
many event types as possible.

D Implementation Details

This section describes the implementation details
for all baselines we use. We run the experiments
with three different random seeds and report the
best value.

• DyGIE++: we use their released pre-trained
model8 for evaluation.

• OneIE: we use their provided code9 to train the
model with default parameters.

• BERT_QA: we use their provided code10 to
train the model with default parameters.

• TANL: we use their provided code11 to train the
5https://catalog.ldc.upenn.edu/

LDC2006T06
6https://catalog.ldc.upenn.edu/

LDC2020T19
7https://catalog.ldc.upenn.edu/

license/ldc-non-members-agreement.pdf
8https://github.com/dwadden/dygiepp
9http://blender.cs.illinois.edu/

software/oneie/
10https://github.com/xinyadu/eeqa
11https://github.com/amazon-research/

tanl
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model. We conduct the experiments with two
variations: (1) using their default parameters,
and (2) using their default parameters but with
more training epochs. We observe that the sec-
ond variant works better. As a result, we report
the number obtained from the second setting.

• Text2Event: we use their official code12 to train
the model with the provided parameter setting.

• dbRNN: we directly report the experimental
results from their paper.

• Joint3EE: we directly report the experimental
results from their paper.

• MQAEE: we directly report the experimental
results from their paper.

• BART-Gen: we report the experimental results
from their released appendix.13

12https://github.com/luyaojie/
Text2Event

13https://github.com/raspberryice/
gen-arg/blob/main/NAACL_2021_Appendix.
pdf
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Event Type EAE Template
Life:Be-Born somebody was born in somewhere.
Life:Marry somebody got married in somewhere.
Life:Divorce somebody divorced in somewhere.

Life:Injure somebody or some organization led to some victim injured by some way in some-
where.

Life:Die somebody or some organization led to some victim died by some way in somewhere.

Movement:Transport something was sent to somewhere from some place by some vehicle. somebody or
some organization was responsible for the transport.

Transaction:Transfer-Ownership someone got something from some seller in somewhere.
Transaction:Transfer-Money someone paid some other in somewhere.
Business:Start-Org somebody or some organization launched some organzation in somewhere.
Business:Merge-Org some organzation was merged.
Business:Declare-Bankruptcy some organzation declared bankruptcy.
Business:End-Org some organzation dissolved.

Conflict:Attack some attacker attacked some facility, someone, or some organization by some way
in somewhere.

Conflict:Demonstrate some people or some organization protest at somewhere.
Contact:Meet some people or some organization met at somewhere.
Contact:Phone-Write some people or some organization called or texted messages at somewhere.

Personnel:Start-Position somebody got new job and was hired by some people or some organization in
somewhere.

Personnel:End-Position somebody stopped working for some people or some organization at somewhere.
Personnel:Nominate somebody was nominated by somebody or some organization to do a job.

Personnel:Elect somebody was elected a position, and the election was voted by some people or
some organization in somewhere.

Justice:Arrest-Jail somebody was sent to jailed or arrested by somebody or some organization in
somewhere.

Justice:Release-Parole somebody was released by some people or some organization from somewhere.

Justice:Trial-Hearing somebody, prosecuted by some other, faced a trial in somewhere. The hearing was
judged by some adjudicator.

Justice:Charge-Indict somebody was charged by some other in somewhere. The adjudication was judged
by some adjudicator.

Justice:Sue somebody was sued by some other in somewhere. The adjudication was judged by
some adjudicator.

Justice:Convict somebody was convicted of a crime in somewhere. The adjudication was judged by
some adjudicator.

Justice:Sentence somebody was sentenced to punishment in somewhere. The adjudication was judged
by some adjudicator.

Justice:Fine some people or some organization in somewhere was ordered by some adjudicator
to pay a fine.

Justice:Execute somebody was executed by somebody or some organization at somewhere.

Justice:Extradite somebody was extradicted to somewhere from some place. somebody or some
organization was responsible for the extradition.

Justice:Acquit somebody was acquitted of the charges by some adjudicator.
Justice:Pardon somebody received a pardon from some adjudicator.
Justice:Appeal some other in somewhere appealed the adjudication from some adjudicator.

Table 9: All EAE templates for ACE05-E and ACE05-E+.
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Event Type EAE Template
Life:Be-Born somebody was born in somewhere.
Life:Marry somebody got married in somewhere.
Life:Divorce somebody divorced in somewhere.

Life:Injure somebody or some organization led to some victim injured by some way in some-
where.

Life:Die somebody or some organization led to some victim died by some way in somewhere.

Movement:Transport-Person somebody was moved to somewhere from some place by some way. somebody or
some organization was responsible for the movement.

Movement:Transport-Artifact something was sent to somewhere from some place. somebody or some organization
was responsible for the transport.

Business:Start-Org somebody or some organization launched some organzation in somewhere.
Business:Merge-Org some organzation was merged.
Business:Declare-Bankruptcy some organzation declared bankruptcy.
Business:End-Org some organzation dissolved.

Conflict:Attack some attacker attacked some facility, someone, or some organization by some way
in somewhere.

Conflict:Demonstrate some people or some organization protest at somewhere.
Contact:Meet some people or some organization met at somewhere.
Contact:Correspondence some people or some organization contacted each other at somewhere.

Contact:Broadcast some people or some organization made announcement to some publicity at some-
where.

Contact:Contact some people or some organization talked to each other at somewhere.
Manufacture:Artifact something was built by somebody or some organization in somewhere.

Personnel:Start-Position somebody got new job and was hired by some people or some organization in
somewhere.

Personnel:End-Position somebody stopped working for some people or some organization at somewhere.
Personnel:Nominate somebody was nominated by somebody or some organization to do a job.

Personnel:Elect somebody was elected a position, and the election was voted by somebody or some
organization in somewhere.

Transaction:Transfer-Ownership The ownership of something from someone was transferred to some other at some-
where.

Transaction:Transfer-Money someone paid some other in somewhere.
Transaction:Transaction someone give some things to some other in somewhere.

Justice:Arrest-Jail somebody was sent to jailed or arrested by somebody or some organization in
somewhere.

Justice:Release-Parole somebody was released by somebody or some organization from somewhere.

Justice:Trial-Hearing somebody, prosecuted by some other, faced a trial in somewhere. The hearing was
judged by some adjudicator.

Justice:Charge-Indict somebody was charged by some other in somewhere. The adjudication was judged
by some adjudicator.

Justice:Sue somebody was sued by some other in somewhere. The adjudication was judged by
some adjudicator.

Justice:Convict somebody was convicted of a crime in somewhere. The adjudication was judged by
some adjudicator.

Justice:Sentence somebody was sentenced to punishment in somewhere. The adjudication was judged
by some adjudicator.

Justice:Fine some people or some organization in somewhere was ordered by some adjudicator
to pay a fine.

Justice:Execute somebody was executed by somebody or some organization at somewhere.

Justice:Extradite somebody was extradicted to somewhere from some place. somebody or some
organization was responsible for the extradition.

Justice:Acquit somebody was acquitted of the charges by some adjudicator.
Justice:Pardon somebody received a pardon from some adjudicator.
Justice:Appeal somebody in somewhere appealed the adjudication from some adjudicator.

Table 10: All EAE templates for ERE-EN.
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Dataset Split #Docs #Sents #Events #Event Types #Args #Arg Types

ACE05-E

Train (full) 529 17172 4202 33 4859 22
Train (1%) 5 103 47 14 65 16
Train (2%) 10 250 77 17 104 16
Train (3%) 15 451 119 23 153 17
Train (5%) 25 649 212 27 228 21
Train (10%) 50 1688 412 28 461 21
Train (20%) 110 3467 823 33 936 22
Train (30%) 160 5429 1368 33 1621 22
Train (50%) 260 8985 2114 33 2426 22
Dev 28 923 450 21 605 22
Test 40 832 403 31 576 20

ACE05-E+

Train (full) 529 19216 4419 33 6607 22
Train (1%) 5 92 49 15 75 16
Train (2%) 10 243 82 19 129 16
Train (3%) 15 434 124 24 203 19
Train (5%) 25 628 219 27 297 21
Train (10%) 50 1915 428 29 629 21
Train (20%) 110 3834 878 33 1284 22
Train (30%) 160 6159 1445 33 2212 22
Train (50%) 260 10104 2231 33 3293 22
Dev 28 901 468 22 759 22
Test 40 676 424 31 689 21

ERE-EN

Train (full) 396 14736 6208 38 8924 21
Train (1%) 4 109 61 14 78 16
Train (2%) 8 228 128 21 183 19
Train (3%) 12 419 179 26 272 19
Train (5%) 20 701 437 31 640 21
Train (10%) 40 1536 618 37 908 21
Train (20%) 80 2848 1231 38 1656 21
Train (30%) 120 4382 1843 38 2632 21
Train (50%) 200 7690 3138 38 4441 21
Dev 31 1209 525 34 730 21
Test 31 1163 551 33 822 21

Table 11: Dataset statistics. Our experiments are conducted in sentences, which were split from documents. In
the table, “#Docs” means the number of documents; “#Sents” means the number of sentences, “#Events” means
the number of events; “#Event Types” means the number of event types in total; “#Args” means the number of
argument in total; “#Arg Types” means the number of argument role types in total.
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E Few-Shot and Zero-Shot Event
Extraction

In order to further test our models’ generaliabil-
ity, we additionally conduct zero-shot and few-
shot experiments on the ACE05-E dataset with
DEGREE(ED) and DEGREE(EAE).

Settings. We first select the top n common event
types as “seen” types and use the rest as “un-
seen/rare” types, where the top common types
are listed in Table 12. To simulate a zero-shot
scenario, we remove all events with “unseen/rare”
types from the training data. To simulate a few-shot
scenario, we keep only k event examples for each
“unseen/rare” type (denoted as k-shot). During the
evaluation, we calculate micro F1-scores only for
these “unseen/rare” types.

n Seen Event Types for Training/Development

5 Conflict:Attack, Movement:Transport, Life:Die,
Contact:Meet, Personnel:Elect

10
Conflict:Attack, Movement:Transport, Life:Die,
Contact:Meet, Personnel:Elect, Life:Injure,
Personnel:End-Position, Justice:Trial-Hearing,
Contact:Phone-Write, Transaction:Transfer-Money

Table 12: Common event types in ACE05-E.

Compared baselines. We consider the following
baselines: (1) BERT_QA (Du and Cardie, 2020)
(2) OneIE (Lin et al., 2020) (3) Matching base-
line, a proposed baseline that makes trigger predic-
tions by performing string matching between the
input passage and the event keywords. (4) Lemma-
tization baseline, another proposed baseline that
performs string matching on lemmatized input pas-
sage and the event keywords. (Note: (3) and (4)
are baselines only for event detection tasks.)

Experimental results. Figure 4, Table 13, and
Table 14 show the results of n = 5 and n = 10.
From the two subfigures in the left column, we see
that DEGREE(ED) achieves promising results in
the zero-shot setting. In fact, it performs better
than BERT_QA trained in the 10-shot setting and
OneIE trained in the 5-shot setting. This demon-
strates the great potential of DEGREE(ED) to dis-
cover new event types. Interestingly, we observe
that our two proposed baselines perform surpris-
ingly well, suggesting that the trigger annotations
in ACE05-E are actually not diverse. Despite their
impressive performance, DEGREE(ED) still out-
performs the matching baseline by over 4.7% ab-
solute trigger classification F1 in both n = 5 and

n = 10 cases in zero-shot scenario. Additionally,
with only one training instance for each unseen
type, DEGREE(ED) can outperform both proposed
baselines.

Next, we compare the results for the event ar-
gument extraction task. From the two middle sub-
figures, we observe that when given gold triggers,
our model performs much better than all baselines
with a large margin. Lastly, we train models for
both trigger and argument extraction and report the
final argument classification scores in the two right
subfigures. We justify that our model has strong
generalizability to unseen event types and it can
outperform BERT_QA and OneIE even when they
are both trained in 5-shot settings.
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(a) Results for top common 5 event types.
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(b) Results for top common 10 event types.

Figure 4: The zero/few-shot experimental results. Left: The result for the models on event detection task with the
scores reported in trigger classification F1. Middle: The models are tested under the scenario of given gold trigger
and evaluated with argument classification criterion. Right: The results for the models to perform event extraction
task, which aims to predict triggers and their corresponding arguments (we report the argument classification F1).
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Event Extraction

Trigger Argument Common 5 Common 10
Tri-I Tri-C Arg-I Arg-C Tri-I Tri-C Arg-I Arg-C

Matching Baseline 42.7 42.1 - - 46.3 46.3 - -
Lemmatization Baseline 51.5 50.2 - - 56.6 56.0 - -
BERT_QA 1-shot 10.0 1.4 1.3 1.3 8.2 1.6 1.1 1.1
BERT_QA 5-shot 14.0 12.6 11.1 10.8 20.8 15.4 14.6 13.9
BERT_QA 10-shot 37.8 33.5 22.9 22.1 32.0 27.8 19.5 18.6
OneIE 1-shot 4.2 4.2 1.5 1.5 4.1 2.7 2.0 2.0
OneIE 5-shot 39.3 38.5 24.8 22.8 41.9 41.9 29.7 27.2
OneIE 10-shot 54.8 53.3 36.0 34.9 61.5 57.8 41.4 39.2
DEGREE(ED) 0-shot DEGREE(EAE) 0-shot 53.3 46.8 29.6 25.1 60.9 54.5 42.0 31.4
DEGREE(ED) 1-shot DEGREE(EAE) 1-shot 60.1 53.3 38.8 31.6 61.2 60.9 41.1 34.7
DEGREE(ED) 5-shot DEGREE(EAE) 5-shot 57.8 55.5 40.6 36.1 65.8 64.8 45.3 42.7
DEGREE(ED) 10-shot DEGREE(EAE) 10-shot 63.8 61.2 46.0 42.0 72.1 68.8 52.5 48.4
OneIE (Full) 72.7 70.5 52.3 49.9 74.5 73.0 51.2 48.9
DEGREE(ED) (Full) DEGREE(EAE) (Full) 68.4 66.0 51.9 48.7 72.0 69.8 52.5 49.2

Table 13: Full results of zero/few-shot event extraction on ACE05-E.

Event Argument Extraction

Trigger Argument Common 5 Common 10
Tri-I Tri-C Arg-I Arg-C Tri-I Tri-C Arg-I Arg-C

Gold Triggers BERT_QA 0-shot 100.0 100.0 55.8 37.9 100.0 100.0 57.2 46.7
Gold Triggers BERT_QA 1-shot 100.0 100.0 55.8 44.3 100.0 100.0 57.8 47.2
Gold Triggers BERT_QA 5-shot 100.0 100.0 56.6 49.6 100.0 100.0 59.1 50.6
Gold Triggers BERT_QA 10-shot 100.0 100.0 58.8 52.9 100.0 100.0 60.5 52.8
Gold Triggers OneIE 1-shot 100.0 100.0 40.9 36.5 100.0 100.0 48.3 44.2
Gold Triggers OneIE 5-shot 100.0 100.0 55.6 51.4 100.0 100.0 58.6 55.0
Gold Triggers OneIE 10-shot 100.0 100.0 59.4 56.7 100.0 100.0 62.0 59.5
Gold Triggers DEGREE(EAE) 0-shot 100.0 100.0 56.1 48.0 100.0 100.0 66.5 53.3
Gold Triggers DEGREE(EAE) 1-shot 100.0 100.0 65.2 55.2 100.0 100.0 65.4 54.7
Gold Triggers DEGREE(EAE) 5-shot 100.0 100.0 70.9 62.2 100.0 100.0 68.0 61.7
Gold Triggers DEGREE(EAE) 10-shot 100.0 100.0 71.1 64.2 100.0 100.0 71.6 64.3
Gold Triggers BERT_QA (Full) 100.0 100.0 63.1 57.9 100.0 100.0 62.1 56.5
Gold Triggers OneIE (Full) 100.0 100.0 70.8 66.4 100.0 100.0 67.9 64.1
Gold Triggers DEGREE(EAE) (Full) 100.0 100.0 74.5 70.6 100.0 100.0 73.6 68.9

Table 14: Full results of zero/few-shot event argument extraction on ACE05-E.
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