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Abstract

During the past decade, neural network mod-
els have made tremendous progress on in-
domain semantic role labeling (SRL). How-
ever, performance drops dramatically under
the out-of-domain setting. In order to facili-
tate research on cross-domain SRL, this paper
presents MuCPAD, a multi-domain Chinese
predicate-argument dataset, which consists of
30,897 sentences and 92,051 predicates from
six different domains. MuCPAD exhibits three
important features. 1) Based on a frame-free
annotation methodology, we avoid writing com-
plex frames for new predicates. 2) We explic-
itly annotate omitted core arguments to recover
more complete semantic structure, considering
that omission of content words is ubiquitous in
multi-domain Chinese texts. 3) We compile 53
pages of annotation guidelines and adopt strict
double annotation for improving data quality.
This paper describes in detail the annotation
methodology and annotation process of MuC-
PAD, and presents in-depth data analysis. We
also give benchmark results on cross-domain
SRL based on MuCPAD.

1 Introduction

As a fundamental NLP task, semantic role labeling
(SRL), also known as shallow semantic parsing,
aims to capture the major semantic information of
a sentence based on predicate-argument structure.
Basically, SRL tries to answer “who did what to
whom where and when” (Màrquez et al., 2008).
Previous works have shown that SRL can help var-
ious downstream tasks, including information ex-
traction (Bastianelli et al., 2013), plagiarism detec-
tion (Paul and Jamal, 2015), machine translation
(Shi et al., 2016), reading comprehension (Zhang
et al., 2020), etc.

Figure 1 gives two examples of SRL structure.
According to the definition of semantic roles, there
exist two typical representation forms, i.e., the
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昨天 , 我 买买买 了 一件 新 裙子 。
Yesterday , I bought a new dress .

time
agent patient

(a) Word-based SRL representation adopted in MuCPAD

昨天 , 我 买买买 了 一件 新 裙子 。

Yesterday , I bought a new dress .

TIME
A0 A1

(b) Span-based SRL representation adopted in CPB and CNB

Figure 1: Examples of two SRL formulations.

word-based and the span-based. This work adopts
the word-based form, in which an argument corre-
sponds to a single word. In contrast, span-based
SRL, adopted by most previous datasets, takes a
word span as an argument. The direction of arcs is
from predicates to arguments, and the labels indi-
cate the types of semantic roles. For example, the
arc from “买(bought)” to “裙子(dress)” with a la-
bel “patient” means that the semantic role between
the predicate “买(bought)” and the argument “裙
子(dress)” is “patient”.

Recently, Chinese SRL research has achieved
tremendous progress, thanks to the rise of deep
learning methods (Marcheggiani et al., 2017; He
et al., 2018; Cai et al., 2018), especially of powerful
pre-trained language models (PLMs) (Shi and Lin,
2019; Conia and Navigli, 2020; Paolini et al., 2021).
However, existing studies on Chinese SRL mainly
focus on the in-domain setting, where training and
test data are from the same domain (Wang et al.,
2015; Guo et al., 2016b; Xia et al., 2017). SRL
performance drops dramatically when the domain
of test data is different from that of the training
data, known as the domain adaptation problem.

Meanwhile, with the rapid growth of user-
generated web data, cross-domain SRL has be-
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昨天 , 我 没有 买买买 。 隐藏客体
Yesterday , I didn’t buy . hidden-object

time
agent hidden-object

Figure 2: An example sentence with an omitted core
argument in MuCPAD.

come an important and challenging task in real-
istic NLP systems (Jiang and Zhai, 2007; Ramponi
and Plank, 2020). However, due to the scarcity
of multi-domain labeled data, recent research on
SRL makes very limited progress in the domain
adaptation scenario.

As far as we know, there are three publicly avail-
able Chinese SRL datasets, i.e., Chinese Proposi-
tion Bank (CPB) (Xue and Palmer, 2005), Chinese
NomBank (CNB) (Xue, 2006a), and Chinese Sem-
Bank (CSB) (Xia et al., 2017). All these datasets
mainly contain canonical texts from newspapers or
magazine/textbook articles.

In order to facilitate research on cross-domain
SRL, this paper presents MuCPAD, a multi-domain
Chinese predicate-argument dataset, consisting of
30,897 sentences and 92,051 predicates, from 6
different domains. Overall, MuCPAD has the fol-
lowing important features.
(1) Following CSB instead of CPB and CNB, we

adopt a frame-free annotation methodology,
considering that it requires a very high level
of linguistic background to define new frames
for new predicates or new senses, and a lot of
new predicates or new senses may appear in
multi-domain texts.

(2) As shown in Figure 2, we explicitly annotate
omitted core arguments with two special labels,
i.e., “hidden-subject” and “hidden-object”, in
order to capture richer semantics expressed by
predicates. It is ubiquitous that people try to
avoid repetition by omitting previous content
in context, especially in non-canonical Chinese
texts.

(3) We adopt strict double annotation for all sen-
tences in order to improve quality. If two an-
notators submit inconsistent results, a senior
annotator determines the final answer. We also
compile 53 pages of annotation guidelines to
be studied and referred to by the annotators.

Based on our newly annotated MuCPAD, we
conduct preliminary cross-domain SRL experi-
ments and analysis. We enhance the basic SRL
model by exploiting CPB2.0 as a heterogeneous

dataset under the multi-task learning (MTL) frame-
work, and by utilizing powerful contextualized
word representations from pretrained language
models (PLMs).

We release MuCPAD along with our an-
notation guidelines for research usage at
https://github.com/SUDA-LA/MuCPAD.

2 Related Work

English SRL Data. Large-scale annotated data
is a prerequisite to develop high-performance SRL
systems (Fürstenau and Lapata, 2009; Xia et al.,
2020). The most representative ones in English are
FrameNet (Baker et al., 1998), PropBank (Kings-
bury and Palmer, 2002), and NomBank (Meyers
et al., 2004). FrameNet is a large-scale manually
annotated semantic lexicon resource and uses se-
mantic frames to represent meanings of words. A
frame corresponds to a sense of a word, and de-
fines the specific meanings of its core roles (i.e.,
“A0-A5”). In other words, labels for core semantic
roles have predicate-sense-specific meanings.

PropBank and NomBank are built by adding
predicate-argument structures to the constituents
of syntactic parser trees in Penn Treebank (Marcus
et al., 1993). Their semantic roles are naturally
span-based, instead of word-based. PropBank con-
siders verbal predicates, while NomBank supple-
ments nominal predicates. Following FrameNet,
PropBank and NomBank use frames to represent
semantic meanings of predicates. However, the
development of frames is both time-consuming
and labor-intensive, and requires annotators to be
equipped with strong linguistic background.

The texts of PropBank and NomBank are mainly
from the news domain, i.e., Wall Street Journal, ex-
cept 426 sentences from the Brown corpus, which
is usually used as an out-of-domain section of Prop-
Bank.

It is also noteworthy that there are PropBank-
style SRL data for other languages, such as Por-
tuguese (Duran and Aluísio, 2011, 2012), Arabic
(Pradhan et al., 2012), Finnish (Haverinen et al.,
2015), and Turkish (Sahin and Adali, 2018).

Chinese SRL Data. CPB (Xue and Palmer,
2005), CNB (Xue, 2006a), and CSB (Xia et al.,
2017) are the three publicly available SRL datasets
in Chinese. CPB and CNB, corresponding to Prop-
Bank and NomBank in English respectively, add
predicate-argument structure of verbal predicates
and nominal predicates into Penn Chinese Tree-
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Label Example Argument

Core roles

agent 我[打]他(I [hit] him) 我(I)

co-agent 我和他[讨论] (I [discuss] with him) 我(I)、他(him)

expe (experiencer) 天气真[好] (The weather [is] really good) 天气(weather)

hidden-subject [吃]饭了吗？([Ate] ? ) 隐藏主体(hidden-subject)

patient 他被[打]了(He was [hit]) 他(he)

pred-patient (predicate-patient) 他[喜欢]打篮球(He [likes] playing basketball) 打(play)

dative [给]他书([Give] him a book) 他(him)

relative 这[是]他的书(This [is] his book) 书(book)

hidden-object 你[吃]了吗？(Have you [eaten]? ) 隐藏客体（hidden-object)

subj-obj (subject-object) 温度计[伸入]水中(The thermometer is dipped into the water) 温度计(thermometer)

Non-core roles

tool (instument) 用钢笔[写]字([Write] with pen) 钢笔(pen)

material 用颜料[刷]墙([Brush] the wall with pigment) 颜料(pigment)

manner 按计划[执行] ([Perform] according to plan) 计划(plan)

loc (location) 在学校[学习] ([Study] at school) 学校(school)

beg-loc (begin location) 从学校[出发] ([Start] from school) 学校(school)

end-loc (end location) [流]入大海([Flow] to the ocean) 大海(ocean)

dir (direction) 向西[流] ([Flow] to the west) 西(west)

time 星期天去[打篮球] ([Play] basketball on Sunday) 星期天(Sunday)

beg-tm (begin time) 比赛七点开始[进行] (The game [starts] at seven o ’clock) 七点(seven o’clock)

end-tm (end time) 会议[开]到三点(The meeting [runs] until three o’clock) 三点(three o’clock)

range 在数学上[有]天赋([Have] an aptitude for mathematics) 数学(mathematics)

cause 我因为爱你才[撒谎] (I [lied] because I love you) 爱(love)

quantity 我[跑]了一圈(I [ran] a lap) 一圈(a lap)

separated 我们[见]过面(We have [met]) 面(met)

Table 1: Semantic role labels adopted in our guidelines. Predicates in the example sentences are marked by “[]”.

bank (Marcus et al., 1993). The semantic roles
are based on pre-defined frames as well. More-
over, sentences in CPB and CNB mainly come
from canonical texts, such Xinhua newswire, Hong
Kong news, and Sinorama Magazine (Hajic et al.,
2009).

In contrast, CSB uses general-purpose role la-
bels, such as “agent” and “patient”, and the sen-
tences are mainly from canonical texts such as on-
line articles and news as well.

Domain adaptation. Domain adaptation has
been an important and challenging research topic
in NLP (Daumé III, 2007; Ganin and Lempitsky,
2015; Guo et al., 2016a; Kim et al., 2017; Clark
et al., 2018; Zhao et al., 2018).

Kim et al. (2016) proposed a neural shared-
private model for the cross-domain slot sequence
tagging task, which utilizes separate BiLSTM en-
coders to obtain domain-invariant and domain-
specific representations, achieving significant im-
provements on all domains. Jia et al. (2019) pro-
posed parameter generation networks for cross-
domain NER. They idea is dynamically generate
parameters of network modules (such as BiLSTMs)
according to predicted domain distribution.

To facilitate cross-domain Chinese dependency
parsing research, Li et al. (2019a) proposed a large-

scale multi-domain dataset for Chinese dependency
parsing. They organized the NLPCC-2019 shared
task on cross-domain dependency parsing (Peng
et al., 2019). Li et al. (2019b) rank the first place
in the shared task, based on a tri-training approach.

However, possibly due to the lack of multi-
domain data, research on cross-domain SRL is
scarce so far. We hope our newly annotated MuC-
PAD can promote future research in this direction.

3 Data Annotation

This section describe the annotation methodology
and annotation process of MuCPAD in detail.

Annotation guidelines. After an extensive sur-
vey of previous works on SRL data annotation, we
compile 53 pages of annotation guidelines. We
adopt 24 fine-grained general-purpose role labels
to capture the semantic relationships between pred-
icates and arguments, as shown in Table 1, most of
which are borrowed from the guidelines of CSB.
In particular, we introduce two special labels, i.e.,
“hidden-subject” and “hidden-object”, to explicitly
annotate omitted core arguments. Our guidelines
illustrate each label in detail using concrete ex-
amples, and are gradually improved according to
feedback of annotators during the course of the
annotation project.
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News PB PC ZX LAW MED

#Sent 16,974 3,753 3,890 1,575 2,813 1,892
#Pred 40,989 11,317 17,074 5,891 11,156 5,624

Table 2: Statistics of annotated data. “#Pred” and
“#Sent” represent the number of predicates and sen-
tences.

Data selection. We select the data to annotate
from six domains, i.e., news, product blogs (PB),
product comments (PC), web fictions (ZX), legals
(LAW), and medical (MED) domains. Table 2
shows the data statistics.

News consists of the sentences in Chinese Sem-
Bank (Xia et al., 2017) and CoNLL-2009 Chi-
nese dataset (Hajic et al., 2009). Specifically, we
choose all 10.3K sentences with 16.5K predicates
from Chinese SemBank (Xia et al., 2017) and ran-
domly select 6.7K sentences with 24.5K predicates
from CoNLL-2009 Chinese dataset (Hajic et al.,
2009). Both PB and PC are non-canonical data
from Taobao1, where PB is from Taobao headline
website, and PC is comments on products writ-
ten by users. ZX is selected from a popular Chi-
nese fantasy novel called “Zhuxian” (ZX, known as
“Jade Dynasty”). LAW is extracted from the China
artificial intelligence law challenge 2018.2 MED is
crawled from the medical section of People’s Daily
Online3 and Sina.com4.

After selecting the sentences, we also need to
select the concerned predicates in the sentences
for annotators to annotate their corresponding ar-
guments. For news domain, we directly choose
the predicates in Chinese SemBank and CoNLL-
2009 Chinese dataset. For other 5 domains, we
choose the predicates according to several pre-
defined rules which are carefully designed by con-
sidering both the dependency tree structures of the
sentences and a frame dictionary extracted from
the Chinese frames5. For example, the root words
of dependency trees are considered as predicates;
the head words with “subject” or “object” depen-
dency labels are considered as predicates; all the
words that can be matched in the frame dictionary
are considered as predicates.

1http://www.taobao.com
2http://cail.cipsc.org.cn:2018/
3http://paper.people.com.cn
4https://news.sina.com.cn
5https://verbs.colorado.edu/chinese/cpb/html_frames

Quality Control. We employ 20 undergraduate
students as annotators, and select 5 experienced an-
notators as expert annotators to handle annotation
inconsistency issues. All the annotators are paid
for their work, and the salary is determined by their
annotation quantity and quality. The average salary
is 28 RMB per hour.

Before real annotation, each annotator is trained
for several hours to be familiar with our guidelines
and our annotation tool. During the annotation pro-
cess, we adopt a strict double annotation workflow
to guarantee the annotation quality. Specifically,
each task is randomly assigned to two annotators
to annotate independently. If the submissions from
the pair of two annotators are the same, the consis-
tent answer is taken as the final answer. Otherwise,
the task is assigned to a third expert annotator to de-
cide the final answer by comparing and analyzing
the inconsistent submissions.

Annotation tool. We build a browser-based an-
notation tool to support the double annotation work-
flow. For each annotation sentence, the annotation
tool highlights the predicate in the sentence for the
annotators to annotate all the arguments of the high-
lighted predicate. We also design a “not-predicate”
checkbox in the annotation tool and ask annotators
to click this checkbox to inform us when the high-
lighted word is out of the range of the predicate
types in our guidelines.

4 Analysis on MuCPAD

In this section, we analyze the MuCPAD dataset
from different perspectives to gain more insights.

Annotation consistency. As aforementioned,
each task is assigned to two annotators. If the two
submissions are inconsistent, a third expert annota-
tor is asked to handle the inconsistency and decide
the final results. The first major row in Table 3
shows the predicate- and argument-wise annotation
consistency ratios (Marcus et al., 1994; Guo et al.,
2018) in all domains.

The predicate-wise consistency ratio is defined
as #PredannoA∩annoB

#PredannoA∪annoB
, where the denominator is the

total number of predicates submitted by all annota-
tors, and the numerator is the number of predicates
with consistent arguments from all annotator pairs.
We can see that the predicate-wise annotation con-
sistency ratios in most domains are lower than 60%.
Even the highest predicate-wise consistency ratio,
which is achieved in PC domain, is only 71.23%.
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News PB PC ZX LAW MED AVG

Consistency ratio
predicate-wise 48.86 57.58 71.23 48.86 47.18 50.57 54.05

argument-wise 74.48 74.67 83.63 74.65 71.49 73.24 75.36

overall 85.86 82.08 89.40 83.80 84.57 85.78 85.25

agent 93.50 82.19 88.16 91.45 85.54 86.09 87.82

time 91.17 88.98 85.02 83.69 85.65 86.87 86.90

Argument-wise hidden-subject 88.79 90.61 94.45 79.65 85.54 90.45 88.25

annotation accuracy patient 87.02 88.36 90.20 86.32 85.66 89.26 87.80

loc 85.96 79.12 83.71 84.32 84.25 79.30 82.78

pred-patient 85.12 84.28 84.08 83.97 84.11 84.58 84.36

expe 81.58 85.27 90.89 86.39 84.20 87.67 86.00

Table 3: Analysis on consistency ratio and accuracy. “AVG” is obtained by averaging the values of the six domains.
For the first major row, “AVG” represents the average predicate/argument-wise consistency ratios in six domains.
For the second major row, “AVG” represents the average accuracy of overall/each label in six domains. Boldface
indicates the maximum value of each row, underline represents the minimum value of each row.

This means that more than a quarter of the anno-
tation tasks need to be further checked by a third
expert annotator, demonstrating the difficulty of
the SRL annotation task and the importance of per-
forming strict double annotation to guarantee data
quality.

In addition, it is worth noting that the predicate-
wise consistency ratio in PC domain is much higher
than that in the other five domains. We believe this
is related to the average number of arguments per
predicate. For further investigation, we calculate
the average number of arguments and find the num-
ber of average arguments per predicate is the lowest
in PC domain. Therefore, it is relatively easier for
the annotators to recognize the arguments in PC
domain.

The argument-wise consistency ratio is defined
as #ArgannoA∩annoB

#ArgannoA∪annoB
, where the denominator is the

total number of arguments submitted by all anno-
tator pairs, and the numerator is the number of
arguments that receive the same arcs and labels
from the annotator pairs. As shown in Table 3,
the argument-wise consistency ratios in most of
the domains are lower than 75%, except that PC
achieves the highest argument-wise consistency ra-
tio of 83.63%.

Annotation accuracy. In the second major row
of Table 3, we present the argument-wise annota-
tion accuracy. The overall argument-wise annota-

tion accuracy is defined as
∑n

i=1 #Argcorrecti
2×#Arggold , where

the numerator is the sum of the number of correctly
annotated arguments submitted by all annotators;

the denominator is the total number of all gold ar-
guments; n is the number of annotators. The reason
for “2×” in the denominator is that each task is an-
notated twice since it is assigned to two annotators
for double annotation. The annotation accuracies
in all the domains are more than 80%, indicating
that our guidelines are reasonable, which ensures
the quality of annotation data.

To gain more insights into the accuracy regard-
ing different labels, we calculate the accuracy of
5 core labels and 2 non-core labels with high pro-
portions for further analysis, which is shown in the
third major row of Table 3. The argument-wise
annotation accuracy for each label is calculated by∑n

i=1 #Arg
l
correcti

2×#Arglgold
, where the numerator is the sum

of the number of correctly annotated arguments
with the concerned label l submitted by all annota-
tors, the denominator is the total number of all gold
arguments with the concerned label l; n is the num-
ber of annotators. As we can see, “hidden-subject”
achieves the highest average accuracy, demonstrat-
ing the omitted subject is easy to recognize. The
lowest average accuracy is 82.78% on “loc”, prob-
ably because it is a non-core label with the lowest
proportion of all labels and is prone to be ignored
by the annotators.

Label distribution. Figure 3 illustrates the label
distribution in the 6 domains. The labels in Figure
3 are sorted in descending order by their proportion
in News data. We choose 2 core labels and 2 non-
core labels with the highest proportions in News
data. Besides, we also analyze “hidden-subject”
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News PB PC ZX LAW MED
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Figure 3: Label distribution in different domains.

and “hidden-object” since their distributions in dif-
ferent domains are specific. As shown in Figure
3, the label distributions are vary across different
domains.

For PC, both “hidden-subject” and “hidden-
object” account for the largest proportion compared
with that for all the other 5 domains, which means
PC contains the most omitted core arguments. The
reason is that PC is user-generated comments on
a concerned product, and people tend to directly
write the comment of the concerned product and
omit the product name and the personal pronoun.
For example, in the sentence “很 (very)喜欢 (like),
买 (buy)了好 (very)多 (much)”, both the hidden-
subjects and the hidden-objects of the predicates
“喜欢 (like)” and “买 (buy)” are omitted. The omit-
ted core arguments in PB also take relatively large
proportion, similar to the reason for PC.

For ZX, it has the most “agent” roles and the
least “hidden-subject” roles compared with other
domains. This is owing to the genre of ZX texts,
which are extracted from a popular Chinese fantasy
novel with a lot of fictional characters. In order to
make the story more understandable by readers, the
names of the fictional characters are often explicitly
written in the sentences, leading to more “agent”
roles and fewer “hidden-subject” roles.

For LAW, it has more “time” roles and “loc”
roles than other domains, since the elements (i.e.,
time and location) of the cases are usually fre-
quently occurred to provide more accurate informa-
tion.

For MED, the number of “hidden-subject” label
accounts for a large proportion among all the la-
bels in MED, only fewer than that of “agent” label,
mainly because the descriptions of symptoms in

MED usually omit the subjects. For example, in
the sentence “酒精(alcohol)中毒(poisoning): 发
生(occur)昏迷(coma)不能(cannot)催吐(induce
vomiting), the subjects of the predicates “中
毒(poisoning)”, “发生(poisoning)”, “昏迷(coma)”,
“不能(cannot)” are all omitted.

Looking into the distribution of “hidden-subject”
and “hidden-object” labels in all the domains, we
find that hidden labels exist in all the domains, es-
pecially in non-canonical texts like PC and PB,
demonstrating the necessity of annotating hidden
labels. In addition, “hidden-subject” takes a higher
proportion than “hidden-object” in all the 6 do-
mains, reflecting that the subject of the predicate in
Chinese sentences is often omitted.

Annotation difficulties. To understand difficul-
ties during annotation, we calculate the proportion
of the arguments with the same arcs but different la-
bels from two annotators among all the arguments
with the same arcs. We find that the confusion pat-
tern “agent, expe” accounts for the largest propor-
tion of 22.23%, which means the label “agent” is
prone to be confused with “expe”. This is possibly
because the POS for some predicates is subtle and
vague in Chinese, causing the confusion of the ar-
gument labels. Taking the sentence “纽扣(Buttons)
一天(a day)坏(getting broken)一个(one)” as an
example, “坏(getting broken)” may be misunder-
stood as an adjective and thus the argument “纽
扣(buttons)” is incorrectly annotated as “expe”. Ac-
tually, “坏(getting broken)” acts as a verb in this
sentence and the correct label of “纽扣(buttons)”
is “agent”. The second confusion pattern is “pa-
tient, pred-patient”, with a proportion of 12.6%,
due to the misunderstanding of the POS of the
argument. It is also difficult for annotators to dis-
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tinguish “agent” and “patient”. For example, in
the sentence “新(new)衣服(cloths)被(was)弄脏
了(soiled)”, the preposition “被(was)” is omitted.
As a result, the label of “新(new) 衣服(cloths)”,
which is “patient”, may be confused with “agent”
due to the omission.

5 Approach

Based on our newly annotated multi-domain Chi-
nese SRL data, we conduct preliminary exper-
iments, aiming to provide benchmark results.
Specifically, we present a simple basic SRL model
and enhance the model with the contextualized
word representations from BERT for further im-
provements. Besides, we also present a MTL
framework to improve the SRL performance by
learning from multiple heterogeneous datasets si-
multaneously (Conia et al., 2021).

In this work, we focus on the predicate-given
setting, which means we do argument identification
and classification according to the given predicates
in one sentence.

Following previous works (Cai et al., 2018;
Zhang et al., 2019), we treat the predicate-given
SRL task as a word pair classification problem and
try to find the predicate-argument structure ŷ with
the highest score:

ŷ = argmax
y∈Y(x)

score(x,y) (1)

where Y(x) = {(i, j, r)|i ∈ P, 1 ≤ j ≤ n, r ∈
R} represents the set of all possible predicate-
argument pairs. P is the set of given predicates, n
is the number of sentence, and L is the semantic
role label set, which contains 24 semantic role la-
bels and an extra “None” label to indicate there is
no semantic relationship between the given predi-
cate and the j-th word.

5.1 Basic SRL Model

Inspired by previous works (Cai et al., 2018; Zhang
et al., 2019), we build a basic SRL model that uti-
lizes the biaffine attention mechanism (Dozat and
Manning, 2017) to score each candidate predicate-
argument pair. Figure 4 shows the architecture of
the basic model. During both training and evalua-
tion, multiple predicates in the same sentence are
handled simultaneously. First, the input sentence
is encoded; then, scores between predicates and all
other words are computed; finally, the roles of each
predicate are determined via local classification.

xixi−1...Inputs ... xj ...

BiLSTM × 3

hi hj

MLParg
MLPpred

rarg
i

rpred
j

Biaffines

score(xi
label← xj)

Figure 4: The architecture of our basic SRL model.

The input vector is the concatenation of the
pre-trained word embedding eprei , the randomly
initialized word embedding eri , the character-based
word representation rci , and the predicate indicator
embedding epi .

xi = eprei ⊕ eri ⊕ rci ⊕ epi

where rci is produced by CNN, and the Boolean
predicate indicator is true only for words that are
given predicates.

A three-layer BiLSTM is applied to obtain
context-aware representation of each word, i.e., hi.

Two separate MLPs are applied over hi to get
two lower-dimensional representation hpred

i (as
predicate) and harg

i (as candidate argument).
Biaffines are used to compute scores of labels

between a predicate and a word.
During training, we adopt the local cross-entropy

loss. To obtain cross-domain results on the basic
SRL model, we train the model on source domain
data and make predictions on target domain data.

5.2 Enhancing with BERT

Recently proposed PLMs, such as BERT (Devlin
et al., 2019), have shown the great power in learn-
ing and capturing contextualized representations
and have proven to be beneficial in a variety of NLP
tasks, such as information retrieval (Yang et al.,
2019b), question answering (Yang et al., 2019a),
and word segmentation (Huang et al., 2020). In
this work, we extract the fixed contextualized rep-
resentations from BERT for words and treat them
as additional features to augment the input repre-
sentation, i.e., xi = eprei ⊕ eri ⊕ rci ⊕ epi ⊕ eBERT

i .
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(#Pred / #Sent) Source PB PC ZX LAW MED CPB2.0

Train 32,790 / 13,022 – – – – – 72,616 / 13,170

Dev 4,098 / 1,875 3,796 / 1,255 5,658 / 1,295 1,784 / 492 3,718 / 778 1,874 / 478 –

Test 4,101 / 2,077 7,521 / 2,498 11,416 / 2,595 4,107 / 1,083 7,438 / 2,035 3,750 / 1,414 –

Table 4: Statistics of MuCPAD and CPB2.0. “#Pred” and “#Sent” represent the number of predicates and sentences.

MuCPAD CPB2.0Inputs

Shared BiLSTMs

MLPs (MuCPAD) MLPs (CPB2.0)

Biaffines (MuCPAD) Biaffines (CPB2.0)

Figure 5: The framework of MTL.

5.3 Utilizing Heterogeneous Data with MTL

MTL is a commonly used method to improve the
model performance by learning the underlying
knowledge from multiple related tasks or datasets
(Collobert and Weston, 2008; Guo et al., 2016a;
Li et al., 2019a). In this work, we design a MTL
framework to utilize heterogeneous SRL datasets
to boost the SRL model performance.

As shown in Figure 5, we extend the basic SRL
model to the MTL framework. Specifically, the
SRL parsing on MuCPAD data and CPB2.0 data
are considered as two separate tasks. They share
the same word/predicate embeddings and BiLSTM
parameters. Over the shared BiLSTMs, two sep-
arate MLPs and biaffines are employed for MuC-
PAD and CPB2.0 SRL parsing respectively.

6 Experiments

Data. Our experiments mainly focus on zero-shot
single-source domain adaptation, that is, we have
labeled training data for the source domain, and
do not have labeled training data for the target do-
main. Specifically, we use the News domain of
MuCPAD as the source domain, and the other five
domains as target domains. The data statistics for
source and target domains are shown in Table 4.
For the auxiliary data used in the MTL framework,
we randomly select 13,170 sentences with 72,616
predicates from CPB2.0 (Xue, 2006b), which be-

longs to the same newswire genre with the source
domain data.

Evaluation metric. We adopt the standard pre-
cision (#Argcorrect

#Argpred
), recall (#Argcorrect

#Arggold
), and F1

score ( 2PR
P+R ) for SRL evaluation.

Settings. We implement the basic SRL model
and MTL framework with PyTorch6 and mainly
follow the hyperparameters of Cai et al. (2018),
such as the dimensions of embeddings, learning
rate, and dropout ratios. We use bert-base-chinese7

to obtain contextualized representations for words,
and the dimension of the BERT representations is
768. During training, early stopping is triggered if
the peak performance in dev data does not increase
in 50 consecutive iterations.

Results of the basic model. The first row of
Table 5 presents the results in the source/target
domain dev/test data using the basic SRL model
trained on the source data.

First, it is obvious that the performance in all the
five target domains drops dramatically compared
with the results on source data, with the gap of
more than 18% in F1. This indicates that the model
trained on source data has a challenge in making
reliable predictions on target domain data due to
the distributional mismatch between different do-
mains. Second, we find that the basic SRL model
performs better on ZX and LAW compared with the
other three target domains data, i.e., PB, PC, and
MED. The probable reason is that ZX and LAW
are novel and legal case, respectively, which are
more canonical in text. Third, PB has the lowest F1
score in both dev and test. This can be explained by
the fact that PB is non-canonical data from Taobao
headline website. The dissimilarity between the
source training data and PB target data causes the
low performance.

Results with BERT. The second row of Table
5 shows the results of the baseline with BERT rep-

6https://pytorch.org/
7https://huggingface.co/bert-base-chinese
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Source PB PC ZX LAW MED
AVG

dev test dev test dev test dev test dev test dev test

Baseline 69.55 68.40 44.24 44.59 46.12 47.37 50.98 49.26 47.05 49.77 44.88 46.70 50.74
Baseline+BERT 80.25 79.46 64.28 66.23 66.77 67.14 71.65 71.77 70.47 73.28 66.06 67.97 70.44
Baseline+MTL 74.55 73.43 46.95 47.36 48.61 48.95 54.38 53.54 48.55 51.25 54.53 55.26 54.78
Baseline+MTL+BERT 81.05 80.85 64.35 65.27 67.75 68.13 72.44 71.72 70.53 73.79 66.38 69.07 70.94

Table 5: F1 scores of different models on MuCPAD. “AVG” is obtained by averaging the values of both dev and test
in all domains.

resentations. We can see that the results of “Base-
line+BERT” consistently increase by large margins
compared with the corresponding baseline models
without BERT (as shown in the first major row of
table 5), demonstrating the great power of BERT
in contextualized representation.

Results with heterogeneous CPB2.0. As shown
in the third row of Table 5, benefiting from the
additional semantic information provided by the
auxiliary CPB2.0 data using the MTL framework,
the SRL performance in all domains are improved
compared with the baseline model. This indicates
that the MTL framework is effective in capturing
and learning the underlying common knowledge
from heterogeneous data.

On the one hand, comparing the improvements
brought by MTL in all domains, we find that MED
data obtains the largest gains of 9.65%/8.56% F1 in
dev/test, respectively. The main reason is that the
MED data belongs to the same newswire domain
as the auxiliary CPB2.0 data. On the other hand,
the improvement in LAW is the smallest. This can
be explained by the difference in label distribution
between LAW and CPB2.0. For example, as men-
tioned in Section 4, the labels “time” and “loc” in
LAW account for the largest proportion (13.95%
and 6.14% respectively) compared with other do-
mains. However, the proportions of “time” and
“loc” in CPB2.0 data are only 6.10% and 3.40% re-
spectively (about half of that in LAW). Therefore,
CPB2.0 cannot provide much more valid informa-
tion to increase the performance of these labels.

Results with BERT and heterogeneous
CPB2.0. Finally, when utilizing both BERT repre-
sentations and the heterogeneous CPB2.0 data on
our baseline, the enhanced model gives the best or
comparable results in 5 of the 6 domains, with an
average increase of 0.5% F1, showing that the MTL
framework is effective in utilizing heterogeneous
data and can complement the information obtained

from BERT representations.

7 Conclusions

This paper presents a multi-domain Chinese
predicate-argument dataset, named MuCPAD,
which consists of 30,897 sentences with 92,051
predicates and covers 6 different domains. In par-
ticular, we adopt a frame-free annotation method-
ology, which does not require high-level linguistic
background for defining frames for large amounts
of new predicates or new senses in multi-domain
data. Besides, considering that omission of content
words is ubiquitous in Chinese, we explicitly an-
notate omitted core arguments with two special de-
signed labels “hidden-subject” and “hidden-object”
for better semantic understanding. To ensure an-
notation quality, we adopt strict double annotation
and ask a third expert to handle annotation incon-
sistency. We also perform analysis on MuCPAD
from different perspectives. Finally, we conduct
preliminary cross-domain experiments and analysis
on MuCPAD.
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