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Abstract

In traditional Visual Question Generation
(VQG), most images have multiple concepts
(e.g. objects and categories) for which a ques-
tion could be generated, but models are trained
to mimic an arbitrary choice of concept as given
in their training data. This makes training dif-
ficult and also poses issues for evaluation –
multiple valid questions exist for most images
but only one or a few are captured by the hu-
man references. We present Guiding Visual
Question Generation - a variant of VQG which
conditions the question generator on categori-
cal information based on expectations on the
type of question and the objects it should ex-
plore. We propose two variant families: (i) an
explicitly guided model that enables an actor
(human or automated) to select which objects
and categories to generate a question for; and
(ii) 2 types of implicitly guided models that
learn which objects and categories to condition
on, based on discrete variables. The proposed
models are evaluated on an answer-category
augmented VQA dataset and our quantitative
results show a substantial improvement over
the current state of the art (over 9 BLEU-4
increase). Human evaluation validates that
guidance helps the generation of questions that
are grammatically coherent and relevant to the
given image and objects.

1 Introduction

In the last few years, the AI research community
has witnessed a surge in multimodal tasks such as
Visual Question Answering (VQA) (Antol et al.,
2015; Anderson et al., 2018), Multimodal Machine
Translation (Specia et al., 2016; Elliott et al., 2017;
Barrault et al., 2018; Caglayan et al., 2019), and
Image Captioning (IC) (Vinyals et al., 2015; Karpa-
thy and Fei-Fei, 2015; Xu et al., 2015). Visual
Question Generation (VQG) (Zhang et al., 2016;
Krishna et al., 2019; Li et al., 2018), a multimodal
task which aims to generate a question given an
image, remains relatively under-researched despite

the popularity of its textual counterpart. Through-
out the sparse literature in this domain, different
approaches have augmented and/or incorporated
extra information as input. For example, Pan et al.
(2019) emphasised that providing the ground truth
answer to a target question is beneficial in generat-
ing a non-generic question. Krishna et al. (2019)
pointed out that requiring an answer to generate
questions violates a realistic scenario. Instead, they
proposed a latent variable model using answer cate-
gories to help generate the corresponding questions.
Recently, Scialom et al. (2020) incorporated a pre-
trained language model with object features and
image captions for question generation.

In this work, we explore VQG from the perspec-
tive of ‘guiding’ a question generator. Guiding has
shown success in image captioning (Zheng et al.
(2018) and Ng et al. (2020)), and in this VQG work
we introduce the notion of ‘guiding’ as condition-
ing a generator on inputs that match specific cho-
sen properties from the target. We use the answer
category and objects/concepts based on an image
and target question as inputs to our decoder. We
propose our explicit guiding approach to achieve
this goal. We additionally investigate an implicit
guiding approach which attempts to remove the
dependency on an external actor (see more below).

The explicit variant (Section 3.1) is modelled
around the notion that an actor can select a subset
of detected objects in an image for conditioning
the generative process. Depending on the appli-
cation, this selection could be done by a human,
and algorithm or chosen randomly. For example,
imagine either a open-conversation chat-bot or a
language learning app. In the chat-bot case, a hu-
man may show the bot a picture of something. The
bot may use randomly sampled concepts from the
image (e.g. an object-detected tree) to ask a human
a question upon. In the language learning case, the
human may wish to select certain concepts they
want the generated question to reflect. For exam-
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ple, they might select a subset of animal-related
objects from the whole set of detected objects in
order to generate questions for teaching the animal-
related vocabulary in a language learning setting.
Alongside the objects, the actor may also provide,
or randomly sample, an answer category to the
question generator.

The implicit variant (Section 3.2), on the other
hand, is motivated by removing the dependency on
the aforementioned actor. We provide two method-
ologies for our proposed implicit variant. The first
uses a Gumbel-Softmax (Jang et al., 2016) to pro-
vide a discrete sample of object labels that can be
used for generating a question. The second method
employs a model with two discrete latent variables
that learn an internally-predicted category and a set
of objects relevant for the generated question, opti-
mised with cross-entropy and variational inference
(Kingma and Welling, 2014; Miao et al., 2016).

Human evaluation shows that our models can
generate realistic and relevant questions, with our
explicit model almost fooling humans when asked
to determine which, out of two questions, is the
generated question. Our experiments and results
are presented in Section 5.

To summarise, our main contributions are: 1)
The first work to explore guiding using object la-
bels in Visual Question Generation; 2) A novel
generative Transformer-based set-to-sequence ap-
proach for Visual Question Generation; 3) The
first work to explore discrete variable models in
Visual Question Generation; and 4) A substantial
increase in quantitative metrics - our explicit model
improves the current state of the art setups by over
9 BLEU-4 and 110 CIDEr.

2 Related Work

2.1 Visual Question Generation

Zhang et al. (2016) introduced the first paper in the
field of VQG, employing an RNN based encoder-
decoder framework alongside model-generated cap-
tions to generate questions. Since then, only a
handful of papers have investigated VQG. Fan et al.
(2018) demonstrated the successful use of a GAN
in VQG systems, allowing for non-deterministic
and diverse outputs. Jain et al. (2017) proposed
a model using a VAE instead of a GAN, however
their improved results require the use of a target
answer during inference. To overcome this unreal-
istic requirement, Krishna et al. (2019) augmented
the VQA (Antol et al., 2015) dataset with answer

categories, and proposed a model which doesn’t
require an answer during inference. Because their
architecture uses information from the target as
input (i.e. an answer category), their work falls
under our definition of guided generation. More
recently, Scialom et al. (2020) investigate the cross
modal performance of pre-trained language mod-
els by fine-tuning a BERT (Devlin et al., 2018)
model on model-based object features and ground-
truth image captions. Other work, such as Patro
et al. (2018), Patro et al. (2020) and Uppal et al.
(2020), either do not include BLEU scores higher
than BLEU-1, which is not very informative, or
address variants of the VQG task. In the latter case
the models fail to beat previous SoTA on BLEU-4
for standard VQG. Recently and (Xu et al., 2021)
and (Xie et al., 2021) achieve SoTA in VQG us-
ing graph convolutional networks. However, both
works follow an unrealistic setup by conditioning
their model on raw answers during training and
inference - a dependency we attempt to remove.

2.2 Discrete (Latent) Variable Models

Discrete variable models are ideal for tasks which
require controllable generation (Hu et al., 2017) or
‘hard’ indexing of a vector (Graves et al., 2016). Ex-
isting literature provide several methods to achieve
discretization. NLP GAN literature (such as Seq-
GAN (Yu et al., 2016) and MaskGAN (Fedus et al.,
2018)) commonly use REINFORCE (Williams,
1992) to overcome differentiability issues with dis-
crete outputs. Other discretization methodologies
can be found in Variational Auto Encoder (VAE)
literature (Kingma and Welling, 2014). Some older
methodologies are NVIL (Mnih and Gregor, 2014)
and VIMCO (Mnih and Rezende, 2016). However,
VAE literature also introduced Concrete (Maddi-
son et al., 2016), Gumbel-Softmax (Jang et al.,
2016) and Vector Quantization (Oord et al., 2017)
as discretization strategies (technically speaking,
Concrete and Gumbel-Softmax are strongly peaked
continuous distributions).

In this work, we use a Gumbel-Softmax ap-
proach to sample a distribution over objects. At in-
ference time, given a set of object tokens, learning
this ‘hard’ distribution allows the model to inter-
nally sample a subset of objects that produce the
most informative question. Our variational model
additionally learns a generative and variational dis-
tribution that allow the model to implicitly learn
which objects are relevant to a question and an-
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(a) Architecture of our explicit model. Given an image, first an object detection model is used to extract object labels and object
features; a captioning model is used to generate relevant captions. Questions and answers are concatenated to filter the conceptual
information from generated objects and captions. Next the filtered concepts are combined with the category as the input to the
text encoder; the extracted object features are fed into an image encoder. Finally the outputs from the text encoder and the image
encoder are fused into the decoder for question generation.
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(b) Architecture of our implicit model. Similar to the explicit model, first an object detection model is used to extract object
labels and object features. Object labels are sent to a non-linear MLP after which a Gumbel-Softmax is applied to obtain the
discrete vector ‘Scores’. The Scores are then used to mask the object labels and predict a category. The masked object labels and
predicted category are then sent to the text encoder. The outputs are fused with the image encoder outputs and sent to the decoder.
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(c) Architecture of our variational implicit model. After the object detection model extracts the object labels and object features,
they are sent to the variational and generative encoders. The variational encoder is used at train time only, and also receives the
question and answer pair. Depending whether we’re training or in inference, we obtain a discrete vector z from the respective
distribution. z is then used to mask the object labels. This variant then follows the same methodology as its non-variational
counterpart. For this sub-figure only, the dashed lines indicate training.

Figure 1: Architecture of the explicit model (a) and implicit model (b)

swer pair whilst incorporating non-determinism for
diverse outputs.

3 Methodology

We introduce the shared concepts of our explicit
and implicit model variants, before diving into the
variant-specific methodologies (Section 3.1 & 3.2).

For both variants, we keep the VQG problem
grounded to a realistic scenario. That is, during
inference, we can only provide the model with an
image, and data that can either be generated by
a model (e.g. object features or image captions)
and/or trivially provided by an actor (i.e. answer
category and a selected subset of the detected ob-
jects). However, during training, we are able to use
any available information, such as images, captions,
objects, answer categories, answers and target ques-
tions, employing latent variable models to min-
imise divergences between feature representations

of data accessible at train time but not inference
time. This framework is inspired by Krishna et al.
(2019). In Appendix A, we discuss the differences
of input during training, testing and inference.

Formally, the VQG problem is as follows: Given
an image ĩ ∈ Ĩ , where Ĩ denotes a set of images,
decode a question q. In the guided variant, for each
ĩ, we also have access to textual utterances, such as
ground truth answer categories and answers. The
utterances could also be extracted by an automated
model, such as image captions (Li et al., 2020), or
object labels and features (Anderson et al., 2018).
In our work, answer categories take on 1 out of 16
categorical variables to indicate the type of ques-
tion asked. For example, “how many people are
in this picture?” would have a category of “count”
(see Krishna et al. (2019) for more details).

Text Encoder. For encoding the text, we use
BERT (Devlin et al., 2018) as a pre-trained lan-

1642



guage model (PLM). Thus, for a tokenised textual
input S̃ of length T , we can extract a d-dimensional
representation for s̃t ∈ S̃: X = PLM(S̃) ∈ RT×d

Image Encoder. Given an image ĩ, we can ex-
tract object features, f ∈ Rko×2048, and their re-
spective normalized bounding boxes, b ∈ Rko×4,
with the 4 dimensions referring to horizontal and
vertical positions of the feature bounding box.
Following the seminal methodology of Anderson
et al. (2018), ko is usually 36. Subsequent to
obtaining these features, we encode the image
using a Transformer (Vaswani et al., 2017), re-
placing the default position embeddings with the
spatial embeddings extracted from the bounding
box features (Krasser and Stumpf, 2020; Cornia
et al., 2019). Specifically, given f, b from image ĩ:
i = Transformer(f, b) ∈ Rko×d

Text Decoder. We employ a pretrained Trans-
former decoder for our task (Wolf et al., 2020).
Following standard sequence-to-sequence causal
decoding practices, our decoder receives some en-
coder outputs, and auto-regressively samples the
next token, for use in the next decoding timestep.
Our encoder outputs are the concatenation (; oper-
ator) of our textual and vision modality represen-
tation: X = [S; i] ∈ R(T+ko)×d, and our decoder
takes on the form: q̂ = Decoder(X), where q̂ is
the predicted question.

In this work, we primarily focus on a set-to-
sequence problem as opposed to a sequence-to-
sequence problem. That is, our textual input is not
a natural language sequence, rather an unordered
set comprising of tokens from the answer category,
the object labels, and the caption. How this set is
obtained is discussed in following section. Due to
the set input format, we disable positional encoding
on the PLM encoder (Text Encoder in Figure 1).

3.1 Explicit Guiding

As mentioned in Section 1, the explicit variant re-
quires some actor in the loop. Thus, in a real world
setting, this model will run in two steps. Firstly,
we run object detection (OD) and image caption-
ing (IC) over an image and return relevant guiding
information to the actor. The actor may then select
or randomly sample a subset of objects which are
sent to the decoder to start its generation process.
If the actor opts for a random sample strategy, no
human is needed during the inference process (see
Appendix A for examples).

To enable this setup, we create paired data based

on the guided notion. At a high level, our approach
creates this data in three steps: 1) obtain object
labels; 2) obtain concepts via IC Formally,

objects = OD(i) ∈ Rko

cap = CaptionModel(i) ∈ RTcap

cap = rmStopWords(caption) ∈ R<Tcap

candidate_concepts = set(objects; cap) ∈ RTcc

(1)

Here, OD stands for an object detector model,
rmStopWords is a function which removes the
stop words from a list, and set is a function which
creates a set from the concatenation (the ; operator)
of the detected objects and obtained captions. cap
stands for caption. The set is of size Tcc < ko +
Tcap. Using this obtained candidate_concepts set,
we run our filtration process.

Once the set of candidate concepts has been con-
structed, we filter them to only retain concepts rel-
evant to the target QA pair. After removing stop
words and applying the set function to the words
in the QA pair, we use Sentence-BERT (Reimers
and Gurevych, 2019) to obtain embeddings for the
candidate QA pair and candidate_concepts (Eq 1).
We subsequently compute a cosine similarity ma-
trix between the two embedding matrices, and then
select the top k most similar concepts. The chosen
k concepts, S̃, are always a strict subset of the can-
didate concepts that are retrieved using automated
image captioning or object detection. This process
emulates the selection of objects an actor would
select in an inference setting when given a choice
of possible concepts, and creates paired data for the
guided VQG task. We now concatenate an answer
category to S̃: S = PLM([S̃; category]) ∈ RT×d.

With text encoding S, we run the model, op-
timizing the negative log likelihood between the
predicted question and the ground truth. Note that
the concatenation in the decoder below is along the
sequence axis (resulting in a tensor ∈ RT+ko×d).

q̂ = Decoder([S; i])

L = CrossEntropy(q̂, q)
(2)

3.2 Implicit Guiding

We now introduce our experiments for the im-
plicit variant for VQG. This variant differs from its
explicit counterpart as it aims to generate ques-
tions using only images as the input, while in-
ternally learning to predict the relevant category
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and objects. Mathematically, the explicit variant
models q̂ = p(wt|i, S̃, category, w0, ..., wt−1; θ)
where S̃ and category are obtained as described
in Section 3.1. During inference, the im-
plicit variant instead attempts to model q̂ =
p(wt|i, ẽobj , ecat, w0, ..., wt−1; θ) where ẽobj , ecat
are not explicitly fed in to the model. Rather, they
are determined internally as defined in Equation 6.

Given an image, we apply the same object de-
tection model as in the explicit variants to extract
object labels, which are then encoded using an
embed layer. Formally,

objects = OD(i) ∈ Rko

eobj = embed(objects) ∈ Rko×d
(3)

Since we would like the implicit model to learn
relevant objects for an image internally, we project
each object in eobj to a real-valued score:

scores = MLP(eobj) ∈ Rko (4)

Subsequently, we apply a hard Gumbel-Softmax
(Jang et al., 2017) to obtain predictions over se-
lected objects. Because Gumbel-Softmax samples
from a log-log-uniform distribution, stochasticity
is now present in our sampled objects. To sample
k objects, we tile/repeat scores k times before in-
putting it into the Gumbel-Softmax. z̃, our k-hot
sampled objects vector, is then used to mask object
embeddings for use in decoding:

z̃ = gumbel-softmax(scores, k) ∈ Rko

ẽobj = z̃ ∗ eobj ∈ Rko×d
(5)

Where ∗ denotes element-wise multiplication.
Categories can also be a strong guiding factor and
instead of making it an explicit input, we build
a classifier to predict possible categories. In this
variant, ẽobj is used as an input to both our text
encoder, and the MLP responsible for the category
prediction:

S = PLM(ẽobj) ∈ Rko×d

p( ˆcat|ẽobj) = softmax(MLP(ẽobj)) ∈ Rkcat

(6)
Using the one-hot representation of the predicted

category (i.e. ecat = one-hot(p( ˆcat|ẽobj)), we
can concatenate our image, PLM representation
of objects, and predicted category to feed into
the decoder: q̂ = Decoder([i;S; ecat]) ∈ RTq̂ .
However, during training, we teacher force against

the ‘gold’ set of objects, S̃ (obtained using candi-
date_concepts in Equation 1). Training and opti-
mization thus follow:

q̂ =Decoder([i; S̃; ecat]) ∈ RTq̂

L =CrossEntropy(q̂, q)+

CrossEntropy(p( ˆcat|ẽobj), cat)+
StartEnd(ẽobj , S̃)

(7)

where StartEnd is a BERT QA-head style loss (De-
vlin et al., 2018) that uses binary cross entropy for
each k in ẽobj .

Variational Implicit. Hypothesising that
ground-truth QA pairs might provide information
useful to selecting objects, we additionally attempt
to extend our model to incorporate QA pairs to
learn a latent variational distribution over the ob-
jects. However, since QA pairs can only be used
during training to learn a variational distribution,
we introduce another generative distribution that is
only conditioned on the images and extracted ob-
jects. We borrow the idea from latent variable mod-
els to minimise Kullback-Leibler (KL) divergence
between the variational distribution and generative
distribution, where the variational distribution is
used during training and the generative distribution
is used in inference.

Continuing from Equation 3, we build two matri-
ces, Mgen and Mvar. The former is a concatenation
of the image features and object embeddings, and
the latter the concatenation between the encoded
QA pair and Mgen. Depending on whether we’re
in a training or inference regime, the CLS token
of the relevant matrix is used to sample a mask,
z̃, which is subsequently applied on the aforemen-
tioned object embeddings:

Mgen = encode([eobj ; i]) ∈ R2ko×d

eqa = embed(Q;A) ∈ RTqa×d

Mvar = encode([eqa;Mgen]) ∈ R(2ko+T qa)×d

qϕ(z|Mgen,Mvar) = MLP(MCLS
gen ;MCLS

var ) ∈ Rko

pθ(z|Mgen) = MLP(Mgen) ∈ Rko

z̃ = gumbel-softmax(z, k) ∈ Rko

ẽobj = z̃ ∗ eobj ∈ Rko×d

where qϕ(z|Mgen,Mvar) is the variational distri-
bution, pθ(z|Mgen) is the generative distribution,
and MLP denotes a multilayer perceptron for learn-
ing the alignment between objects and QA pairs.
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encode is an attention-based function such as
BERT (Devlin et al., 2018). From here, our method-
ology follows on from Equation 6. However, our
loss now attempts to minimise the ELBO:

L = E[log pθ(q̂|z, ˆcat)]

−DKL[qϕ(z|MCLS
gen ,MCLS

var )||pθ(z|MCLS
gen )]

+ log p( ˆcat|Mvar)

4 Experiments

4.1 Datasets

We use the VQA v2.0 dataset1 (Antol et al., 2015)
(CC-BY 4.0), a large dataset consisting of all rele-
vant information for the VQG task. We follow the
official VQA partition, with i.e. 443.8K questions
from 82.8K images for training, and 214.4K ques-
tions from 40.5K images for validation. Following
Krishna et al. (2019), we report the performance
on validation set as the annotated categories and
answers for the VQA test set are not available.

We use answer categories from the annotations
of Krishna et al. (2019). The top 500 answers
in the VQA v2.0 dataset are annotated with a la-
bel from the set of 15 possible categories, which
covers up the 82% of the VQA v2.0 dataset; the
other answers are treated as an additional category.
These annotated answer categories include objects
(e.g. “mountain”, “flower”), attributes (e.g. “cold”,
“old”), color, counting, etc.

We report BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), CIDEr (Vedantam et al.,
2015), METEOR (Lavie and Agarwal, 2007), and
MSJ (Montahaei et al., 2019) as evaluation metrics.
The MSJ metric accounts for both the diversity of
generated outputs, and the n-gram overlap with the
ground truth utterances.

4.2 Comparative Approaches

We compare our models with four recently pro-
posed VQG models Information Maximising VQG
(IMVQG; supervised with image and answer cat-
egory) (Krishna et al., 2019), What BERT Sees
(WBS; supervised with image and image caption)
(Scialom et al., 2020), Deep Bayesian Network
(DBN; supervised with image, scenes, image cap-
tions and tags/concepts) (Patro et al., 2020), and
Category Consistent Cyclic VQG (C3VQG; su-
pervised with image and answer category) (Uppal
et al., 2020). We follow IMVQG’s evaluation setup

1https://visualqa.org/

because they hold the current SoTA in VQG for re-
alistic inference regimes. We omit (Xu et al., 2021)
and (Xie et al., 2021) from our table of results be-
cause these models follow an unrealistic inference
regime, requiring an explicit answer during train-
ing and inference. Our baseline is an image-only
model, without other guiding information or latent
variables.

4.3 Implementation Details

In Section 3 we described the shared aspects of our
model variants. The reported scores in Section 5
use the same hyperparameters and model initial-
isation. A table of hyperparameters and training
details can be found in Appendix B. BERT Base
(Devlin et al., 2018) serves as our PLM encoder and
following Wolf et al. (2020); Scialom et al. (2020),
we use a pre-trained BERT model for decoding too.
Though typically not used for decoding, by con-
catenating the encoder inputs with a [MASK] token
and feeding this to the decoder model, we are able
to obtain an output (e.g. q̂1). This decoded output is
concatenated with the original input sequence, and
once again fed to the decoder to sample the next
token. Thus, we use the BERT model as a decoder
in an auto-regressive fashion.

To encode the images based on the Faster-RCNN
object features (Ren et al., 2015; Anderson et al.,
2018), we use a standard Transformer (Vaswani
et al., 2017) encoder. Empirically, we find k = 2
to be the best number of sampled objects.

5 Results

We present quantitative results in Table 1 and qual-
itative results in Figure 2. We evaluate the explicit,
implicit and variational implicit models in a single-
reference setup, as the chosen input concepts are
meant to guide the model output towards one par-
ticular target reference.

5.1 Quantitative Results

Starting with the explicit variant, as seen in Ta-
ble 1, we note that our image-only baseline model
achieves a BLEU-4 score of 5.95. We test our
model with different combinations of text features
to identify which textual input is most influential to
the reported metrics. We notice that the contribu-
tion of the category is the most important text input
with respect to improving the score of the model,
raising the BLEU-4 score by more than 11 points
(image-category) over the aforementioned baseline.
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Model
BLEU CIDEr METEOR ROUGE MSJ

1 2 3 4 3 4 5

Comparative
IMVQG (z-path)† 50.1 32.3 24.6 16.3 94.3 20.6 39.6 47.2 38.0 31.5
IMVQG (t-path) 47.4 29.0 19.9 14.5 86.0 18.4 38.4 53.8 44.1 37.2
WBS‡ 42.1 22.4 14.1 9.2 60.2 14.9 29.1 63.2 55.7 49.7
DBN 40.7 - - - - 22.6 - - - -
C3VQG 41.9 22.1 15.0 10.0 46.9 13.6 42.3 - - -
image-only 25.9 15.9 9.8 5.9 41.4 13.5 27.8 52.2 42.8 36.0

Explicit
image-category 40.8 29.9 22.5 17.3 131 20.8 43.0 64.2 55.5 48.8
image-objects 34.7 25.0 19.1 15.0 130 19.4 36.9 67.4 59.2 52.7
image-guided 46.3 36.4 29.5 24.4 214 25.2 49.0 71.3 63.6 57.3
image-guided-random 23.6 12.1 5.75 2.39 17.6 10.8 24.2 62.3 52.6 45.0

Implicit
image-category 28.4 17.5 11.3 8.5 42.8 13.5 30.7 51.8 42.9 36.4
image-guided 33.8 24.0 18.3 14.2 123 19.1 35.9 66.7 58.9 52.5
image-guided-pred 25.3 14.9 9.1 6.3 27.3 11.6 27.3 52.0 44.0 38.1
image-guided-random 21.3 11.4 6.3 3.6 23.1 10.7 22.2 61.7 52.8 45.9

Variational Implicit
image-guided 33.9 23.5 16.8 12.6 113 18.8 35.6 64.2 56.3 49.8
image-guided-pred 22.6 12.5 6.9 4.1 24.3 11.2 23.0 58.6 49.3 42.4
image-guided-random 19.8 10.7 5.9 3.3 19.6 10.0 21.3 58.8 50 43.4

Table 1: Single reference evaluation results. “*-guided” refers to the combination of category and objects. In the
explicit variant only, objects refers to the subset of detected objects and caption keywords, filtered on the target QA
pair. † indicates an unrealistic inference regime, using answers as input for question generation. ‡ WBS scores are
from single reference evaluation based on the VQA1.0 pre-trained “Im. + Cap.” model provided by the authors.

However, whilst the BLEU-4 for the image-object
variant is 2.3 points lower, it outperforms the image-
category variant by 3.9 points on the diversity ori-
entated metric MSJ-5 - indicating that the image-
category variant creates more generic questions.
As expected, the inclusion of both the category
and objects (image-guided) outperforms either of
the previously mentioned models, achieving a new
state-of-the-art result of 24.4 BLEU-4. This combi-
nation also creates the most diverse questions, with
an MSJ-5 of 57.3.

We also test our hypothesis that guiding pro-
duces questions that are relevant to the fed in con-
cepts. This is tested with ‘image-guided-random’
variant. This variant is the same trained model
as ‘image-guided’, but uses k = 2 random con-
cepts from a respective image instead of using the
ground truth question to generate concepts. Our
results show that guiding is an extremely effective
strategy to produce questions related to conceptual
information, with a BLEU-4 score difference of
over 20 points. We refer the reader to Section 5.3
for human evaluation which again validates this
hypothesis, and Section 3.1 for an explanation of
why guiding is valid for evaluating VQG models.

We evaluate the implicit models as follows. The

implicit image-category variant does not predict
any objects internally. It uses all image features and
object embeddings alongside the category supervi-
sion signal as described in Equation 7. The implicit
image-guided models use the ‘gold’ objects at in-
ference (See Section 3.1). If these variants fit the
‘gold’ objects well, it indicates that their generative
abilities are suitable for guiding/conditioning on
predicted or random objects. The image-guided-
pred variants are evaluated using internally pre-
dicted objects - and the model variant that would
be used in a real inference setting. Finally, the
image-guided-random variants are fed in random
object labels at inference.

For implicit guiding to be a valid methodology,
we need to validate two criteria: 1) Successfully
conditioning the decoder on guiding information;
2) Better than random accuracy of object predic-
tion/selection. Note that intuitively, the implicit
model is expected to perform worse than the ex-
plicit model in terms of the language generation
metrics. This is because of the inherently large
entropy of the relevant answer category and the
objects given an image. However, if the learned
distributions over the categories and objects can
capture the relevant concepts of different images,
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they may benefit the question generation when com-
pared with image-only.

According to Table 1, by predicting just an an-
swer category and no objects (image-category), the
proposed implicit model beats the image-only base-
line. The BLEU-4 score difference is less than
1 with the best performing WBS model (Scialom
et al., 2020) – which also generates questions with-
out explicit guided information.

As mentioned above, we can evaluate the im-
plicit model by either feeding the ‘gold’ objects
obtained as described in Section 3.1, or by the inter-
nally predicted objects as described in Section 3.2.
These form the variants image-guided and image-
guided-pred respectively. For both the implicit and
variational implicit models, image-guided is ex-
pected to perform the best. Results validate this,
showing a performance of 14.2 and 12.6 BLEU-4
respectively. Importantly, the relatively high scores
of these guided models (compared to the compar-
ative approaches) show that these models can suc-
cessfully be conditioned on guiding information.

We also notice that for both types of im-
plicit models, image-guided-pred outperforms
image-guided-random. Specifically for the non-
variational implicit, we see a higher BLEU-4
score difference of 2.7. Interestingly, despite this
BLEU-4 difference being higher than its variational
counterpart, there is a trade-off for the diversity-
orientated MSJ metric. This indicates that although
generated questions are discretely ‘closer’ to the
ground truth, similar phrasing is used between the
generated questions. In fact, an acute case of this
phenomena occurs for the image-category variant
where the BLEU-4 variant is higher than image-
guided-pred or image-guided-random. In this case,
qualitative analysis shows us that the higher BLEU-
4 score can be attributed to the generic nature of
the generated question. Failure cases of automatic
evaluation metrics in NLP is discussed further in
(Caglayan et al., 2020).

To satisfy the ‘better than random accuracy of
object prediction/selection’ criteria previously out-
lined, we measure the overlap of the k predicted ob-
jects vs k ‘gold’ object labels. These ‘gold’ object
labels are obtained similarly to the explicit variant
(Section 3.1), however the caption tokens are not
fed to the filtering process. Random accuracy for
selecting objects is 12.5%. Our overlap accuracy
on implicit image-pred is 18.7% - outperforming
random selection. Variational implicit image-pred

Baseline Implicit V-Implicit Explicit

Experiment 1 34.3% ± 0.1 47.1% ± 0.12 36.7% ± 0.08 44.9% ± 0.08
Experiment 2 95.9% ± 0.03 76.6% ± 0.16 89% ± 0.09 93.5% ± 0.06
Experiment 3 - - - 77.6% ± 0.09
Experiment 4 - - - 74.1%/40.0% ± 0.07/0.18

Table 2: Human evaluation results (and standard dev.)

failed to outperform random accuracy.

5.2 Qualitative Results
Qualitative results are shown in Figure 2 and Ap-
pendix D. Figure 2 depicts how outputs from differ-
ent model variants compare to ground truth ques-
tions. Without any guiding information, the image-
only variant is able to decode semantic information
from the image, however this leads to generic ques-
tions. The implicit variant, for which we also report
the predicted category and objects, mostly gener-
ates on-topic and relevant questions. Focusing on
the explicit variant, we witness high-quality, inter-
esting, and on-topic questions.

Appendix D depicts how well our explicit image-
guided variant handles a random selection of de-
tected objects given the image. This experiment
intends to gauge the robustness of the model to
detected objects which may fall on the low tail of
the human generating question/data distribution.
To clarify, humans are likely to ask commonsense
questions which generally focus on obvious objects
in the image. By selecting objects at random for the
question to be generated on, the model has to deal
with object permutations not seen during training,
and categories that are invalid for an image.

Analysing the outputs, when viable categories
and objects that are expected to fall in a common-
sense distribution are sampled, the model can gen-
erate high quality questions. Interestingly, we ob-
serve that when the sampled objects are not com-
monsense (e.g. “ears arms” for the baby and bear
picture), the model falls back to using the object
features instead of the guiding information. This
phenomenon is also witnessed when the sampled
category does not make sense for the image (e.g.
category ‘animal’ in image 531086). Despite the
category mismatch, the model successfully uses
the object information to decode a question.

5.3 Human Evaluation
We ask seven humans across four experiments to
evaluate the generative capabilities of our models.
Experiment 1 is a visual Turing test: given an im-
age, a model generated question and a ground truth
question, we ask a human to determine which ques-
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Ground 
Truth 

 is this in the usa? is the zebra tall or short? where is this 
building? 

is this person airborne? how many containers of 
strawberries are there? 

Baseline Generated 
Question: 

is this a busy street? what is the zebra doing? is this a church? what is the man doing? what is the green vegetable? 

Implicit 

Predicted Category: 
Predicted Objects: 
 
Generated 
Question: 

count 
street, statues 
 
how many red poles are 
there? 

binary 
zebra, ground 
 
is the rock in the 
background? 

other 
building, tower 
 
what is the 
weather like? 

colour 
person, people 
 
what is the color of the 
skier? 

binary 
strawberries, strawberry 
 
how many carrots are there? 

Varia-
tional 

Implicit 

Predicted Category: 
Predicted Objects: 
 
Generated 
Question: 

binary  
truck, man  
 
is this a new truck? 

binary legs,  
shadow 
 
is this a zoo? 

object 
statue, tower 
 
what color is the 
clock? 

binary  
ski pole, poles 
 
is this a ski park? 

count  
apple, leaves 
 
how many different different 
types of fruit are there? 

Explicit 

Given Category: 
Given Objects: 
 
Generated 
Question: 

binary 
statues, pillar 
 
is this a rural setting? 

attribute 
zebra, tail 
 
what pattern is on the 
zebra's mohawk? 

other 
building, tower 
 
what is the 
condition of the 
building? 

binary 
snow, skis 
 
are these people going to 
ski down a mountain? 

count 
strawberries, strawberry 
 
how many different kinds of 
produce are in the bowl? 

 

 

 

Figure 2: Qualitative Examples. The ground truth is the target question for the baseline, implicit and explicit. The
examples of explicit variant uses image-guided whereas the implicit is using the non-variational image-pred.

tion they believe is model generated. Experiment
2 attempts to discern the linguistic and grammat-
ical capabilities of our model by asking a human
to make a binary choice about whether the gener-
ated question seems natural. Experiment 3 shows a
human an image alongside a model generated ques-
tion (explicit variant). Then, we ask the human to
make a choice about whether the generated ques-
tion is relevant to the image (i.e. could an annotator
have feasibly asked this question during data collec-
tion). Finally, experiment 4 judges whether objects
are relevant to a generated question. The experi-
ment is set up with true-pairs and adversarial-pairs.
True-pairs are samples where the shown objects are
the ones used to generate the question. Adversarial-
pairs show a different set of objects than those
which generated the question. If more true-pairs
are are marked correct (i.e. if at least one of the
objects is relevant to the generated question) than
the adversarial-pairs, then our model successfully
generates questions on guiding information.

In experiment 1, a model generating human-level
questions should be expected to score 50%, as a
human would not be able to reliably distinguish
them from the manually created questions. Our
results show the explicit and non-variational im-
plicit model outperforming the variational implicit
and baseline variants, fooling the human around
45% of the time. Whilst not yet at the ideal 50%,
the explicit approach provides a promising step to-
wards beating the visual Turing Test. Experiment 2

evaluates the grammatical plausibility of the gen-
erated questions. In general, all models perform
extremely well in this experiment, with the baseline
variant generating grammatically correct sentences
96% of the time. This is expected, as the base-
line typically falls back to decoding easy/generic
questions. Experiment 3, is evaluated on our best
performing model (explicit image-guided). Here,
78% of the generated questions are marked as
relevant/on-topic given an image. Finally, experi-
ment 4’s results show true-pairs marked as correct
vs adversarial-pairs (incorrectly) marked as correct.
Since the former is larger than the latter - 72% vs
42%, the model can successfully use guiding/object
information to create on-topic questions.

6 Conclusions

We presented a guided approach to visual question
generation (VQG), which allows for the generation
of questions that focus on specific chosen aspects
of the input image. We introduced three variants
for this task, the explicit, implicit, and variational
implicit. The former generates questions based on
an explicit answer category and a set of concepts
from the image. In contrast, the latter two discretely
predict these concepts internally, receiving only
the image as input. The explicit model achieves
SoTA results when evaluated against comparable
models. Qualitative evaluation and human-based
experiments demonstrate that both variants produce
realistic and grammatically valid questions.
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A Training, testing and inference

Here, using an example, we clarify the inputs to
our explicit model (Section 3.1) in the training,
testing and inference setups.

Training

• Ground truth question: What is the labrador
about to catch?

• Answer: Frisbee

• Category: Object

• Image: i ∈ Rko×d

• {Caption}: A man throwing a frisbee to a dog

• {Objects}: person, dog, frisbee, grass

N.B. {Caption} and {Objects} are both model
generated, requiring only an image as input. These
inputs are thus available at inference time.

Firstly, we create a set of candidate_concepts
(see eq. 1) from the caption and objects: [person,
dog, frisbee, grass, man, throwing] (∈ R6). These
words are individually embedded. Secondly, we
concatenate and embed the set of question and an-
swer tokens (∈ R7).

Then, we construct a matrix which gives us co-
sine similarity scores for each candidate_concepts
token to a QA token (∈ R6×7). We choose k = 2
tokens from the candidate_concepts which are
most similar to the words from the QA. Here, “dog”
and “frisbee” are likely chosen. Our input to the
model is then <i, “object”, “dog”, “frisbee”>.

Notice that it is possible for these words to be
in the QA pair (e.g. “frisbee”). Importantly, these
words have not been fed from the QA pair - they
have been fed in from model-obtained concepts
({Object} and {Caption}). Philosophically similar,
Krishna et al. (2019) constructed inputs based on
target information for use in training and bench-
marking.
Testing. Imagine a data labeler creating questions
based on an image. They would look at the image,
and decide on the concepts to create the question
for. Our testing methodology follows this intu-
ition using the strategy outlined above: the k = 2
selected objects from candidate_concepts is a pro-
grammatic attempt for selecting concepts which
could generate the target question. Note that there
can be many questions generated for a subset of

concepts (e.g. ‘is the dog about to catch the fris-
bee?’, ‘what is the flying object near the dog?’ etc.).
As outlined above, we are not taking concepts from
the target. Rather we use information from the tar-
get to emulate the concepts an actor would think of
to generate the target question. Because there can
be different concepts questions are based on for one
image (see ground-truth questions in Appendix D),
our strategy allows us to generate questions which
might be similar to a singular target question. This
leads to an evaluation which fairly uses information
a human has access to to generate a question.
Inference. However, in the real world, there is no
‘ground-truth’ question. In this case, we simply
feed image features, and actor selected concepts
to our question generator model. The selection
process of the actor may be random - in which case
a human agent does not need to be involved in the
question generation process. The k ≤ 2 selected
concepts here are a subset of candidate_concepts,
which are fully generated from models.

B Hyperparameters and training details

Batch size 128
Learning rate 1e-5
Text model layers 12
Text model dimension 768
Image encoder layers 6
Image encoder dimension 768
Image encoder heads 8

Table 3: Hyperparameters for our model variants.

Empirically, for both variants, we find k = 2 to
be the best number of sampled objects. All exper-
iments are run with early stopping (patience 10;
training iterations capped at 35000) on the BLEU-
4 metric. Scores reported (in Section 5) are from
the highest performing checkpoint. We use the Py-
Torch library and train our model on a V100 GPU
(1.5 hours per epoch).

C Impact of model size on results

Model
BLEU CIDEr METEOR ROUGE

1 2 3 4

image-category 38.6 28.4 21.4 16.2 118 19.9 40.1
image-guided 44.5 34.4 27.4 22.1 197 24.6 47

Table 4: Truncated models single reference evaluation
results.
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Our models use the heavier Transformers than
previous SoTA we compare to. For example, (Kr-
ishna et al., 2019) use ResNet and RNNs for their
image encoder and question generator (∼18M pa-
rameters). Our models have between 200-300M
parameters. To validate that our results are not
purely attributable to model size, we train a trun-
cated version of image-category and image-guided
(explicit only). We truncate our models by using
only the first and last layers of our BERT based
encoders and decoders (∼36M parameters). Our
closest model to theirs is the (truncated) explicit
image-category, which achieves a BLEU-4 of 16.2
as seen in Table 4 - an improvement of 1.7 BLEU-4
over IMVQG’s t-path. Even if we attribute 100%
of this score improvement to the pre-trained na-
ture of the BERT models we use, our methodol-
ogy still introduces a 5.9 BLEU-4 increase over
the image-category combination (truncated image-
guided achieves a BLEU-4 of 22.1).

D More Qualitative Examples.

Examples can be seen in Figure 2 (next page).
When examined, we see that the generated ques-
tion accurately uses the guiding category when the
category is valid for the given image. For exam-
ple, 531086/1 has animal as the sampled category.
Because no animal is present in the image, this
category isn’t valid for the image. The generated
question then correctly relies on the object labels
and visual modality to generate a valid question
given the image. Similarly for 490505/2.

There are some cases where a sampled ob-
ject/concept is not valid given an image. For exam-
ple, at least one of the objects in 22929/1, 41276/1,
531086/2, 281711/1, 490505/1 is not valid. In this
case the model usually relies on the other available
guiding information, prioritising the category infor-
mation (e.g. 531086/2). In rare cases, the model
has failure cases where some of the valid sampled
objects may not be used in the generated question
(e.g. 293705/2 and 490505/2).

The concept extractor utilises a pre-trained im-
age captioning model and object detector model.
This may lead to an accumulation of downstream
errors, especially if the data fed into the pre-trained
models are from a significantly different data gen-
erating distribution than those used to train the
model. In this erroneous case, the model will likely
fallback to rely on the image modality and cate-
gory information to produce a generic question

(e.g. 22929/1, 22929/2, 531085/1, 293705/2).

E Responsible NLP Research

E.1 Limitations
Our approach claims to achieve SoTA in Visual
Question Generation. However, we are only able to
train and test our model on one dataset because it
is the only existing dataset which contains answer
categories. It is possible that our work may be
suitable for use in a zero-shot setting, but we have
not evaluated or tested our model in this setup.

E.2 Risks
Our model could be used to generate novel ques-
tions for use in Visual Question Answering. This
may have a knock-on effect which leads to training
more VQA models, thus having a negative impact
on the environment.

Our model could be used in downstream tasks
such as language learning. There may be incor-
rectness in the generated questions which has a
knock on effect to a user using this model (e.g. the
user may gain a wrong understanding of a concept
because of a question the model has generated)
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22929 

 

 
41276 

 
531086 

Ground 
Truths 
(truncated 
@ 5) 

 is the bear bigger than the 
baby? 
is the baby showing the bear 
love? 
what is the child sitting 
with? 

how many planes are there? 
is this a boeing 737? 
is the sky blue? 
how many propellers on the 
plane? 
is this a single engine aircraft? 
is the landing gear visible? 
 

do the cabinets have handles? 
what room is this? 
do they wash dishes by hand? 
are there any magnets on the fridge? 
is there a coffee maker in the photo? 

Explicit 1. Sampled Category: 
1. Sampled Objects: 
1. Generated Question: 
 
 
 
2. Sampled Category: 
2. Sampled Objects: 
2. Generated Question: 

spatial 
baby jacket 
which of the two bears's 
arms is closer to the 
camera? 
 
activity 
ears arm 
what is the baby doing? 

material 
cockpit tail 
what is the landing gear made of? 
 
 
 
count 
wings sky 
how many clouds are in the sky? 

animal 
door wall 
what is the only colorful object on the 
wall? 
 
 
binary 
book door 
is there a dishwasher in the picture? 

 Valid category for image? 
On topic with category? 
On topic with objects? 
Valid question for image? 

✅      ✅ 
✅      ✅ 
❌      ❌ 
✅      ✅ 

✅      ✅ 
✅      ✅ 
✅      ✅ 
❌      ✅ 

❌      ✅ 
❌      ✅ 
✅      ❌ 
✅      ✅ 

     
   

 
281711 

 
490505 

 

293705 

Ground 
Truths 
(truncated 
@ 5) 

 where are the paper towels 
hanging at? 
is this a museum? 
is there a plant? 
what type of flooring do you 
see? 

what color is not included in the 
roses? 
has the envelope been opened? 
what color is the envelope? 

is the electric bill being paid? 
would you pay money for staging? 
what color is the sofa? 

Explicit 1. Sampled Category: 
1. Sampled Objects: 
1. Generated Question: 
 
 
 
2. Sampled Category: 
2. Sampled Objects: 
2. Generated Question: 

attribute 
television door 
is the refrigerator door open 
or closed? 
 
 
location 
counter magnet 
what is on top of the 
counter? 

location 
ground flowers 
where is the vase? 
 
 
 
food 
flower counter 
what is the red and white item?  

attribute 
living room, books 
what pattern is on the couch? 
 
 
 
shape 
counter leg 
what shape is the rug? 

 Valid category for image? 
On topic with category? 
On topic with objects? 
Valid question for image? 

✅      ✅ 
✅      ✅ 
✅      ✅ 
✅      ✅ 

✅      ❌ 
✅      ❌ 
✅      ❌ 
❌      ❌ 

✅      ✅ 
✅      ✅ 
✅      ❌ 
✅      ✅ 

Figure 3: Qualitative outputs from explicit variant being fed random guiding information. Failure cases are also
shown.
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