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Abstract

Vocabulary selection, or lexical shortlisting, is
a well-known technique to improve latency of
Neural Machine Translation models by con-
straining the set of allowed output words dur-
ing inference. The chosen set is typically
determined by separately trained alignment
model parameters, independent of the source-
sentence context at inference time. While vo-
cabulary selection appears competitive with
respect to automatic quality metrics in prior
work, we show that it can fail to select the
right set of output words, particularly for se-
mantically non-compositional linguistic phe-
nomena such as idiomatic expressions, lead-
ing to reduced translation quality as perceived
by humans. Trading off latency for quality
by increasing the size of the allowed set is
often not an option in real-world scenarios.
We propose a model of vocabulary selection,
integrated into the neural translation model,
that predicts the set of allowed output words
from contextualized encoder representations.
This restores translation quality of an uncon-
strained system, as measured by human evalua-
tions on WMT newstest2020 and idiomatic ex-
pressions, at an inference latency competitive
with alignment-based selection using aggres-
sive thresholds, thereby removing the depen-
dency on separately trained alignment models.

1 Introduction

Neural Machine Translation (NMT) has achieved
great improvements in translation quality, largely
thanks to the introduction of Transformer mod-
els (Vaswani et al., 2017). However, increasingly
larger models (Aharoni et al., 2019; Arivazha-
gan et al., 2019) lead to prohibitively slow infer-
ence when deployed in industrial settings. Espe-
cially for real-time applications, low latency is
key. A number of inference optimization speed-
ups have been proposed and are used in practice:

*Equal contributions.

EN: to swal___ low the bitter pill
DE: in den sau___ren fel Ben
GL: to bite into the sour ap ple

EN:by ho__ okorcro__ ok
DE: auf und brechen
GL: by and breaking

EN:tobuyap__iginapo__ ke
DE: die im sack kaufen
GL: to buy the in the bag

EN: to swe___ at blood
DE: blu_ t und sch_ wit_ zen
GL: to sweat blood and

EN: make yourself at home !
DE: machen sie es sich !
GL: make yourself !

Figure 1: Examples of subword-segmented idiomatic
expressions (EN) and their German correspondences
(DE) as well as an English gloss (GL) of the German ex-
pression. Alignment-based vocabulary selection: out-
put tokens missing from the allowed set of top-k output
tokens are marked in orange/bold (red/italic) for k=200
(k=1000).

reduced precision (Aji and Heafield, 2020), replac-
ing self-attention with Average Attention Networks
(AANSs) (Zhang et al., 2018), Simpler Simple Re-
current Units (SSRUs) (Kim et al., 2019), or model
pruning (Behnke and Heafield, 2020; Behnke et al.,
2021).

Another technique that is very common in prac-
tice is vocabulary selection (Jean et al., 2015)
which usually provides a good tradeoff between
latency and automatic metric scores (BLEU) and
reduced inference cost is often preferred over the
loss of ~0.1 BLEU. Vocabulary selection is effec-
tive because latency is dominated by expensive,
repeated decoder steps, where the final projection
to the output vocabulary size contributes to a large
portion of time spent (Bérard et al., 2021). Despite
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high parallelization in GPUs, vocabulary selection
is still relevant for GPU inference for state-of-the-
art models.

However, we show that standard methods of vo-
cabulary selection based on alignment model dictio-
naries lead to quality degradations not sufficiently
captured by automatic metrics such as BLEU. We
demonstrate that this is particularly true for se-
mantically non-compositional linguistic phenom-
ena such as idiomatic expressions, and aggressive
thresholds for vocabulary selection. For example,
see Figure 1 for alignment-model based vocabulary
selection failing to include tokens crucial for trans-
lating idiomatic expressions in the set of allowed
output words. While less aggressive thresholds
can reduce the observed quality issues, it also re-
duces the desired latency benefit. In this paper we
propose a neural vocabulary selection model that
is jointly trained with the translation model and
achieves translation quality at the level of an un-
constrained baseline with latency at the level of an
aggressively thresholded alignment-based vocabu-
lary selection model.

Our contributions are as follows:

* We demonstrate that alignment-based vocab-
ulary selection is not limited by alignment
model quality, but rather inherently by making
target word predictions out of context (§2).

* We propose a Neural Vocabulary Selection
(NVS) model based on the contextualized
deep encoder representation (§3).

* We show that alignment-based vocabulary se-
lection leads to human-perceived translation
quality drops not sufficiently captured by au-
tomatic metrics and that our proposed model
can match an unconstrained model’s quality
while keeping the latency benefits of vocabu-
lary selection (§4).

2 Pitfalls of vocabulary selection

We first describe vocabulary selection and then an-
alyze its shortcomings. Throughout the paper, we
use the recall of unique target sentence tokens as
a proxy for measuring vocabulary selection qual-
ity, i.e. the reachability of the optimal translation.
We use the average vocabulary size in inference
decoder steps across sentences as a proxy for trans-
lation latency since it directly impacts decoding
speed (Kasai et al., 2020).

k =200 k = 1000

Scope model ref. model ref.
fast_align 99.6 975 99.9 99.7
EN-DE GIZA++ 99.6 97.8 100.0 99.7
MaskAlign 969 93.1 99.6 98.6
fast_align 98.7 93.8 99.9 98.9
EN-RU GIZA++ 98.6 94.2 99.9 99.2

MaskAlign 942 872 99.1  96.7

Table 1: Recall of unique reference and model tokens
on newstest2020 with word probability tables extracted
from different alignment models.

2.1 Vocabulary selection

Vocabulary selection (Jean et al., 2015), also known
as lexical shortlisting or candidate selection, is a
common technique for speeding up inference in
sequence-to-sequence models, where the repeated
computation of the softmax over the output vocab-
ulary V of size V incurs high computational cost
in the next word prediction at inference time:

p(Yt|y1:4—1, z;0) = softmax(Wh + b), (1)

where W € RV*4, b € RV and h € R%, d be-
ing the hidden size of the network. Vocabulary
selection chooses a subset V C V, with V < V, to
reduce the size of matrix multiplication in Equation
(1) such that

P(yelyr.e—1, x;0) = softmax(Wh +b), (2)

where W € RV*? and b € RY. The subset V is
typically chosen to be the union of the top-k target
word translations for each source token, according
to the word translation probabilities of a separately
trained word alignment model (Jean et al., 2015;
Shi and Knight, 2017). Decoding with vocabulary
selection usually yields similar scores according to
automatic metrics, such as BLEU (Papineni et al.,
2002), compared to unrestricted decoding but at
reduced latency (L"Hostis et al., 2016; Mi et al.,
2016; Sankaran et al., 2017; Junczys-Dowmunt
et al., 2018). In the following, we show that de-
spite its generally solid performance, vocabulary
selection based on word alignment models nega-
tively affects translation quality, not captured by
standard automatic metrics. We use models trained
on WMT?20 (Barrault et al., 2020a) data for all eval-
uations in this section, see Section 4.1 for details.

2.2 Alignment model quality

In practice, the chosen subset of allowed out-
put words is often determined by an alignment
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model, such as fast_align (Dyer et al., 2013),
which provides a trade-off between the speed of
alignment model training and the quality of align-
ments (Jean et al., 2015; Junczys-Dowmunt et al.,
2018). fast_align’s reparametrization of IBM
model 2 (Brown et al., 1993) places a strong prior
for alignments along the diagonal. We investigate
whether more sophisticated alignment models can
lead to better vocabulary selection, especially for
language pairs with high amount of reordering. To
evaluate this we compute the recall of translation
model and reference tokens using GIZA++ (Och
and Ney, 2003) and MaskAlign' (Chen et al.,
2021) as seen in Table 1. We extract top-k word
translation tables (from fast_align, GIZA++,
and MaskAlign) by force-aligning the training
data. Overall, GIZA++ achieves the best recall,
and it is just slightly better than fast_align.
MaskAlign, a state-of-the-art neural alignment
model, underperforms fast_align with respect
to recall. While performance of MaskAlign may
be improved with careful tuning of its hyperparam-
eters via gold alignments (Chen et al., 2021), we
choose fast_align as a strong, simple baseline
for vocabulary selection in the following.

2.3 Out-of-context word selection

Alignment-based vocabulary selection does not
take source sentence context into account. A top-k
list of translation candidates for a source word will
likely cover multiple senses for common words,
but may be too limited when a translation is highly
dependent on the source context. Here we consider
idiomatic expressions as a linguistic phenomenon
that is highly context-dependent due to its semanti-
cally non-compositional nature.

Table 2 compares the recall of tokens in the refer-
ence translation when querying the translation lexi-
con of the alignment model for two different top-k
settings. Recall is computed as the percentage of
unique tokens in the reference translation that ap-
pear in the top-k lexicon, or more generally, in the
set of predicted tokens according to a vocabulary se-
lection model. We evaluate two scopes for test sets
of idiomatic expressions: the full source and target
sentence vs. the source and target idiomatic multi-
word expressions according to metadata. The Id-
ioms test set is an internal set of 100 English idioms
in context and their human translations. ITDS is

'With default hyper-parameters from https://gith
ub.com/THUNLP-MT/Mask—-Align

k =200 k = 1000
Scope Idioms ITDS Idioms ITDS
ENDE (G 500 58 o8 880
e R 2
ENRU GO 57 L me

Table 2: Recall on internal test set of idioms in context
and IdiomTranslationDS test set.

Wikiquote
Scope k=200 k= 1000
literal 96.5 99.2
EN-DE jjiomatic  74.6 91.0
literal 912 99.2
EN-RU - diomatic  67.6 88.9

Table 3: Recall on English proverbs and their literal
and idiomatic translations sourced from Wikiquote.

the IdiomTranslationDS? data released by Fadaee
et al. (2018) with 1500 test sentences containing
English and German idiomatic expressions for eval-
uation into and out of German, respectively. The
results show that recall increases when increasing
k but is consistently lower for the idiomatic expres-
sions than for full sentences. Clearly, the idiom
translations contain tokens that are on average less
common than the translations of “regular” inputs.
As a consequence, increasing the output vocabulary
is less effective for idiom translations, with recall
lagging behind by up to 9.3%. This can directly
affect translation quality because the NMT model
will not be able to produce idiomatic translations
given an overly restrictive output vocabulary.

Table 3 shows a similar comparison but here we
evaluate full literal translations vs. full idiomatic
translations on a data set of English proverbs from
Wikiquote®. For EN-DE, we extracted 94 triples
of English sentence and two references, for EN-
RU we extracted 262 triples. Although in both
cases recall can be improved by increasing k, it
helps considerably less for idiomatic than for literal
translations.

Figure 1 shows examples of idiomatic expres-
sions from the ITDS set and the output tokens be-
longing to an idiomatic translation that are missing
from the respective lexicon used for vocabulary

thtps://github.com/marziehf/ldiomTra
nslationDS

*https://github.com/awslabs/sockeye/t
ree/naacl2022/naacl2022/wikiquote
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idioms in context

Scope w/o adapt  w/ adapt

sentence 96.0 98.0
EN-DE  iom 80.0 972

sentence 93.0 96.6
EN-RU i diom 65.7 91.7

Table 4: Recall on internal test set of idioms in context,
with and without adapting the fast_align transla-
tion lexicons (k = 200).

selection. While for some of the examples, increas-
ing the lexicon size solves the problem, for others
the idiomatic translation can still not be generated
because of missing output tokens.

These results demonstrate that there is room for
improvement in vocabulary selection approaches
when it comes to non-literal translations.

2.4 Domain mismatch in adaptation settings

Using a word alignment model to constrain the
NMT output vocabulary means that this model
should ideally also be adapted when adapting the
NMT model to a new domain. Table 4 shows that
adapting the word alignment model with relevant
in-domain data (in this case, idiomatic expressions
in context) yields strong recall improvements for
vocabulary selection. Compared to increasing the
per-source-word vocabulary as shown in Table 2,
the improvement in recall for idiom tokens is larger
which highlights the importance of having a vocab-
ulary selection model which matches the domain
of the NMT model. This also corroborates the find-
ing of Bogoychev and Chen (2021) that vocabulary
selection can be harmful in domain-mismatched
scenarios.

We argue that integrating vocabulary prediction
into the NMT model avoids the need for mitigating
domain mismatch because domain adaptation will
update both parts of the model. This simplifies do-
main adaptation since it only needs to be done once
for a single model and does not require adaptation
or re-training of a separate alignment model.

2.5 Summary

We use target recall as a measure for selection
model quality. We see that alignment model qual-
ity only has a limited impact on target token re-
call with more recent models actually having lower
recall overall. In domain adaptation scenarios vo-
cabulary selection limits translation quality if the
selection model is not adapted. The main challenge

for alignment-based vocabulary selection comes
from its out-of-context selection of target tokens on
a token-by-token basis, shown to reduce recall for
translation of idiomatic, non-literal expressions. In-
creasing the size of the allowed set can compensate
for this shortcoming at the cost of latency. However,
this begs the question of whether context-sensitive
selection of target tokens can achieve higher recall
without increasing vocabulary size.

3 Neural Vocabulary Selection (NVS)

We incorporate vocabulary selection directly into
the neural translation model, instead of relying on
a separate statistical model based on token transla-
tion probabilities. This enables predictions based
on contextualized representations of the full source
sentence. It further simplifies the training proce-
dure and domain adaptation, as we do not require a
separate training procedure for an alignment model.

The goal of our approach is three-fold. We
aim to (1) keep the general Transformer (Vaswani
et al., 2017) translation model architecture, (2) in-
cur only a minimal latency overhead that amortizes
by cheaper decoder steps due to smaller output
vocabularies, and (3) scale well to sentences of
different lengths.

Figure 2 shows the Neural Vocabulary Selection
(NVS) model. We base the prediction of output
tokens on the contextualized hidden representation
produced by the Transformer encoder H € R%**
for ¢ source tokens and a hidden size of d. The ¢
source tokens are comprised of ¢ — 1 input tokens
and a special <EOS> token. To obtain the set of
target tokens, we first project each source position
to the target vocabulary size V', apply max-pooling
across tokens (Shen et al., 2018), and finally use
the sigmoid function, o(+), to obtain

z = o(maxpool(W H + b)), 3)

where W € RV*4 b € RV and z € RY. The
max-pooling operation takes the per-dimension
maximum across the source tokens, going from
RY*? to RY. Each dimension of z indicates the
probability of a given target token being present in
the output given the source. To obtain the target
Bag-of-words (BOW), we select all tokens where
z; > A as indicated in the right-hand side of Fig-
ure 2, where A is a free parameter that controls the
size V of the reduced vocabulary V. At inference
time, the output projection and softmax at every
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Figure 2: The proposed Neural Vocabulary Selection (NVS) model. A subset of the full vocabulary is selected
based on encoder representation H and passed to the decoder for a reduced output projection at every decoder

step.

decoder step are computed over the predicted BOW
of size V only.

We achieve goal (1) by basing predictions on
the encoder representation already used by the de-
coder. Goal (2) is accomplished by restricting NVS
to a single layer and basing the prediction on the
encoder output, where we can parallelize compu-
tation across source tokens. Inference latency is
dominated by non-parallelizable decoder steps (Ka-
sai et al., 2020). By projecting to the target vo-
cabulary per source token, each source token can
“yote” on a set of target tokens. The model auto-
matically scales to longer sentences via the max-
pooling operation, acting as a union of per-token
choices, fulfilling goal (3). Max-pooling does not
tie the predictions across timesteps as they would
be with mean-pooling which would also depend
on sentence length. Additionally, we factor in a
sentence-level target token prediction based on the
<EOS> token. The probability of a target word be-
ing present is represented by the source position
with the highest evidence, backing off to a base
probability of a given word via the bias vector b.

To learn the V' x d + V parameters for NVS,
we use a binary cross-entropy loss with the binary
ground truth vector y € RY, where each entry
indicates the presence or absence of target token
y;. We define the loss as

v

1
Lnvs = ;y log(2i)A\p+(1—y;) log(1—z;),

where ), is a weight for the positive class and

Z =V 4+ (A\p — 1) x ny, is the normalizing factor,
with n, = >, y; being the number of unique target
words. Most dimensions of the V' -dimensional vec-
tor y will be zero as only a small number of target
words are present for a given sentence. To counter
the class imbalance of the negative class over the
positive class the )\, weight allows overweighting
the positive class. This has the same effect as if
each target word had occurred A, times. The NVS
objective (Lnvs) is optimized jointly with the stan-
dard negative log-likelihood translation model loss
(Lm1): L = Lnvs + Lvr.

4 Experiments

4.1 Setup

Our training setup is guided by best practices
for efficient NMT to provide a strong low la-
tency baseline: deep Transformer as encoder with
a lightweight recurrent unit in the shallow de-
coder (Bérard et al., 2021; Kim et al., 2019), int8
quantization for CPU and half-precision GPU in-
ference. We use the constrained data setting from
WMT?20 (Barrault et al., 2020b) with four language
pairs English-German, German-English, English-
Russian, Russian-English and apply corpus clean-
ing heuristics based on sentence length and lan-
guage identification. We tokenize with sacre-
moses* and byte-pair encode (Sennrich et al., 2016)
the data with 32k merge operations.

*https://github.com/alvations/sacremo
ses
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newstest2020 ITDS idiom test
::lz‘z't’l‘(‘)l::ry BLEU1 COMET?  human eval (%) (CmPS {;/0 ) g’npslf % ) | BLEUT  human eval (%)
- 34.4 0.461 25.5
w align k=200 |34.2 0.453 98.0 96.7 51.0 78.2 25.4 96.6 97.2
O align k=1000 | 34.3 0.462 100.1 100.0 66.6 82.9 25.5 98.5 100.4
Z NVS A=0.99 | 34.4 0.460 . 99.5 46.6 79.8 25.5 § 99.3
NVS A\=0.9 [34.4 0.461 100.0 - 54.1 82.2 25.5 99.1 -
NVS A\=0.5 [34.4 0.461 - . 65.6 86.1 25.5 . .
- 40.7 0.645 29.8
. align k=200 [40.7 0.643 98.1 98.8 53.6 76.9 29.8 96.9 97.9
i align k=1000 | 40.7 0.645 99.3 100.3 67.9 84.4 29.8 101.2 101.8
& NVS A=0.99 | 40.7 0.644 R 99.8 47.6 76.4 29.7 - 99.9
NVS A\=0.9 [40.7 0.645 101.6 R 54.4 79.8 29.7 101.0 :
NVS A\=0.5 [40.7 0.645 : - 63.9 83.2 29.7 § -
- 23.6 0.528
_, alignk=200 |23.3 0.507 95.9 94.1 49.9 78.2
& align k=100023.5 0.527 100.4 99.9 64.8 82.9
Z NVS A=0.99 | 23.6 0.525 - 99.2 48.1 79.8
NVS A=0.9 [23.6 0.528 99.3 - 58.2 82.2
NVS A\=0.5 [23.6 0.529 : - 67.5 86.1
- 35.5 0.559
. alignk=200 |35.2 0.552 96.4 97.7 49.3 79.4
& align k=1000 | 35.4 0.561 99.9 98.7 62.7 81.8
2 NVS A=0.99 | 35.5 0.558 - 100.2 47.2 79.9
NVS A=0.9 |[35.5 0.559 101.1 . 52.2 80.9
NVS A=0.5 [35.5 0.559 - - 60.2 83.6

Table 5: Experimental results for unconstrained decoding (baseline), alignment-based VS with different k, and
Neural Vocabulary Selection with varying A. BLEU and COMET: mean and std of three runs with different
random seeds. Human evaluation: source-based direct assessment renormalized so that the unconstrained baseline
is at 100%, with 95% CI of a paired t-test. We ran two sets of human evaluations comparing 4 systems each.
CPU/GPU: p90 latency in ms with 95% CI based on 30 runs with batch size 1, shown as a percentage of the

baseline.

All models are Transformers (Vaswani et al.,
2017) trained with the Sockeye 2 toolkit (Domhan
et al., 2020). We release the NVS code as part of
the Sockeye toolkit>. We use a 20-layer encoder
and a 2-layer decoder with self-attention replaced
by SSRUs (Kim et al., 2019).

NVS and NMT objectives are optimized jointly,
but gradients of the NVS objective are blocked be-
fore the encoder. This allows us to compare the
different vocabulary selection techniques on the
same translation model that is unaffected by the
choice of vocabulary selection. All vocabulary se-
lection methods operate at the BPE level. We use
the translation dictionaries from fast_align for
alignment-based vocabulary selection. We use a
minimum of ¥ = 200 for alignment-based vo-
cabulary selection which is at the upper end of
what is found in previous work. Junczys-Dowmunt
et al. (2018) set £ = 100, Kim et al. (2019) set
k = 75, and Shi and Knight (2017) set & = 50.

‘https://github.com/awslabs/sockeye/t
ree/naacl2022

Smaller £ would lead to stronger quality degra-
dations at lower latency. GPU and CPU latency
is evaluated at single-sentence translation level to
match real-time translation use cases where latency
is critical. We evaluate translation quality using
SacreBLEU (Post, 2018)° and COMET (Rei et al.,
2020)’. Furthermore, we conduct human evalua-
tions with two annotators on the subsets of new-
stest2020 and IDTS test sentences where outputs
differ between NVS A = 0.9 (0.99) and align
k = 200. Professional bilingual annotators rate
outputs of four systems concurrently in absolute
numbers with increments of 0.2 from 1 (worst) to
6 (best). Ratings are normalized so that the (un-
constrained) baseline is at 100%. Complementary
details on the training setup, vocabulary selection
model size, human and latency evaluation setup
can be found in Appendix A.

®BLEU+case.mixed+lang.en-
de+numrefs.1+smooth.exp+tok.13a+version.1.4.14.
"wmt-large-da-estimator-1719
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4.2 Results

Table 5 shows results of different vocabulary selec-
tion models on newstest2020 and the ITDS idiom
set, compared to an unconstrained baseline without
vocabulary selection. Automatic evaluation metrics
show only very small differences between models.
For three out of four language pairs, the alignment
model with k = 200 performs slightly worse than
the unconstrained baseline (0.2-0.3 BLEU). This
corroborates existing work that quality measured
by automatic metrics is not significantly affected by
alignment-based vocabulary selection (Jean et al.,
2015; Shi and Knight, 2017; Kim et al., 2019).

However, human-perceived quality of alignment-
based vocabulary selection with & = 200 is con-
sistently lower than the baseline. COMET, found
to correlate better with human judgements than
BLEU (Kocmi et al., 2021), only reflects this drop
in two out of the four language pairs, considering
confidence intervals across random seeds. Increas-
ing k to 1000 closes the quality gap with respect
to human ratings taking the confidence intervals
into account. The same is true for vocabulary se-
lection using NVS at both A = 0.9 and A = 0.99,
where quality is also within the confidence intervals
of the unconstrained baseline. However, NVS is
consistently faster than the alignment-based model.
For A = 0.9 we see CPU latency improvements of
95 ms on average across language arcs. Increas-
ing the threshold to A = 0.99 latency compared
to £ = 1000 is reduced by 157 ms on average.
The same trend holds for GPU latency but with
smaller differences. Figure 3 compares the NVS
model against the alignment model according to
the speed/quality tradeoff reflected by average vo-
cabulary size vs. reference token recall on new-
stest2020. NVS consistently outperforms the align-
ment model, especially for small average vocabu-
lary sizes where NVS achieves substantially higher
recall. This demonstrates that the reduced vocab-
ulary size and therefore faster decoder steps can
amortize the cost of running the lightweight NVS
model, which is fully parallelized across source
tokens as part of the encoder.

To evaluate a domain adaptation setting, we fine-
tune the NVS models on a set of 300 held-out sen-
tences of idioms in sentence context for 10 epochs.
For a fair comparison, we also include the same
data for the alignment-based vocabulary selection.
Figure 4 shows that NVS yields pareto optimality
over the alignment model with and without domain

adaptation to a small internal training set of id-
iomatic expressions in context. This highlights the
advantage of NVS which is automatically updated
during domain fine-tuning as it is part of a single
model. See Appendix C for additional figures on
the proverbs and ITDS test sets, where the same
trend holds.

4.3 Analysis

Our proposed neural vocabulary selection model
benefits from contextual target word prediction. We
demonstrate this by comparing the predicted BOW
when using the source sentence context versus pre-
dicting BOWs individually for each input word
(which may consist of multiple subwords) and tak-
ing the union of individual bags. We use the NVS
models that are adapted to a set of idiomatic ex-
pressions for this analysis to ensure that the un-
constrained baseline models produce reasonable
translations for the Idiom test set.

Ref tokens )\ Context No Context
Al 009 o7 o1
BNDE e 09 032 0.01
0.99 0.43 0.01
All 0.9 0.75 0.43
0.99 0.57 0.25
EN-RU
All excl 0.9 0.37 0.05
0.99 0.38 0.06

Table 6: Percentage of segments with all idiomatic
reference tokens included in the BOW (All), or ex-
clusively included in the contextual or non-contextual
BOW (All excl) for NVS threshold .

Table 6 shows the percentage of segments for
which all reference tokens are included in the
contextual vs. the non-contextual BOW for an
acceptance threshold of 0.9 and 0.99. Indepen-
dent of the threshold, predicting the BOW using
source context yields significantly larger overlap
with idiomatic reference tokens. We also mea-
sure the extent to which idiomatic reference tokens
are included exclusively in the contextual or non-
contextual BOW. For 32% of EN-DE segments,
only the contextual BOW contains all idiomatic
reference tokens. For non-contextual BOWs, this
happens in only 1% of the segments (with A=0.9).
For EN-RU, the values are 38% versus 6%, respec-
tively. This shows that the model makes extensive
use of contextualized source representations in pre-
dicting the relevant output tokens for idiomatic
expressions.
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Figure 5 shows a few illustrative examples where
the idiomatic reference is only reachable with the
contextual BOW prediction. Consider the last ex-
ample containing the English idiom “to wrap one’s
head around it”. Even though the phrase is rather
common in English, the German translation “ver-
stehen” (fo understand) would not be expected to
rank high for any of the idiom source tokens. Eval-
uating the tokens in context however yields the
correct prediction.

5 Related work

There are two dominant approaches to generate a
restricted set of target word candidates (i) using
an external model and (ii) using the NMT system
itself.

recall of reference tokens (quality) for newstest2020.
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In the first approach, a short-list of transla-
tion candidates is generated from word-alignments
(Jean et al., 2015; Kim et al., 2019), phrase ta-
ble, and the most common target words (Mi et al.,
2016). L'Hostis et al. (2016) propose an additional
method using support vector machines to predict
target candidates from a sparse representation of
the source sentence.

In the second approach, Sankaran et al. (2017)
build alignment probability table from the soft-
attention layer from decoder to encoder. How-
ever, applying their method to multi-head attention
in Transformer is non-trivial as attention may not
capture word-alignments in multiple attention lay-
ers (Li et al., 2019). Shi and Knight (2017) use
local sensitive hashing to shrink the target vocabu-
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Source

Idiomatic target

I thought I would be nervous , but I was cool as a cu__ cum__ ber .

He decides that it is better to face the music , op__ ting to stay and conf_ ess .

The Classic Car Show is held in conjunction with Old Sett__ler ’s Day , rain or shine .
Tools , discipline , formal methods , process , and profession___ alism were tou___ ted as

silver bul__ lets :
They said he was ’ a little bit under the weather * .
I'still can ’t wra__ p my head around it .

die Ruhe selbst

sich den Dingen stellen
bei jedem Wetter
Wunder__ wa__ ffe

sich nicht wohl__ fiihlen
verstehen

Figure 5: Test inputs from the internal Idioms test set for which the highlighted tokens in the idiomatic reference
are exclusively included in the contextual BOW (computed for idiom-adapted NVS model with A = 0.9).

lary during decoding, though their approach only
reduces latency on CPUs instead of GPUs.

Chen et al. (2019) reduce the softmax computa-
tion by first predicting a cluster of target words and
then perform exact search (i.e., softmax) on that
cluster. The clustering process is trained jointly
with the translation process in their approach.

Closely related to our work is Weng et al. (2017),
who predict all words in a target sentence from the
initial hidden state of the decoder. Our NVS model
differs from theirs in that we make a prediction
for each source token and aggregate the results via
max-pooling to scale with sentence length. Recent
work of Bogoychev and Chen (2021) illustrates the
risk associated with reducing latency via vocabu-
lary selection in domain-mismatched settings. Our
work takes this a step further by providing a de-
tailed analysis on the shortcomings of vocabulary
selection and proposing a model to mitigate them.

Related to our findings on non-compositional
expressions, Renduchintala et al. (2021) evaluate
the effect of methods used to speed up decoding
in Transformer models on gender bias and find
minimal BLEU degradations but reduced gendered
noun translation performance on a targeted test set.

6 Conclusions

Alignment-based vocabulary selection is a com-
mon method to heavily constrain the set of allowed
output words in decoding for reduced latency with
only minor BLEU degradations. We showed with
human evaluations and a targeted qualitative anal-
ysis that such translations are perceivably worse.
Even recent automatic metrics based on pre-trained
neural networks, such as COMET, are only able to
capture the observed quality degradations in two
out of four language pairs. Human-perceived qual-
ity is negatively affected both for generic transla-
tions, represented by newstest2020, as well as for
idiomatic translations. Increasing the vocabulary

selection threshold can alleviate the quality issues
at an increased single sentence translation latency.
To preserve both translation latency and quality
we proposed a neural vocabulary selection model
that is directly integrated into the translation model.
Such a joint model further simplifies the training
pipeline, removing the dependency on a separate
alignment model. Our model has higher reference
token recall at similar vocabulary sizes, translating
into higher quality at similar latency.
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A Reproducibility Details

Data We use the constrained data setting from
WMT20 (Barrault et al., 2020b) with four language
pairs English-German, German-English, English-
Russian, Russian-English. Noisy sentence pairs
are removed based on heuristics, namely sentences
with a length ratio > 1.5, > 70% token overlap,
> 100 BPE tokens and those where source or target
language does not match according to LangID (Lui
and Baldwin, 2012) are filtered.

Model We train pre-norm Transformer (Vaswani
et al., 2017) models with an embedding dimension
of 1024 and a hidden dimension of 4096.

Model Size
align k=200 6,590,600
align k=1000 32,953,000
NVS 33,776,825

Table 7: Model size in terms of in-memory float num-
bers for EN-DE model with a target vocabulary size of
32953. This does not reflect actual memory consump-
tion, as the computation of the NVS layer may require
more intermediate memory.

Table 7 compares the memory consumption of
the different vocabulary selection models in terms
of float numbers. We see that the NVS model re-
quires a similar number of floating point numbers
as the alignment-based model at £ = 1000. Note,
that this only represent the disk space requirements
as other intermediate outputs would be required at
runtime for either vocabulary selection model.

Training The NMT objective uses label smooth-
ing with constant 0.1, the NVS objective sets the
positive class weight A, to 100,000. Models train
on 8 Nvidia Tesla V100 GPUs on AWS p3.16xlarge
instances with an effective batch size of 50,000 tar-
get tokens accumulated over 40 batches. We train
for 70k updates with the Adam (Kingma and Ba,
2015) optimizer, using an initial learning rate of
0.06325 and linear warmup over 4000 steps. Check-
points are saved every 500 updates and we average
the weights of the 8 best checkpoints according to
validation perplexity.

Inference For GPU latency, we run in half-
precision mode (FP16) on AWS g4dn.xlarge in-
stances. CPU benchmarks are run with INT8 quan-
tized models run on AWS c¢5.2xlarge instances. We
decode using beam search with a beam of size

5. Each test set is decoded 30 times on different
hosts, and we report the mean p90 latency with its
95% confidence interval. Alignment-based vocab-
ulary selection includes the top k£ most frequently
aligned BPE tokens for each source token based on
a fast_align model trained on the same data as
the translation model. NVS includes all tokens that
are scored above the threshold \. All vocabulary
selection methods operate at the BPE level.

Evaluation Human Evaluations and COMET /
BLEU use full precision (FP32) inference outputs.
We decided to use FP32 for human evaluation as
we wanted to evaluate the quality of the underly-
ing model independent of whether it gets used on
CPU or GPU and the output differences between
FP16/FP32/INTS being small. We report mean and
standard deviation of SacreBLEU (Post, 2018)8
and COMET (Rei et al., 2020) scores on detok-
enized outputs for three runs with different random
seeds. For human evaluations, bilingual annotators
see a source segment and the output of a set of 4
systems at once when assigning an absolute score
to each output. The size of the evaluation set was
350 for EN-DE and EN-RU and 200 for DE-EN
and RU-EN for newstest2020. We used the full sets
of sentences differing between NVS A = 0.9, align
k = 200 for the ITDS test set (309 for EN-DE and
273 for DE-EN).

Adaptation For domain adaptation, we fine-tune
the NVS model for 10 epochs using a learning rate
of 0.0001 and a batch size of 2048 target tokens.
To adapt the alignment-based vocabulary selection
model, we include the adaptation data as part of
the training data for the alignment model. We up-
sample the adaptation data by a factor of 10 for a
comparable setting with NVS fine-tuning.

B Positive class weight ablation

Based on preliminary experiments we had used a
weight for the positive class (A\,) of 100k in the
experiments in §4. Here the positive class refers
to tokens being present on the target side and the
negative class to tokens being absent from the tar-
get side. For a Machine Translation setting there
are many more words that are not present than
are present on the target side. The negative class
therefore dominates the positive class. This can be

$BLEU+case.mixed+lang.en-
de+numrefs. 1+smooth.exp+tok.13a+version.1.4.14.

1872



pos. weight BLEU COMET
EN-DE autox =10 344 0.459
autor =1 34.1 0.458
100k 344 0.461
10k 34.2 0.460
1k 344 0.463
100 34.2 0.456
10 32.5 0.295
1 15.9 -0.498
DE-EN autoxz =10 40.9 0.644
autor =1 40.8 0.640
100k 40.8 0.642
10k 41.0 0.645
1k 40.8 0.643
100 40.8 0.638
10 40.2 0.558
1 25.3 -0.608
EN-RU autox =10 23.6 0.524
autoxr = 1 23.5 0.524
100k 23.6 0.524
10k 23.7 0.528
1k 23.6 0.526
100 23.3 0.497
10 20.6 0.128
1 5.6 -1.509
RU-EN autox =10 35.6 0.564
autoxr =1 35.6 0.563
100k 35.6 0.557
10k 35.8 0.565
1k 354 0.556
100 35.5 0.551
10 342 0.452
1 20.1 -0.622

Table 8: Translation quality in terms of BLEU and
COMET on newstest2020 with different weights for
the positive class. auto x refers to setting the weight
according to the ratio of the negative class to the posi-
tive class with a factor x.

counteracted by using a large value for the positive
weight A,

Instead of setting A, to a fixed weight one can
also define it as

Ap =2—

P ™
with n,, as the number of unique target words,
np, = V — n, as the number of remaining words
and x being a factor to increase the bias towards re-
call. This way the positive class and negative class

are weighted equally. Table 8 shows the result of
different positive weights, including the automatic
setting according to the ratio (auto). We see that
not increasing the weight of the positive class re-
sults in large quality drops. For positive weights
> 1000 the quality differences are small. The auto
setting provides an alternative that is easier to set
than finding a fixed positive weight.

C Additional vocabulary size vs. recall
plots

Figures 6 and 7 provide results for the proverbs and
ITDS test sets, respectively. We see the same trend
across all test sets of NVS offering higher recall at
the same vocabulary size compared to alignment-
based vocabulary selection. For the proverbs test
set this is true both for the literal and the idiomatic
translations.
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Figure 6: Vocabulary size (speed) vs. recall of reference tokens (quality) for proverbs test set. For NVS, the
values correspond to setting A € [0.99,0.9,0.5,0.1,0.01, ..,0.000001]. For align, the values correspond to setting
k € [100, 200, .., 1000, 2000, .., 10000].
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Figure 7: Vocabulary size (speed) vs. recall of reference tokens (quality) for ITDS test set. For NVS, the values
correspond to setting A € [0.99,0.9,0.5,0.1,0.01, ..,0.000001]. For align, the values correspond to setting k €
[100, 200, .., 1000, 2000, .., 10000].
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