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Abstract

In this paper, we study the task of improving
the cohesion and coherence of long-form text
generated by language models. To this end,
we propose RSTGen, a framework that utilises
Rhetorical Structure Theory (RST), a classical
language theory, to control the discourse struc-
ture, semantics and topics of generated text.
Firstly, we demonstrate our model’s ability to
control structural discourse and semantic fea-
tures of generated text in open generation eval-
uation. Then we experiment on the two chal-
lenging long-form text tasks of argument gen-
eration and story generation. Evaluation using
automated metrics and a metric with high cor-
relation to human evaluation, shows that our
model performs competitively against existing
models, while offering significantly more con-
trols over generated text than alternative meth-
ods.

1 Introduction

Controllable text generation has attracted much at-
tention in recent years. Generating coherent and
cohesive long-form text with controllable attributes
is particularly challenging due to the relatively com-
plex syntactic and semantic structures involved
compared to short-text generation. Long-form text
generation can find applications in automatic argu-
mentation, motivational speech, and opinionated
writing, to name a few.

A popular approach to controllable text genera-
tion is to design prompts, which control high-level
linguistic features (i.e., text style and sentiment) by
prefixing simple context to the input of a language
model. These non-granular methods are often too
coarse to allow different parts of the text to have
diverse or contrasting features. Furthermore, they
tend to focus on a single linguistic feature of text,
meaning that extra frameworks such as Plugand-
Play (Dathathri et al., 2019) are required to control
multiple linguistic features.

To achieve improved content control, researchers
have coupled a content planning module with a
text generation module (Hua and Wang, 2020; Hua
et al., 2021), in which the content planning mod-
ule firstly generates a set of keyphrases and their
corresponding positions in sentences and the gener-
ation module fills in the gaps. To control syntactic
structures of text, recent works have proposed a
neuro-symbolic approach leveraging Dependency
Structure Theory (DST) (Shen et al., 2019; Du
et al., 2020). Enforcing specific structures over
the generated text has been proven to be useful in
increasing coherence and cohesion of short-form
text. However, a relatively large amount of DST
information is required to encode comparatively
short texts. Thus, they are unsuitable for use in
long-form text generation tasks.

Similar to DST, Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988) is a classi-
cal tree-based interpretation of natural language.
Whereas DST is most useful for intra-sentence in-
terpretation, RST is most useful for inter-sentence
interpretation of language. We propose a neurosym-
bolic framework that can imbue an RST under-
standing of text to existing language models. More
specifically, our framework (1) allows more fine-
grained control of syntax, semantics and text struc-
ture; (2) utilises a well-defined rhetorical structure
of language, thus offering better interpretability; (3)
can be directly integrated into existing pre-trained
language models such as GPT-2 (Radford et al.,
2019) and BART (Lewis et al., 2019).

We evaluate our proposed framework on two
tasks: argument generation and story generation.
We show that our proposed framework improves
upon existing content control approaches on au-
tomatic evaluation metrics including BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2014) and generates better text in terms
of grammar and coherence measure. We further
demonstrate our model’s ability to generate text
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with control over syntactic, semantic and discourse
features. Our main contributions can be sum-
marised below:

* We propose a novel framework to imbue the
RST information into pre-trained language
models.

* We develop the first neurosymbolic frame-
work that provides interpretable fine-control
over syntax, semantics, discourse structure,
topical keywords and keyword positions.

* We demonstrate the superiority of our pro-
posed framework over existing planning and
control methods for two long-form text gener-
ation tasks.

2 Related Work

We discuss several lines of research in controllable
text generation.

Prompts For prompt-based control, a context
is prepended to a language model input. The
prepended item is related to the type of desired
output. This method has been used to manipulate
the syntax (Dusek and Jurcicek, 2016; Goyal and
Durrett, 2020) and semantics (Wen et al., 2015;
Chen et al., 2019) of the output. Alternatively, the
prepended item can provide semantic control in
order to cover a given topic (Wang et al., 2019a),
mention specified entities (Fan et al., 2019), display
a certain attribute (Hu et al., 2017; Balakrishnan
et al., 2019), or even exhibit a style of text (Keskar
et al., 2019). These methods suffer from the in-
ability to exert fine-control, that is, a change in any
one of the input prompts will change the whole
generated text. Furthermore, all these works utilise
non-expansive features for their prompts, which
prevents them from making iterative improvements
to existing generated text.

Content Planning Despite the impressive
progress made in many generation tasks, earlier
neural models are known to produce low-quality
content (Wiseman et al., 2017), often with low
relevance, and poor discourse structure (Zhao
et al., 2019). Content-based planning approaches
were added into neural systems to enhance content
relevance (Moryossef et al., 2019; Yao et al.,
2019; Hua and Wang, 2019). Hua et al. (2021)
extended previous content planning approaches
by dividing the content plan into different types

of information; ‘Entities’, ‘Claim’ and ‘Concepts’.
An alternative planning approach focuses on where
the key phrases should be placed in the generated
text in order to improve coherence (Hua and Wang,
2020). The text generator is then conditioned
on the provided key phrases and their respective
positions in text. Similar to our approach, these
methods allow users varying levels of custom
control by manual augmentation of the planning
module output.

Syntactic or Discourse Control Various works
utilised syntactic parse trees with the transformer
structure to gain syntactic control or improve inter-
pretability on short-form text generation tasks (Li
et al., 2020; Nguyen et al., 2020). With a focus on
improving long-form text generation, Ji and Huang
(2021) used a Variational Autoencoder (VAE) struc-
ture to model RST discourse relations between suc-
cessive elementary discourse units (spans of text).

We build upon their approach by using a more
expressive binary tree formalisation of RST. This
formalisation extends the modelling of sequential
elementary discourse units by also modelling nu-
clearity and relationship between non sequential
discourse units.

Extending on previous works, Wang et al.
(2019b) attempted to couple tree structures and
transformers. We instead embed the tree structure
of RST into transformers through constrained at-
tention in a separate RST embedding dimension.

3 Rhetorical Structure Theory

Rhetorical Structure Theory (RST) provides a for-
mal structure for interpreting language based on
relations between parts of text. Each structure is
defined by three sets of features: the binary tree
structuring of Discourse Units (EDU)s, the nucle-
arity between sibling DUs, and the relationship
between sibling DUs. An example RST tree us-
ing the schema provided by (Mann and Thompson,
1988) as shown in Figure 1.

Binary Tree Structuring of Discourse Units
To form a binary discourse tree R from text ¢, the
text must be successively divided into smaller sub-
sets of text. In this manner, node O represents the
full text, with subsequent nodes representing sub-
texts, as in Figure 1. The text at each node is called
a Discourse Unit, while the nodes at the leaves of
the tree are Elementary Discourse Units (EDUs).
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0
BMW have always been the most desired luxury car brand, but if Tesla continue to be
innovative, they may soon be the more popular brand.

J contrast W
Satellite

1 2
BMWs have always been but if Tesla continue to be innovative, they
the most desired luxury car may soon be the more popular brand.

brand,
J Conditional 1

5 6

but if Tesla continue
to be innovative,

Nucleus

Satellite Nucleus

they may soon be the

more popular brand

Figure 1: RST example: An example text (top) inter-
preted through RST schema. The text is broken down
into a binary tree with zero-indexed numbered node po-
sitions. Relations exist between the two sibling nodes
of a parent node. Each pair of sibling nodes, have a
coupled nuclearity label. Nodes with no children, are
Elementary Discourse Units (EDUs).

Sibling Nodes — Relations: A parent node is
a non-terminal node which has two child nodes,
referred to as siblings. Each parent nodes’ children,
has a RST relation r;,7 € N.og describing the
syntactic purpose of each child node relative to the
other. In Figure 1, the RST relations are presented
in blue texts.!

Sibling Nodes — Nuclearity: Associated with
each pair of sibling node’s relation is a joint nu-
clearity labelling, nj, j € N<5. This nuclearity ex-
plains the role of each sibling node’s discourse unit
relative to the other sibling node. Each joint nucle-
arity labelling between pair of sibling nodes must
include at least one Nuclei.”

Formally, we define a binary RST Tree R as a
collection of its parent nodes {v,”"}, where v,"" is
a parent node at position [, with a RST relation r
and a Nuclearity n between its two children. For
example, v5 "M SN renresents node 2 in Fig-
ure 1. We refer to the group of relations in an RST
Tree, R, as R". Similarly, the group of Nuclearity
values is referred to as R™.

4 RSTGen: RST-Dependent Long-form
Text Generator

We propose a long-form text generation approach,
call RSTGen, which provides control over seman-
tics and structure of text, with the aim of improving
coherence and cohesion of the generated text. Co-
herence is concerned with how well constituent

'Table Al in the Appendix details the 19 possible RST
Relations.

>Table A2 in the Appendix details the 4 possible RST
Nuclearity values.

{ 13 have always been the most desired luxury car brand, but, if

they continue to
be may soon be the more popular brand.

‘ GPT-2 ]

RST Tree: R Key Phrases: K

BU
R[0,2]

W‘ ( 1
|
|

K':[1,5,6] |

R™ : NS, SN] K™ : [ BMW, innovation, Tesla] ‘

.
\
\
\

R [Contrast, Conditional]

Figure 2: RSTGen Structure: Our RST controlled
text generation framework can be built upon any pre-
trained language model. We input RST tree struc-
ture information as R, comprising the Nuclearities R",
RST Relations R" and RST node positions R!, and
key phrase information at EDUs as K, comprising the
key phrases K™ and the RST node positions of the
key phrases, K'. The discourse structure of the out-
put text y is controlled by R™ and R'. The syntax of
y is controlled by R", R! and K'!. The semantics is
controlled by R” and K". Our framework creates a
prefix-embedding from the encodings for R and K, af-
ter which text is generated as a continuation.

sentences/chunks follow on from the previous sen-
tence/chunk. This can be interpreted as the topic of
each subsequent sentence/chunk being relevant to
the previous sentence/chunk (Carrell, 1982; Waller,
2015). Cohesion describes the way in which text
is tied together by linguistic devices such as There-
fore..., However..., In addition to (Waller, 2015).
This can be interpreted as how smooth the model
transitions between the types of sentences. With
an RST interpretation, cohesion is loosely related
to the RST relations between different nodes in the
binary tree, while coherence is related to the RST
relations and key phrases at EDUs.

Task formulation Our input consists of (1) an
encoding for a binary RST Tree R, (2) a set of
keyphrases information K that are relevant to the
text. The RST encoding is formed as sets of three
pieces of information for each parent node in the
binary RST Tree. These include Nuclearity R",
RST Relation R™ and RST node position R'. The
keyphrase information contains two pieces of infor-
mation. These are K% and K, the key phrases and
the RST node positions of the key phrases. The
model has been trained to work with varying levels
of specification for the context information.

Partial Context Provision In practice, we do
not expect users to provide the full RST Tree
or key phrases since often only a subset of fea-
tures of the context information may be known
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or needed. For example, in Figure 2, the goal is
to produce a text contrasting the innovative abil-
ity of Microsoft and Tesla. A user only needs
to provide partial information, e.g., the keywords,
K" = [BMW, Tesla,innovation| and the RST
relation, R" O ['Contrast’]. Our model will be
able to automatically predict an RST tree following
a conditional sampling method we have designed
in Section 4.3.

While a user will often want to specify the key
phrases themselves, we could also employ auto-
mated methods to create an expanded set. For ex-
ample, existing Planning Modules (Hua and Wang,
2020; Hua et al., 2021) can be used to generate a
set of keywords based on some prior information.

In what follows, we describe our proposed RST-
Gen in more details.

4.1 Tokenisation

While our RST controlled text generation frame-
work can be built upon any pre-trained language
model, we use GPT as an example here. The GPT
Tokeniser is used to tokenise the target text y and
key phrases K™ to a set of word tokens. Two new
tokens are added to the tokeniser: ‘<rst>’ and
‘<kp>’. The former is prepended to the RST tree
R, and the latter is prepended to each key phrase.

4.2 Embedding Layers

Our framework requires three additional embed-
ding layers to facilitate the encoding of the RST
position, RST nuclearity and RST relation informa-
tion presented in R', R and R". These embedding
layers are designed to produce vectors that match
the size v of hidden vectors in the base model.

We use a RST relation Embedding Matrix W, €
RI9%768 to encode R" as there are 18 possible RST
relations and a pad token, and an RST Nuclearity
Embedding matrix W, € R**7% to encode R",
which consists of 3 possible nuclearity labels and a
pad token.

To embed RST node position encodings R, we
create a novel embedding layer designed to cap-
ture the positional relationships of nodes in a bi-
nary tree, in a space efficient manner. The in-
tent is to explicitly capture the relationship be-
tween a node and its ancestor nodes. Our em-
bedding layer features a non-trainable embedding
matrix W, € Rmax-rst_nodextree_depth 5 trainaple
feed forward layer W,;; € Riree-depthx768 apq
a Gelu activation layer f4(-). In our experiments

max_rst_node = 4094 and max_tree_depth =
12.

The ¢-th column in the non-trainable embedding
matrix W), is a vector representing the position
of node 1, in terms of a sequence of Lefts (L) and
Rights (R) required to travel from the root node 0
to node 7. Left is encoded as —0.05 and Right as
0.05. For example, the vector at node position 5 in
Wpe in the example RST tree shown in Figure 1 is
encoded as [0.05, —0.05, 0, 0....] with the remain-
ing Os representing padding values up to the length
max_tree_depth.

It is important to note that in our RST Tree en-
coding R, a parent node v; is labelled with the
relation r; and nuclearity n; connecting its chil-
dren. As such our encodings for a R", R! and R"
do not include the leaf nodes with no children, but
still represent R. This allows our encodings, for a
Binary RST Tree with N nodes to be sequences of
length [N/2].

4.3 RST Predictor

We use an RST Predictor to predict the rela-
tion and nuclearity of a child node conditional
on the RST relation, nuclearity and position
of their parent node. For example we pre-
dict the left child node w7, by modelling
the following conditional distribution 'v;;_ff
p(h nuparenta T'parent "parent 1(”2l+1 = left Child)-
A full RST Tree can be predicted by iteratively
repeating this one-step sampling.

We propose a neural sampler method to estimate
the conditional distribution p(-|-). It is trained on
the RST Trees observed in the training set of the
RST Annotated Dataset introduced in Section 6.
Our neural RST Sampler, depicted in Figure 3,
uses the BART (Lewis et al., 2019) model. The
encoder takes a prompt as input. The decoder is re-
initialised and reduced to two layers. The decoder
takes four inputs: (1) The parent nodes’ relation r;
(2) The parent node’s nuclearity n; (3) The parent
node’s RST position /; (4) A vector b indicating
whether the target node is a left child node or right
child node. This vector b is calculated as the differ-
ence between the node position embeddings for the
parent node and the target child node encodings.

We use the Embedding Layers structures from
our RSTGen model to encode the inputs (1-4) to
the Encoder. The BART decoder contains two clas-
sification heads, to predict relation and nuclearity.

Two approaches can be used to guide our RST
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Child Node: v,/
ild Node: Uyp ¢
7

Relation Nuclearity
T n;

( \

-

Bart Encoder Bart Decoder
A\ /
r ) | Parent relation: r |
Prompt: Which car brand do Parent nuclearity: ¢
you think is the most popular?
Parent position: [

Child's relative position: b

Figure 3: Neural RST Sampler: Our Neural RST
Sampler can be used to iteratively predict an RST Tree,
conditioned on a prompt which is passed to the Encoder.
The Decoder takes as input the summation of embed-
dings for the parent’ nodes relation 7, nuclearity n and
position . Further we also pass in b which represents
whether the target child node is a left or right child.

predictor to produce more relevant RST Trees.
Firstly, the training set can be limited to a specific
domain, such as argumentative text, to introduce
bias the prediction towards a specific linguistic
style. Secondly, during inference the predictive
distribution can be augmented, to ensure specific
structural properties are achieved. In our experi-
ments, we use this to predict RST Trees with a spe-
cific size. We have extended this to other structural
features such as specifying RST relation frequency,
and position.

4.4 RST-Aware Attention (R.A.A.)

To better encode the RST tree structure in language
model training and to improve the coherence of
text by reducing the occurrence of hallucination
in long-form generated text, we propose a novel
attention scheme, called RST-aware attention. In
particular, to generate a word token at position 1,
we create dynamic attention masks m; allowing
the hidden state h; to focus only on structurally
relevant hidden representations h;, j # 4. The
hidden representation h; is structurally relevant to
h; if h;’s associated RST node is an ancestor of
the RST node associated to h;. The RST-aware
attention is described in Algorithm 1.

In the above process, we need to first detect the
RST node position of the word token to be gener-
ated. We do this in a sequential manner with the
help of an EDU splitter (Wang et al., 2018), which
can detect EDU boundaries in text. At the start of
text generation, we set the initial EDU node posi-
tion as the leftmost leaf node in the RST tree and

Algorithm 1: RST-aware attention
Input

: Hidden representations: h;, hj, j # 4, and
their associated RST nodes v;, v, at
positions [, m respectively.

Output : Updated hidden representation h.

1 forj #ido

2 if isParentNode (v, vy, ) then
3 ‘ mi,; = 1

4 else

5 | mi;=0

6 end

7 return h; < MaskedAttention(hs, {h;}j2i, m;)

then proceed to generate the first token. Afterwards,
we use the EDU splitter to detect whether an EDU
boundary has occurred. If no boundary is detected,
we continue with the generation of the next word
token; otherwise, we infer the next EDU node po-
sition as the second leftmost leaf node in the RST
tree. The above process is repeated until the ‘end
of sequence’ token is generated or until the fi-
nal child EDU node is generated. In practice we
use heuristics to avoid the need to perform an EDU
boundary detection at each generation step.

5 Open Generation Evaluation

We first train a model using our RST annotated
dataset described below. Then we analyse the
model’s ability to control semantic, syntactic and
text structure.

Subreddit % of Training Instances
r/CasualConversation 41.7
r/changemyview 19.1
r/DebateReligion 15.8
r/PoliticalDiscussion 9.62
r/relationship_advice 7.94

Other Subreddits 6.84

Total 965,411 samples

Table 1: Statistics of RST Annotated Dataset: The
majority of our dataset is sourced from 5 subreddits
which exhibit a tendency to produce longer and more
complex texts.

RST Annotated Dataset We use the ConvoKit
API (Chang et al., 2020) to collect a total of over
965k text examples from Reddit to use as the train-
ing set. Table 1 provides a detail regarding the
division of the dataset between different subreddits.
The following subreddits comprise the majority of
our dataset, DebateReligion, RelationshipAdvice,
Politics and ChangeMyView. These subreddits con-
tain many long texts with opinions or persuasive
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Input

Key phrases:
Text prompt:
RST structure:

“It would be"

“good mouse alternative" and “none"

{Relation: r1, Nuclearity: SN, Node position: 0}, {Relation: 72, Nuclearity: NS, Node position: 2}

Input Relations (r1,72) Generated Text

Attribution, Explanation
Background, Evaluation
Background, Condition
Contrast

It would be a good mouse alternative, because none of us are going to be able to see.
It would be a good mouse alternative, since none of us have ever seen one.

It would be a good mouse alternative if none of them were good.

It would be a good mouse alternative, but none of them are as good as a good one.

Table 2: Short Text Semantic control: Examples of text generated by varying the RST relations. Words high-
lighted in red in the generated text indicate the corresponding underlined RST input relations.

style of writing. Further, we choose large samples
from the subreddit CasualConversation to com-
plement the limited range of language present in
the former subreddits. Each sample contains a
reddit post, its RST tree generated using the best
statistical RST parser (Feng and Hirst, 2012) and
keyphrases extracted from the post using the PageR-
ank inspired algorithm, TextRank (Mihalcea and
Tarau, 2004). The keyphrase extraction process is
detailed in Appendix D.

Semantic Control In Table 2 we show the gener-
ated short text conditional on various RST relations.
For all four examples the same key phrases of “a
good mouse alternative" and “none of this" were
passed to the model. Furthermore, we provide the
first three words “It would be" to the decoder as a
text prompt. The text is generated by varying the
RST relations, 1 and r5. We can observe that the
generated text varies depending on the desired RST
relations input to the model.

Structural Discourse Control Here we use a re-
construction style test to evaluate the ability of our
model to include the target relations in the gener-
ated text at the correct position. To do this, we
allow our model to generate text ¢ using the RST
tree T as the conditioning factor. We then use an
RST parser to generate a RST tree T from the gen-
erated text . For each relation r, we calculate a
recall score as the proportion of nodes with relation
7 in T that also occur in 1" at the same position
l. The results are shown in Figure 4. We include
results for different lengths of text, measured by
elementary discourse units.

We observe that our model achieves strong lev-
els of control for the following relations: Afttri-
bution, Background, Condition, Contrast, Elabo-
ration, Joint, Manner-Means, and Temporal. We
believe that the weakened performance on Cause

o
o

=)
j

=)
=

Position and Relation Recall Score
2 5 e 8 5 =
MW oR o S
N |
[=TN=10 ]

£ & o & & & o o
v\""\b & S.-,'\‘h & 994- & 2906‘;5 : 059?& ‘g’b‘:@b @Qé
o - A8 b X
o o ¥ & F F & 4
& & e & & ‘6“6 < C

Figure 4: Structural Discourse Control: RST relation
and position recall scores calculated for each RST rela-
tion from the generated text with its lengths measured
by the number of Elementary Discourse Units in the
range of {4,8,12,16,20}.

and Comparison is due to their respective similarity
to Artribution and Contrast. We omit topic change
since our datasets contains texts mostly constrained
to a single topic.

Text Length Control By editing the length of
the RST encoding, we gain strong control of the
length of the generated text. Here we fix the key
phrases and vary the length of the RST context (i.e.,
number of EDUs) from 2 to 14 to demonstrate the
increasing length of generated text. Results are
depicted in Figure 5. We believe that our method
provides a more natural way to control text length
when compared to the heuristic methods of fine
tuning text generation hyper-parameters such as
repetition penalty, length penalty and minimum
length.

RST Tree Edit Distance Here we extend the
Tree Edit Distance to RST Trees to evaluate how
well RSTGen is able generate text that adheres to
the RST encoding passed to it. Specifically, we
investigate how well this model performs as the
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Figure 5: Text Length Control: RSTGen exhibits the
ability to implicitly control the length of generated text
by controlling the size of the RST structure provided
as context. In this figure we present the average word
count (left y-axis) and average sentence count (right y-
axis) against the length of the RST encoding passed to
RSTGen.

RST structure becomes increasingly long. For this
experiment, we pass an RST Encoding and a set of
keywords to our model and generate a text y. We
then extract an RST tree from the generated text y
using an RST parser. An edit includes the follow-
ing operations: Changing/Removing the relation or
nuclearity label of the node at position [ with cost 1;
Changing the position of a node to it’s sibling node
with cost 1; and Deleting/Inserting a blank node at
position [ with cost 3. For a tree of size s we use a
normalising factor of 3x s, the cost of creating the
tree. Our normalising factor does allow distances
over 1. We observe from Figure 6 that generated
text is able to adhere to correct RST structure in
terms of RST node positions relatively well. How-
ever, when considering nuclearity and relation, he
inaccuracy of RST structure grows significantly.

6 Evaluation on Argument Generation
and Story Generation

We evaluate RSTGen for the tasks of argument gen-
eration and story generation. These tasks require
our model to output coherent and cohesive text.

6.1 Experimental Setup

We describe the datasets used for fine-tuning our
model, baseline models and the methods used to
ensure fair comparison. Training detail and hyper-
parameter setting can be found in Appendix C.

Datasets We use two different datasets for argu-
ment generation and story generation, respectively.

p7d position
el positicn.nuclearity
E 06 positien.nuclearity,relation \
w
z
£ 05
i /
w

04
&
&
Y03
=
u
B0z
]
E 01
=

0.0

o 5 10 15 20 25 30

Tee Size (Mon terminal nodes)

Figure 6: Normalised RST Tree Edit Distance: This
figure shows the similarity between the RST structure
of RSTGen output text and the RST encoding passed
as input to RSTGen. We extend Tree Edit Distance
to RST Trees to calculate three metrics based on com-
binations of node position, node nuclearity label and
node relation label: (1) Simple Structure: Tree distance
including only node positions; (2) Complex Structure:
Tree distance including node positions and nuclearity;
(3) Complete Structure: Tree distance including node
position, nuclearity and relation.

CMV Dataset We use the argument generation
dataset first introduced in (Hua et al., 2021).
This dataset contains pairs of claims and counter-
arguments extracted from titles and responses, re-
spectively, from the Reddit ChangeMyView (CMV)
forum. This dataset uses posts dated in 2019, which
prevents overlap with our training set for the RST
Annotated Dataset. The goal of this task is to gen-
erate the counter-argument given the initial claim.
Writing Prompts Dataset We use the Story gener-
ation dataset created by Fan et al. (2018a) and
utilised in (Ji and Huang, 2021). This dataset con-
tains pairs of prompts and stories extracted from
the WritingPrompts subReddit. The prompt is an
introduction to a story that must be extended. We
limit each story to be up to 270 tokens.

Baselines For argument generation, we evaluate
the following baselines:

CTRL. (Keskar et al., 2019) uses text prompts
to control the style of output. The trigger
r/changemyview style output we prepend the text
‘Opinion Title:‘ to the opening statement.
This model is approximately 10 times larger than
RSTGen and we assume that it achieves perfor-
mance gains primarily through its larger size.
PAIR (Planning and Iterative Refinement). Hua
and Wang (2020) devised a two-step generation
process. The first step uses a fine-tuned BERT to
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Model Control Method Grammar 1 Redundancy T Focus 1 Structure and Coherence
CTRL Text prompt 0.84 -0.16 -0.12 -0.76
PAIR Keywords + positions 0.79 0.00 -0.02 -0.78
DYPLOC Categorised keywords 0.73 -0.10 -0.03 -0.79
RSTGen RST + PAIR Planner 0.81 -0.03 -0.03 -0.77
RSTGen RST + DYPLOC Planner 0.83 -0.02 -0.04 -0.75
RSTGen RSTpedictea+ PAIR Planner 0.75 -0.05 -0.06 -0.88
RSTGen RSTpredictea+ DYPLOC Planner 0.76 -0.06 -0.05 -0.86
RSTGen w/o R.A.A. RST + PAIR Planner 0.71 -0.04 -0.08 -0.81
RSTGen w/o R.A.A.  RST + DYPLOC Planner 0.65 -0.06 -0.09 -0.80

Table 3: Argument Generation Evaluation: the performance of baseline models and our RST frameworks with
different control methods. The shortform R.A.A refers to the RST-aware attention described in Section 4.4.

allocate a position to each pre-defined keyword, in
order to create a template for the text to be gener-
ated. Then a fine-tuned BART model is used to fill
the template.

DYPLOC (Dynamic Planning of Content using
Mixed Language Models). Hua et al. (2021) pro-
posed first categorising the keywords into concepts
and entities. A BERT-based Planner is used to ex-
pand this set of concepts and entities, while another
is used to generate the claim. The claim provides a
brief summary of the extended answer. Four sep-
arate BART Encoders and a BART Decoder are
used to convert the expanded set of concepts and
entities into an argumentative text.

For both PAIR and DYPLOC, we use their gold
standard plan as input to the model, this follows the
headline results given in both papers. In pursuit of
fair testing, we convert the gold standard plans of
PAIR and DYPLOC to two RST encodings. More
concretely, for PAIR, we convert its gold standard
template, consisting of a set of phrases and their
corresponding starting positions in the text to be
generated, into a RST encoding. These phrases be-
come the keyphrases for RSTGen. The RST node
position for each key phrase can be determined
by parsing the true RST structure of the text. For
DYPLOC, first we collect the gold standard set
of concepts/entities and claims, and filter out any
repeated words phrases. Then, the RST node posi-
tion for each word/phrase can be determined in a
similar manner to PAIR.

For Writing Prompts, we compare our proposed
approach with the following models:

DiscoDVT (Ji and Huang, 2021). To the best of our
knowledge it is the only other work that uses RST
to improve the long form text generation ability of
a language model. It has three modules: an RST
planner, an encoder and a decoder. These mod-

ules are combined to form a VAE structure wherein
the RST planner produces a sequence of discrete
hidden vectors representing the sequence of RST
relations between EDUs in their text. Then at each
generation step, sequential hidden vectors are used
to guide the text generation process. For fair com-
parison we do not pass keyphrases to RSTGen.

RSTGen Ablations. We evaluate ablations of RST-
Gen to validate the two significance features of our
proposed RSTGen framework. Firstly, we remove
the RST-Aware Attentions (R.A.A.), after which
we remove RST Nuclearity, then Relation, and fi-
nally node positions.

Metrics We use two sets of metrics. For the
Argument Generation experiments, we use the
GRUEN (Zhu and Bhat, 2020) set of metrics,
which measure four important features of text:
Grammaticality, Non-redundancy, Focus and Struc-
ture/Coherence. A final metric combines these four
features, and has been shown to correlate strongly
with human reviewers. For the Story Generation
experiments, we use BLEU (Papineni et al., 2002)
focusing on the n-gram precision; Distinct-n (Li
et al., 2016), which takes the proportion of distinct
n-grams relative to all generated n-grams, thus pro-
ducing a non-reference-based measure for diver-
sity; the GRUEN Structure and Coherence metric
(G-SC); and MS-Jaccard (Alihosseini et al., 2019)
which uses the Jaccard Index to measure how simi-
lar the distribution of n-grams is between two sets
of text.

6.2 Evaluation Results

This section presents the performance of RSTGen
against baseline models and discusses the perfor-
mance of RSTGen ablations.
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Argument Generation Table 3 shows that our
proposed RSTGen using the DYPLOC Planner per-
forms on par with CTRL in terms of Grammar
despite using only one tenth parameters of CTRL.
It outperforms all the baselines in Structure and
Coherence.

Using automatically predicted RST trees as in-
put, we observe degraded performance of RSTGen
results. We believe that this can be attributed to
our Markovian RST sampling methodology of sam-
pling a child node dependent on its direct parent
node. This may produce RST Trees with unreal-
istic structures. Nevertheless, it still outperforms
CTRL in Redundancy and Focus, implying that the
combination of RST relations, nuclearity and key
phrases provide strong content guidance.

RSTGen without the RST-aware attention
(R.A.A.) experiences a drop in performance across
all metrics, especially Grammar and Focus. During
the generation of longer sequences, using R.A.A.
ensures that the same key phrase or RST informa-
tion does not influence adjacent elementary dis-
course units, leading to more diversity and less rep-
etition in generated text. We posit that the removal
of R.A.A. exacerbates the reduced performance of
RSTGen for longer texts, a trait that was exempli-
fied in Figure 6.

Story Generation Table 4 shows that the R.A.A.
variants of our model perform on par with the base-
line. We observe that the removal of the R.A.A.
causes a significant drop in performance, specifi-
cally Distinct-4, confirming our findings from the
Argument Generation. As the RST relations carries
information on the semantics of text, we observe
that its removal has a significant effect on the sim-
ilarity based metrics of BLEU-1, Distinct-4 and
MS-Jaccard 3.

Model BLEU-11 Distinct-4 T G-S&C1 MS-Jaccard 3 1

DiscoDVT 24.10 84.66 -0.73 34.76
RSTGen (no keyphrase) 24.01 84.85 -0.71 34.51
-RAA. 23.20 82.12 -0.75 33.21
- RST relation 2228 81.09 -0.77 33.79
- RST nuclearity 22.29 81.12 -0.77 33.78
- RST positions 22.04 80.91 -0.75 33.73

Table 4: Story Generation Evaluation: Results for
the RSTGen and Baselines on the Writing Prompts
story generation dataset. RSTGen performs competi-
tively with DiscoDVT.

7 Conclusion

We present a novel controlled text generation frame-
work, RSTGen, which uses fine-control over a
Rhetorical Structure Theory based context as a
means to improve the coherence and cohesion of
generated text. We also leverage the structural in-
formation presented by RST to propose an rst aware
attention scheme, ensuring that the model attends
to the correct information during long form gen-
eration. Through investigation of RSTGen’s open
generation text, we showed that our approach can
exhibit a high level of intepretable fine-control over
syntactic, semantic and structural features of text.

8 [Ethics Statement

We acknowledge that our proposed model may be
susceptible to learning harmful biases present in
the dataset. In and of itself this has the poten-
tial to harm minorities, marginalised communities
and project stigmas present in society. Further, we
recognise that our efforts to improve coherence,
cohesion and control might be misused to author
offensive or fictitious content. Therefore, we advo-
cate for morally correct and responsible practices
in the case of real-world application.

Acknowledgements

This work was funded by the the UK Engineering
and Physical Sciences Research Council (grant no.
EP/T017112/1, EP/V048597/1). YH is supported
by a Turing Al Fellowship funded by the UK Re-
search and Innovation (grant no. EP/V020579/1).

References

Danial Alihosseini, Ehsan Montahaei, and Mahdieh So-
leymani Baghshah. 2019. Jointly measuring diver-
sity and quality in text generation models. Proceed-
ings of the Workshop on Methods for Optimizing and
Evaluating Neural Language Generation.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,
Michael White, and Rajen Subba. 2019. Con-
strained decoding for neural NLG from composi-
tional representations in task-oriented dialogue. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 831—
844, Florence, Italy. Association for Computational
Linguistics.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2003.  Building a Discourse-Tagged
Corpus in the Framework of Rhetorical Structure
Theory, pages 85-112. Springer Netherlands, Dor-
drecht.

1830


https://doi.org/10.18653/v1/w19-2311
https://doi.org/10.18653/v1/w19-2311
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.1007/978-94-010-0019-2_5
https://doi.org/10.1007/978-94-010-0019-2_5
https://doi.org/10.1007/978-94-010-0019-2_5

Patricia L. Carrell. 1982. Cohesion is not coherence.
TESOL Quarterly, 16(4):479—488.

Jonathan P. Chang, Caleb Chiam, Liye Fu, An-
drew Z. Wang, Justine Zhang, and Cristian Danescu-
Niculescu-Mizil. 2020. Convokit: A toolkit for the
analysis of conversations.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. A multi-task approach for dis-
entangling syntax and semantics in sentence repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2453-2464, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language models:
A simple approach to controlled text generation.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376-380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Wenyu Du, Zhouhan Lin, Yikang Shen, Timothy J.
O’Donnell, Yoshua Bengio, and Yue Zhang. 2020.
Exploiting syntactic structure for better language
modeling: A syntactic distance approach. In ACL.

Ondrej Dusek and Filip Juréicek. 2016. Sequence-
to-sequence generation for spoken dialogue via
deep syntax trees and strings. arXiv preprint
arXiv:1606.05491.

William Falcon et al. 2019. Pytorch light-
ning. GitHub.  Note: https://github.
com/PyTorchLightning/pytorch-lightning, 3:6.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018a.
Hierarchical neural story generation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 889-898, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018b.
Hierarchical neural story generation. Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. arXiv
preprint arXiv:1902.01109.

Vanessa Wei Feng and Graeme Hirst. 2012. Text-level
discourse parsing with rich linguistic features. In
Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 60-68, Jeju Island, Korea. As-
sociation for Computational Linguistics.

Tanya Goyal and Greg Durrett. 2020. Neural syntactic
preordering for controlled paraphrase generation. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 238—
252, Online. Association for Computational Linguis-
tics.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the
34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1587-1596. PMLR.

Xinyu Hua, Ashwin Sreevatsa, and Lu Wang. 2021.
DYPLOC: Dynamic planning of content using
mixed language models for text generation. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6408—
6423, Online. Association for Computational Lin-
guistics.

Xinyu Hua and Lu Wang. 2019. Sentence-level con-
tent planning and style specification for neural text
generation. arXiv preprint arXiv:1909.00734.

Xinyu Hua and Lu Wang. 2020. PAIR: Planning and
iterative refinement in pre-trained transformers for
long text generation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 781-793, Online.
Association for Computational Linguistics.

Haozhe Ji and Minlie Huang. 2021. Discodvt: Gener-
ating long text with discourse-aware discrete varia-
tional transformer.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
Ctrl: A conditional transformer language model for
controllable generation.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting objec-
tive function for neural conversation models. Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Yinghao Li, Rui Feng, Isaac Rehg, and Chao Zhang.
2020. Transformer-based neural text generation
with syntactic guidance.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text - Interdisciplinary
Journal for the Study of Discourse, 8(3):243-281.

1831


http://www.jstor.org/stable/3586466
http://arxiv.org/abs/2005.04246
http://arxiv.org/abs/2005.04246
https://doi.org/10.18653/v1/N19-1254
https://doi.org/10.18653/v1/N19-1254
https://doi.org/10.18653/v1/N19-1254
http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/1912.02164
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/p18-1082
https://aclanthology.org/P12-1007
https://aclanthology.org/P12-1007
https://doi.org/10.18653/v1/2020.acl-main.22
https://doi.org/10.18653/v1/2020.acl-main.22
https://proceedings.mlr.press/v70/hu17e.html
https://proceedings.mlr.press/v70/hu17e.html
https://doi.org/10.18653/v1/2021.acl-long.501
https://doi.org/10.18653/v1/2021.acl-long.501
https://doi.org/10.18653/v1/2020.emnlp-main.57
https://doi.org/10.18653/v1/2020.emnlp-main.57
https://doi.org/10.18653/v1/2020.emnlp-main.57
http://arxiv.org/abs/2110.05999
http://arxiv.org/abs/2110.05999
http://arxiv.org/abs/2110.05999
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
https://doi.org/10.18653/v1/n16-1014
https://doi.org/10.18653/v1/n16-1014
http://arxiv.org/abs/2010.01737
http://arxiv.org/abs/2010.01737
https://doi.org/doi:10.1515/text.1.1988.8.3.243
https://doi.org/doi:10.1515/text.1.1988.8.3.243

Rada Mihalcea and Paul Tarau. 2004. TextRank: Tsung-Hsien Wen, Milica Gasi¢, Nikola Mrksié, Pei-

Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 404-411, Barcelona, Spain.
Association for Computational Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of

Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711-1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

the 2019 Conference of the North American Chap- ~ Sam Wiseman, Stuart Shieber, and Alexander Rush.

ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267-2277, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253-2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Xuan-Phi Nguyen, Shafiq Joty, Steven C. H. Hoi, and =~ Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

Richard Socher. 2020. Tree-structured attention
with hierarchical accumulation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational

Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing.

Linguistics. Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners - gpt2.

Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
The Thirty-Third AAAI Conference on Artificial In-
telligence (AAAI-19).

Yikang Shen, Shawn Tan, Alessandro Sordoni, and  Tiancheng Zhao, Kaige Xie, and Maxine Eskenazi.

Aaron C. Courville. 2019. Ordered neurons: Inte-
grating tree structures into recurrent neural networks.
ArXiv, abs/1810.09536.

2019. Rethinking action spaces for reinforcement
learning in end-to-end dialog agents with latent vari-
able models. arXiv preprint arXiv:1902.08858.

Maite Taboada and William C. Mann. 2006. Applica-  Wanzheng Zhu and Suma Bhat. 2020. GRUEN for

tions of rhetorical structure theory. Discourse Stud-
ies, 8(4):567-588.

Stephen Waller. 2015. Cohesion is still not coherence,
so what is? English Teaching In China, (6):31-35.

Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi Zhang,
Guoyin Wang, Dinghan Shen, Changyou Chen, and
Lawrence Carin. 2019a. Topic-guided variational
autoencoders for text generation. arXiv preprint
arXiv:1903.07137.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019b. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061-1070, Hong Kong, China. As-
sociation for Computational Linguistics.

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.
Toward fast and accurate neural discourse segmen-
tation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 962-967, Brussels, Belgium. Association for
Computational Linguistics.

1832

evaluating linguistic quality of generated text. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 94-108, Online. As-
sociation for Computational Linguistics.


https://www.aclweb.org/anthology/W04-3252
https://www.aclweb.org/anthology/W04-3252
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236
http://arxiv.org/abs/2002.08046
http://arxiv.org/abs/2002.08046
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1177/1461445606064836
https://doi.org/10.1177/1461445606064836
https://www.xjtlu.edu.cn/assets/files/publications/etic/issue-6/6_10_waller_2105.pdf
https://www.xjtlu.edu.cn/assets/files/publications/etic/issue-6/6_10_waller_2105.pdf
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D18-1116
https://doi.org/10.18653/v1/D18-1116
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D17-1239
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2020.findings-emnlp.9
https://doi.org/10.18653/v1/2020.findings-emnlp.9

A RST Schemas

We list in Table A1 the RST relations and necleus
that our proposed RSTGen framework utlises. We
also provide a schema in Table A2 explaining the
meaning of Nuclearity labels used by RSTGen.

B Argument and Story Generation
Dataset Details

For both the argument generation and story gener-
ation experiments our datasets originate from the
respective paper’s of models in the baseline study.
We do not make any alterations to the datasets,
but instead simply use it as provided. We refer
the reader to and Hua et al. (2021) for the argu-
ment generation dataset (i.e., the CMV dataset)
and Fan et al. (2018b) for further details regard-
ing the story generation dataset (i.e., the Writing
Prompt dataset).

C Reproducibility

Code The code used to train and evalu-
ate our models can be downloaded from
https://github.com/Rilwan-A/RSTGen. As well as
code, the github will contain links to the RST an-
notated versions of the CMV dataset and Writing
Prompts dataset. Access to the full RST Annotated
Reddit dataset can be gained upon request.

Repositories The RSTGen models were ex-
tended from pretrained models in Huggingface’s
Transformers repository (Wolf et al., 2019). RST-
Gen is initialised using the GPT2-base model
with approximately 124M parameters. The neural
RST Predictor was initalised using the BART-base
model. We used Pytorch-Lightning (Falcon et al.,
2019) for all our training scripts.

Hardware For fine-tuning the RSTGen model
on the RST Annotated Dateset, we used 2 GeForce
RTX 3090 (24GB). For the Argument Generation
Tasks and the Story Generation Task, the RSTGen
variants and RST Neural Sampler are fine-tuned
using 1 GeForce RTX 3090 (24GB). All training
was done using mixed Precision (FP16) to improve
memory efficiency.

Fine-tuning For fine-tuning all variations of
RSTGen, we used the Adafactor optimiser with
the following parameter settings: scale parameter
= False, relative step =True, warmup init =True,
learning rate =None, weight decay =0.01. Due to
the high computational expense required, we did

not perform extensive hyper-parameter tuning for
our RSTGen models.

When fine-tuning on the RST Annotated Dataset,
we used an effective batch size of 44 and trained
using an Early Stopping rule allowing for at most
one epoch to pass with no improvement. The max-
imum target sequence length is 270 tokens. The
maximum RST Tree Size is 36 parent nodes. The
maximum Key Phrase sequence size is 64 tokens.
These models take approximately 5 epochs to con-
verge which takes approximately 10 hours.

D Keyphrase Extraction using TextRank

Our second conditioning factor is the phrases that
are important to the generated text. This impor-
tance is determined by the steps listed below:

Noun Chunks and Named Entities Given a text
x, the noun chunks and named entities are extracted

to form a set of sub-phrases [z}", 23", ..., 2] € x.

Graph Formation Separately, a graph G is
formed from text x by extracting all words w; that
have a Part-Of-Speech tag of either ‘Adjective’,
‘Noun’, ‘Proper Noun’ or ‘VERB’. These words
are lemmatised and form nodes V; € G.

Edge Creation A weighted edge w;; between
nodes V;, Vj, 4 # j has a weight of 1 if the distance
between the words corresponding to V;, Vj is less
than some threshold k. In other TextRank imple-
mentations factors such as word length, position
and frequency can be used to scale wy;.

Node Scoring The TextRank score S (V) of a
node Vj is initialised to a default value. Then Page
Rank’s adapted Eigenvector centrality measure is
used to to calculate the importance of each node
Vi. S (V;) is iteratively updated using the equation
below, until convergence is reached:

L% S (V-
SV (Vl):(l—d)+ d x 71%1 X ( J)
JEN() ZkeN(j) Wik
where d is a damping factor and set to 0.85 as in
(Mihalcea and Tarau, 2004) and N (i) are the set of
indices of the neighbours of V.

Keyphrase Scoring Given the set of node scores
S (V;), the score of a sub-phrase z;, , with L words,
is computed by summing the scores of the words
it contains normalised by its length 41 to favor
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Relation Nuclei

Satellite

Attribution the effect

Background text whose understanding is being facilitated

Cause action/situation

Comparison a comparison between two or more subjects/objects

Condition action/situation resulting from the occurrence of a conditioning situation
Contrast one alternate

Elaboration basic information

Enablement an action/event enabled by a factor

Evaluation a situation

Explanation a statement

Joint a list or dis-junction

Manner-Means the action (being) performed

Topic-Comment a statement such as a question, topic or statement

Summary a statement

Temporal a statement with temporal dependence

Topic-Change a shift from this topic A to

Same-Unit Used to link parts of discourse separated by embedded discourse relation

Textual-Organization used to link parts of discourse separated by embedded discourse relation

Null Non-classified

the factor which it can be attributed

text whose understanding is being facilitated

factor which resulted in action/situation’s occurrence

NA

conditioning situation

the other alternative

additional information

the factor

an evaluative comment about the situation

the supporting statement to explain the statement

NA

the manner or means by which the action was performed/achieved
a paired statement such as an answer / topic-comment or response
a restatement, that is shorter

factor that is depended on

a shift to this topic B

NA

NA

NA

Table Al: The RST relations Schema: A schema providing an interpretation for the RST relations our framework

utilises. Some of the descriptions are extracted from (Taboada and Mann, 2006) and (Carlson et al., 2003)

Parent Nodes’ Nuclearity Label Relationship between sibling does

Nuclei-Nuclei NN  The left sibling’s sub-text is equally as important as the right sibling’s sub-text.
Nuclei-Sattelite NS  The left sibling’s sub-text is the important part of the parent node’s text.
Sattelite-Nuclei SN The right sibling’s sub-text is the important part of the parent node’s text.

Null Null  Non-classified

Table A2: A RST Nuclearity Schema: A schema providing an interpretation of the RST nuclearity our framework

uses.

longer n-grams. This is shown in the equation
below:

_ Zlel Sv (Vl)

Keyphrase candidates are then ranked and redun-
dant candidates filtered out. Two candidate phrases
are considered redundant if they have the same
lemmatised form.

E Argumentation Generation Examples

In this section, we show some example text gener-
ated from RSTGen in comparison to baseline mod-
els, where text with poor coherence is underlined.
We can observe that CTRL generates coherent text
but with a shorten length. Both PAIR and DYPLOC
exhibit some inconsistency in their generated text.
On the contrary, RSTGen generates much longer
text with its inconsistency appearing to be more
subtle.
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CTRL It is important when you’re reading old texts like the Bible to remember that it was
made to be analyzed, which the human race has been doing for a couple of hundred
years by now. If I were to come up to someone and say "How can you believe in a
religion that said all types of animals converged to the Middle East to get on a big
boat to be saved?" the person would respond "I have faith. I don’t need to question
what I have been taught."

PAIR It is important to remember what reading your texts about your Bible and remember
that you’ve made what you analyzed to human race " but remember about your
couple of hundred years ago they were born? I've been taught to think religion, but
I’ve been taught to have types of animals I haven’t been in Middle East and I've never
been on boat that a saved person to respond to their faith in the US. My question is,
do you really?

DYPLOC I think it’s important to read the Bible as a text, because it’s important to remember
that the Bible was made up and analyzed by the human race for a couple hundred
years. The question is, what is it taught to us? How do we know that a person
responds to their faith? Religion is the type of animal that converges on a big boat
and saves the middle east.

RSTGen It is a lot more likely to be analyzed by the human race than any other book of text,
or even just some couple of important texts that have been written in an attempt to
make sense of what we’ve done for ourselves and our own species. I’'m not sure
how you can possibly say this without reading all sorts of different perspectives on
these topics as opposed to being made up about something like "the world" which
has never really been studied at all - it’s only ever happened once. The whole point
of your argument rests on whether people are actually doing anything wrong with
their minds (which isn’t always true). It doesn’t mean they aren’t trying to explain
things beyond thinking through them... but rather why there was no reason to believe
those questions were asked when someone else said ‘why did god exist?” What if
one person had already read such answers? If another person hadn’t understood
science then wouldn’t he simply put themselves into question every single-made
assumptions?

Table A3: Argument Generation Example Output: We highlight parts of the generated text that correspond
to poor coherence. In this example we notice at least one inconsistency in the output for PAIR and DYPLOC.
However, the inconsistency in the RSTGen appears to be more subtle.
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