
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1624 - 1639

July 10-15, 2022 ©2022 Association for Computational Linguistics

Implicit N -grams Induced by Recurrence

Xiaobing Sun and Wei Lu
StatNLP Research Group

Singapore University of Technology and Design
xiaobing_sun@mymail.sutd.edu.sg, luwei@sutd.edu.sg

Abstract

Although self-attention based models such as
Transformers have achieved remarkable suc-
cesses on natural language processing (NLP)
tasks, recent studies reveal that they have
limitations on modeling sequential transfor-
mations (Hahn, 2020), which may prompt
re-examinations of recurrent neural networks
(RNNs) that demonstrated impressive results
on handling sequential data. Despite many
prior attempts to interpret RNNs, their internal
mechanisms have not been fully understood,
and the question on how exactly they capture
sequential features remains largely unclear. In
this work, we present a study that shows there
actually exist some explainable components
that reside within the hidden states, which are
reminiscent of the classical n-grams features.
We evaluated such extracted explainable fea-
tures from trained RNNs on downstream sen-
timent analysis tasks and found they could be
used to model interesting linguistic phenomena
such as negation and intensification. Further-
more, we examined the efficacy of using such
n-gram components alone as encoders on tasks
such as sentiment analysis and language model-
ing, revealing they could be playing important
roles in contributing to the overall performance
of RNNs. We hope our findings could add in-
terpretability to RNN architectures, and also
provide inspirations for proposing new archi-
tectures for sequential data.

1 Introduction

Modern recurrent neural networks (RNNs), includ-
ing Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) and Gated Recurrent
Units (GRU) (Cho et al., 2014), have demonstrated
impressive results on tasks involving sequential
data. They have proven to be capable of modeling
formal languages (Weiss et al., 2018; Merrill, 2019;
Merrill et al., 2020) and capturing structural fea-
tures (Li et al., 2015a,b, 2016; Linzen et al., 2016;
Belinkov et al., 2017; Liu et al., 2019) on NLP
tasks. Although Transformers (Vaswani et al.,
2017) have achieved remarkable performances on

Figure 1: An RNN hidden state may encode a linear
combination of all the n-grams ending at the current
time step.

NLP tasks such as machine translation, it is argued
that they may have limitations on modeling hierar-
chical structure (Tran et al., 2018; Hahn, 2020) and
cannot handle functions requiring sequential pro-
cessing of input well (Dehghani et al., 2019; Hao
et al., 2019; Bhattamishra et al., 2020; Yao et al.,
2021). Furthermore, a recent work shows that com-
bining recurrence and attention (Lei, 2021) can
result in strong modeling capacity. Another recent
work incorporating recurrent cells into Transform-
ers (Hutchins et al., 2022) substantially improved
performance on language modeling involving very
long sequences, prompting re-investigations of
RNNs. On the other hand, it was observed in prior
work that RNNs were able to capture linguistic
phenomena such as negation and intensification
(Li et al., 2016), but the question why they could
achieve so still largely remains unanswered.

In this work, we focus on better understand-
ing RNNs from a more theoretical perspective.
We demonstrate that the recurrence mechanism of
RNNs may induce a linear combination of inter-
pretable components. These components reside
in their hidden states in the form of the iterated
matrix-vector multiplication that is based on the
representations of tokens in the (reverse) order they
appear in the sequence. Such components, solely
depending on inputs and learned parameters, can
be conveniently interpreted and are reminiscent of
those compositional features used in classical n-
gram models (Jurafsky and Martin, 2009). They
may also provide us with insights on how RNNs
compose semantics from basic linguistic units. Our
analysis further shows that, the hidden state at each
time step includes a weighted combination of com-
ponents that represent all the “n-grams” ending
at that specific position in the sequence as shown

1624

in Figure 1. We gave specific representations for
the n-gram components in Elman RNNs (Elman,
1990), GRUs and LSTMs.

We investigated the interpretability of those n-
gram components on trained RNN models, and
found they could explain phenomena such as nega-
tion and intensification and reflect the overall polar-
ity on downstream sentiment analysis tasks, where
such linguistic phenomena are prevalent. Our ex-
periments also revealed that the GRU and LSTM
models are able to yield better capabilities in mod-
eling such linguistic phenomena than the Elman
RNN model, partly attributed to the gating mech-
anisms they employed which resulted in more ex-
pressive n-gram components. We further show that
the linear combination of such components yields
effective context representations. We explored the
effectiveness of such n-gram components (along
with the corresponding context representations) as
alternatives to standard RNNs, and found they can
generally yield better results than the baseline com-
positional methods on several tasks, including senti-
ment analysis, relation classification, named entity
recognition, and language modeling.

We hope that our work could give inspirations
to our community, serving as a useful step towards
proposing new architectures for capturing contex-
tual information within sequences.1

2 Related Work

Interpretability of RNNs: A line of work fo-
cuses on the relationship between RNNs and finite-
state machines (Weiss et al., 2018; Merrill, 2019;
Suzgun et al., 2019; Merrill et al., 2020; Eyraud
and Ayache, 2020; Rabusseau et al., 2019), pro-
viding explanation and prediction on the expres-
sive power and limitations of RNNs on formal lan-
guages both empirically and theoretically. Kanai
et al. (2017) investigated conditions that could pre-
vent gradient explosions for GRU based on dy-
namics. Maheswaranathan et al. (2019) and Ma-
heswaranathan and Sussillo (2020) linearized the
dynamics of RNNs around fixed points of hidden
states and elucidated contextual processing. Our
work focuses on studying a possible mechanism of
RNNs that handles exact linguistic features.

Another line of work aims to detect linguistic fea-
tures captured by RNNs. Visualization approaches
(Karpathy et al., 2015; Li et al., 2016) were ini-
tially used to examine compositional information
in RNN outputs. Linzen et al. (2016) assessed
LSTMs’ ability to learn syntactic structure and

1Our code is available at https://github.com/
richardsun-voyager/inibr.

Emami et al. (2021) gave rigorous explanations on
the standard RNNs’ ability to capture long-range
dependencies. Decomposition methods (Murdoch
and Szlam, 2017; Murdoch et al., 2018; Singh et al.,
2019; Arras et al., 2017, 2019; Chen et al., 2020)
were proposed to produce importance scores for hi-
erarchical interactions in RNN outputs. Our work
can be viewed as an investigation on how those
interaction came about.

Compositional Models: A variety of compo-
sitional functions based on vector spaces have
been proposed in the literature to compose seman-
tic meanings of phrases, including simple com-
positions of adjective-noun phrases represented
as matrix-vector multiplication (Mitchell and La-
pata, 2008; Baroni and Zamparelli, 2010) and
a matrix-space model (Rudolph and Giesbrecht,
2010; Yessenalina and Cardie, 2011) based on ma-
trix multiplication. Socher et al. (2012, 2013) in-
troduced a recursive neural network model that
assigns every word and longer phrase in a parse
tree both a vector and a matrix, and represents com-
position of a non-terminal node with matrix-vector
multiplication. Kalchbrenner and Blunsom (2013)
employed convolutional and recurrent neural net-
works to model compositionality at the sentence
and discourse levels respectively. Those models are
designed in an intuitive manner based on the nature
of languages thus being interpretable. We can show
that RNNs may process contextual information in
a way bearing a resemblance to those early models.

3 A Theory on N -gram Representation

First, let us spend some time to discuss how to rep-
resent n-grams. Various approaches to represent-
ing n-grams have been proposed in the literature
(Mitchell and Lapata, 2008; Bengio et al., 2003;
Mitchell and Lapata, 2008; Mnih and Teh, 2012;
Ganguli et al., 2008; Orhan and Pitkow, 2020;
Emami et al., 2021; Rudolph and Giesbrecht, 2010;
Yessenalina and Cardie, 2011; Baroni and Zam-
parelli, 2010). We summarize in Table 1 different
approaches for representing n-grams.

Although empirically it has been shown that dif-
ferent approaches can lead to different levels of ef-
fectiveness, the rationales underlying many of the
design choices remain unclear. In this section, we
establish a small theory on representing n-grams,
which leads to a new formulation on capturing the
semantic information within n-grams.

Let us assume we have a vocabulary V that con-
sists of all possible word tokens. The set of n-
grams can be denoted as V∗ (including the special

1625

https://github.com/richardsun-voyager/inibr
https://github.com/richardsun-voyager/inibr

Model N -gram Context
L Representative WorkRepresentation Representation

Vector Multiplicative
vi:j = g(xi)⊙ · · · ⊙ g(xj)

(∏i+1
k=tA(xk)

)
v1:t t Mitchell and Lapata (2008)(VM)

Matrix Multiplicative
Mi:j =

∏j
k=iA(xk)

(∏i+1
k=tA(xk)

)
M1:t t Yessenalina and Cardie (2011)(MM)

Vector Additive (weighted)
vi:j = Cj−ig(xi)

(∏i+1
k=tA(xk)

)∑t
i=t−m+1 vi:t m Bengio et al. (2003)(VA-W)

Vector Additive (exponentially weighted)
vi:j = Cj−ig(xi)

(∏i+1
k=tA(xk)

) ∑t
i=1 vi:t t Emami et al. (2021)(VA-EW)

Matrix-Vector Multiplicative (restricted)
vi−1:i = A(xi−1)g(xi)

(∏i+1
j=t A(xj)

)
g(xi)vt−1:t 2 Baroni and Zamparelli (2010)(MVM-R)

Matrix-Vector Multiplicative
vi:j =

(∏i+1
k=j A(xk)

)
g(xi) v1:t t -(MVM)

Matrix-Vector Multiplicative-Additive
vi:j =

(∏i+1
k=j A(xk)

)
g(xi)

∑t
i=1 vi:t t This work(MVMA)

Table 1: Different models for defining representations for n-grams within the phrase x1, x2, . . . , xt−1, xt and
constructing the context representation out of the n-grams during learning. L: the maximum length allowed for the
context representation. C is a weight matrix, and Ck is a (relative) position-specific weight matrix. A and g are
functions that return a matrix and a vector respectively.

n-gram which is the empty string ϵ). Consider
three n-grams a, b, and c from V∗, with their se-
mantic representations r(a), r(b), and r(c) respec-
tively. Similarly, we may have r(ab) which return
the semantic representations of the concatenated
n-grams ab. It is desirable for our representations
to be compositional in some sense. Specifically, a
longer n-gram may be semantically related to those
shorter n-grams it contains in some way.

Under some mild compositional assumptions re-
lated to the principle of compositionality (Frege,
1948)2, it is reasonable to expect that there exists
some sort of rule or operation that allows us to com-
pose semantics of longer n-grams out of shorter
ones. Let us use ⊗ to denote such an operation.
We believe a good representation system for n-
grams shall satisfy several key properties. First, the
semantics of the n-gram abc shall be determined
through either combining the semantics of the two
n-grams a and bc or through combining the seman-
tics of ab and c. The semantics of abc is unique,
regardless of which of these two ways we use. Sec-
ond, for the empty string ϵ, it should not convey any
semantics. Formally, we can write them as:3

• Associativity: ∀a, b, c ∈ V∗, (r(a) ⊗ r(b)) ⊗
r(c) = r(a)⊗ (r(b)⊗ r(c))

• Identity: ∀a ∈ V∗, r(a) ⊗ r(ϵ) = r(a), and
r(ϵ)⊗ r(a) = r(a)

This essentially shows that the representation
space for all n-grams under the operation ⊗, de-
noted as (V∗,⊗), forms a monoid, an impor-
tant concept in abstract algebra (Lallement, 1979),
with significance in theoretical computer science

2The principle states that “the meaning of an expression is
determined by the meanings of the sub-expressions it contains
and the rules used to combine such sub-expressions”.

3Besides, another important property is that the order used
for combining two n-grams does matter. In other words,
r(a)⊗ r(b) usually may not be the same as r(b)⊗ r(a).

(Meseguer and Montanari, 1990; Rozenberg and
Salomaa, 2012).

On the other hand, it can be easily verified that
the space of all d × d (where d is an integer) real
square matrices under matrix multiplication, de-
noted as (Rd×d, ·), also strictly forms a monoid
(i.e., it is associative and has an identity, but is
not commutative). We can therefore establish a
homomorphism from V∗ to Rd×d, resulting in the
function r(·) ∈ V∗ → Rd×d.

This essentially means that we may be able to
rely on a sub-space within Rd×d as our mathemati-
cal object to represent the space of n-grams, where
the matrix multiplication operation can be used to
compose representations for longer n-grams from
shorter ones. Thus, for a unigram x (a single word
in the vocabulary), we have:

r(x) := Ax (1)

where Ax ∈ Rd×d is the representation for the
word x (how to learn such a matrix is a separate
question to be discussed later). Note that the empty
string ϵ comes with a unique representation which
is the d× d identity matrix I .

We can either use matrix left-multiplication or
right-multiplication as our operator ⊗. Assume the
language under consideration employs the left-to-
right writing system. It is reasonable to believe that
a human reader processes the text left-to-right, and
the semantics of the text gets evolved each time
the reader sees a new word. We may use the ma-
trix left-multiplication as the preferred operator in
this case. The system will left-multiply (modify)
an existing n-gram representation with a matrix
associated with the new word that appears right af-
ter the existing n-gram, forming the representation
of the new n-gram. Such an operation essentially
performs a transform that simulates the process
of yielding new semantics when appending a new
word at the end of an existing phrase. With this, for

1626

a general n-gram xi, xi+1, . . . , xt (i ≤ t), we have:

r(xi, xi+1, . . . , xt) =
i∏

k=t

Axk (2)

However, the conventional wisdom in NLP has
been to use vectors to represent basic linguistic
units such as words, phrases or sentences (Mikolov
et al., 2013a,b; Pennington et al., 2014; Kiros et al.,
2015). This can be achieved by a transform:

(
i∏

k=t

Axk

)
u (3)

where u ∈ Rd is a vector that maps the resulting
matrix representation into a vector representation.

Next, we will embark on our journey to examine
the internal representations of RNNs. As we will
see, interestingly, our developed n-gram represen-
tations can emerge within such models.

4 Interpretable Components in RNNs

An RNN is a parameterized function whose hidden
state can be written recursively as:

ht = f(xt,ht−1), (4)

where xt is the input token at time step t and
ht−1 ∈ Rd is the previous hidden state. Assume
f is differentiable at any point, with the Taylor
expansion, ht can be rewritten as:

ht = f(xt,0) +∇f(xt,0)ht−1 + o(ht−1), (5)

where ∇f(xt,0) =
∂f

∂ht−1
|ht−1=0 is the Jacobian

matrix, and o is the remainder of the Taylor series.
Let g(xt) = f(xt,0) and A(xt) = ∇f(xt,0).

Note that g(xt) ∈ Rd and A(xt) ∈ Rd×d are both
functions of xt. Therefore, the equation above can
be written as:

ht = g(xt) +A(xt)ht−1 + o(ht−1). (6)

If the hidden state has a sufficiently small norm,
it can be approximated by the first-order Taylor
expansion as follows4:

ht ≈ g(xt) +A(xt)ht−1. (7)

Next we illustrate how this recurrence relation
can help us identify some salient components.

4There will be an “approximation gap” at each time step be-
tween the “approximated” hidden state and the actual standard
hidden state. We may leverage regularization methods such as
weight-decaying and the spectral normalization (Miyato et al.,
2018) to prevent the gap from growing unbounded.

4.1 Emergence of N -grams
Consider the simplified RNN with the following
recurrence relation,

ht = g(xt) +A(xt)ht−1, (8)

where h ∈ Rd, and g(xt) ∈ Rd and A(xt) ∈ Rd×d

are functions of xt. This recurrence relation can be
expanded repeatedly as follows,

ht=g(xt)+A(xt)g(xt−1)+A(xt)A(xt−1)ht−2

= · · · =
t∑

i=1

A(xt) . . . A(xi+1)g(xi)

=
t∑

i=1

(
i+1∏

j=t

A(xj)

)
g(xi)

︸ ︷︷ ︸
vi:t

,

We can see that vi:t bear some resemblance to
the term in Equation 3, which can be rewritten as:




i+1∏

j=t

Axj︸︷︷︸
A(xj)



(
Axiu

)

︸ ︷︷ ︸
g(xi)

, (9)

With the definition A(xj) := Axj and g(xi) :=
A(xi)u, we can see vi:t can be interpreted as an
“n-gram representation” that we developed in the
previous section. It is important to note that, how-
ever, the use of function g(xi) in RNNs may lead
to greater expressive power than the original for-
mulation based on Axiu.5

This interesting result shows that the hidden state
of a simple RNN (characterized by Equation 8) is
the sum of the representations of all the n-grams
ending at time step t. Such salient components
within RNN also show that the standard RNN may
actually have a mechanism that is able to capture
implicit n-gram information as described above.
This leads to the following definition:
Definition 1 (N -gram Representation) For the
n-gram xi, xi+1, . . . , xt, its representation is:

vi:t =

(
i+1∏

j=t

A(xj)

)
g(xi), (10)

where A(xj) ∈ Rd×d and g(xi) ∈ Rd.

4.2 Context Representation
With the above definition, we may want to consider
how to perform learning. The learning task in-
volves identifying the functions A and g – in other
words, learning representations for word tokens.

A typical learning setup that we may consider
here is the task of language modeling. Such a task

5This is because we can always construct g(xi) from any
given Axi and u, but in general we may not always be able
to decompose g(xi) into the form Axiu (for all xi).

1627

can be defined as predicting the next word xt+1

based on the representation of preceding words
x1, x2, . . . , xt which serves as its left context. This
is an unsupervised learning task, where the un-
derlying assumption involved is the distributional
hypothesis (Harris, 1954). Specifically, the model
learns how to “reconstruct” the current word xt+1

out of x1, x2, . . . , xt which serves as its context.
Now the research question is how to define the

representation for this specific context. As this left
context is also an n-gram, it might be tempting
to directly use its n-gram representation defined
above to characterize such a left context. However,
we show such an approach is not desirable.

The n-gram representation for this context can
be written in the following alternative form:

v1:t =

(
2∏

j=t

A(xj)

)
g(xi) = W (x2:t)g(x1), (11)

This shows that the n-gram representation of
x1, x2, . . . , xt could be interpreted as a “weighted”
representation of the word x1 (where the weight
matrix is derived from the words between x1 and
xt+1, measuring the strength of the connection be-
tween them). However, ideally, the context repre-
sentation shall not just take x1 but other adjacent
words preceding xt+1 into account, where each
word contributes towards the final context represen-
tation based on the connection between them. This
leads to the following way of defining the context:

t∑

i=1

vi:t =
t∑

i=1

(
i+1∏

j=t

A(xj)

)
g(xi)

=
t∑

i=1

W (xi:t)g(xi),

(12)

In fact, such an idea of defining the context as
a weighted combination of surrounding words is
not new – it recurs in the literature of language
modeling (Bengio et al., 2003; Mnih and Teh,
2012), word embedding learning (Mikolov et al.,
2013a,b), and graph representation learning (Cao
et al., 2016).

Interestingly, the hidden states in the RNNs, as
shown in Equation 9, also suggest exactly the same
way of defining this left context. Indeed, when
using RNNs for language modeling, each hidden
state is exactly serving as the context representation
for predicting the next word in the sequence.

The above gives rise to the following definition:
Definition 2 (Context Representation) For the
n-gram x1, x2, . . . , xt, its representation when
serving as the (left) context is:

c1:t =
t∑

i=1

vi:t =
t∑

i=1

(
i+1∏

j=t

A(xj)

)
g(xi), (13)

where A(xj) ∈ Rd×d and g(xi) ∈ Rd.

4.3 Model Parameterization
With the above understandings on such salient com-
ponents within RNNs, we can now look into how
different variants of RNNs parameterize the func-
tions A and g. The definition of Elman RNN, GRU
and LSTM together with the corresponding Jaco-
bian matrix A(xt) and vector function g(xt) func-
tions are listed in Table 26. We discuss how such
different parameterizations may lead to different
expressive power when they are used in practice.

We can see the ways GRU or LSTM parameter-
ize A(xt) and g(xt) appear to be more complex
compared to Elman RNN. This can partially be
attributed to their gating mechanisms. Although
the original main motivation of introducing such
mechanisms may be to alleviate the exploding gra-
dient and vanishing gradient issues (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014), we could
see such designs also result in terms describing
gates and intermediate representations. A and g
are then independently derived based on certain
rich interactions between such terms. We believe
such interactions may likely increase the expressive
power of the resulting n-gram representations. We
will validate these points and discuss more in our
experiments.

5 Experiments

In our experiments, we focus on the following as-
pects: 1) understanding the effectiveness of the pro-
posed n-gram (and context) representations when
used in practice, as compared to baseline models;
2) examining the significance of the choice of con-
text representation; 3) interpreting the proposed
representations by examining how well they could
be used to capture certain linguistic phenomena.

We employ the sentiment analysis, relation clas-
sification, named entity recognition (NER) and lan-
guage modeling tasks as testbeds. The first task
is often used in investigating n-gram phenomena
(Yessenalina and Cardie, 2011; Li et al., 2016)
while the others are often used in examining how
capable an encoder is when extracting features
from texts (Grave et al., 2018; Zhou et al., 2016;
Lample et al., 2016).

Datasets For sentiment analysis, we considered
the Stanford Sentiment Treebank (SST) (Socher
et al., 2013), the IMDB (Maas et al., 2011), and
the AG-news topic classification7 (Zhang et al.,

6For brevity, we suppress biases following Merrill et al.
(2020).

7AG-news can be viewed as a special sentiment analysis
dataset.

1628

Definition Parameterization

E
lm

an

ht = tanh(Winxt+Wihht−1) A(xt) = diag[tanh′(Winxt)]Wih g(xt) = tanh(Winxt).

G
R

U

rt = σ(Wirxt +Whrht−1)
zt = σ(Wizxt +Whzht−1)
nt = tanh(Winxt+rt⊙Whnht−1)
ht = (1− zt)⊙ nt + zt ⊙ ht−1

A(xt) =diag [fn(xt)⊙[1−gz(xt)]⊙gr(xt)]Whn

A(xt) −diag[gn(xt)⊙ fz(xt)]Whz

A(xt) +diag[gz(xt)]
g(xt) = [1− gz(xt)]⊙ gn(xt)

where:
gr(xt) = σ(Wirxt), fr(t) = g′r(xt),
gz(xt) = σ(Wizxt), fz(xt) = g′z(xt),
gn(xt) = tanh(Winxt), fn(xt) = g′n(xt).

L
ST

M

it = σ(Wiixt +Whiht−1)
ft = σ(Wifxt +Whfht−1)
ot = σ(Wioxt +Whoht−1)
cmt = tanh(Wicxt +Whcht−1)
ct =ft ⊙ ct−1+it ⊙ cmt
ht =ot ⊙ tanh(ct)

A(xt) =

[
Bt Dt

Et Ft

]
, g(xt) =

[
gc(xt)
gh(xt)

]

Bt = diag[gf (xt)]
Et = diag

[
go(xt)⊙ tanh′[gc(xt)]

]
Bt

Dt = diag[gmc (xt)⊙ fi(xt)]Whi

Dt +diag[gi(xt)⊙ fm
c (t)]Whc

Ft = diag
[
go(xt)⊙ tanh′[gc(xt)]

]
Dt

Dt +diag [fo(xt)⊙ tanh[gc(xt)]]Who

where:
gc(xt) = gi(xt)⊙ gmc (xt),
gh(xt) = go(xt)⊙ tanh[gc(xt)],
gi(xt) = σ(Wiixt), fi(xt) = g′i(xt),
gf (xt) = σ(Wifxt), ff (xt) = g′f (xt),
go(xt) = σ(Wioxt), fo(xt) = g′o(xt),
gmc (xt) = tanh(Wicxt),
fm
c (xt) = tanh′(Wicxt).

Table 2: Parameterization of A and g by Elman RNN, GRU, and LSTM. xt is the representation of the input token
xt and W∗∗ refers to a weight matrix. σ and tanh are the element-wise sigmoid and tanh functions respectively. g′,
tanh′ and f ′ refer to the element-wise derivative. The diag operation converts a vector into a diagonal matrix.

2015) datasets. The first dataset has sufficient la-
bels for phrase-level analysis, the second dataset
has instances with relatively longer lengths, and the
third one is multi-class. For relation classification
and NER, we considered the SemEval 2010 Task 8
(Hendrickx et al., 2010) and CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003) datasets respec-
tively. For language modeling, we considered the
Penn Treebank (PTB) dataset (Marcus et al., 1993),
the Wikitext-2 (Wiki2) dataset and the Wikitext-
103 (Wiki103) dataset (Merity et al., 2016). PTB is
relatively small while Wiki103 is large. The statis-
tics are shown in Tables 6 and 7 in the appendix.

Baselines The n-gram representations (together
with their corresponding context representations)
discussed in the literature are considered as base-
lines, which are listed in Table 1 along with the
MVMA and MVM models. MVM(A)-G/L/E refers
to the MVM(A) model created with the A and g
functions derived from GRU/LSTM/Elman, but are
trained directly from data. The A and g functions
for GRU, LSTM and Elman are listed in Table 2.

Additionally, to understand whether the com-
plexity of A affects the expressive power, we
created a new model called MVMA-ME, which
comes with an A function that is slightly more
complex than that of MVMA-E but less complex
than those of MVMA-G and MVMA-L: A(xt)=
0.25 diag[tanh(Wxt)]M + 0.5I and g(xt) =
tanh(W ′xt) (here, W , M and W ′ are learnable
weight matrices). The g function is the same as
that of MVMA-E.

Setup For sentiment analysis, relation classifica-
tion and language modeling, models consist of one
embedding layer, one RNN layer, and one fully-
connected layer. The Adagrad optimizer (Duchi
et al., 2011) was used along with dropout (Srivas-
tava et al., 2014) for sentiment analysis8 and rela-

8We investigated the approximation between RNNs and
their corresponding recurrence relations in Appendix B.2. The

Model SST-2 AG-news IMDB
dev test dev test dev test

MM 86.0±1.3 85.6±0.4 - - - -
VA-W 80.6±1.6 80.4±1.4 90.3±0.4 90.0±0.3 88.0±0.6 88.0±0.4
VA-EW 82.6±0.3 82.0±0.3 - - - -
MVM-G 84.9±0.5 85.0±1.0 84.9±4.0 84.4±4.0 50.9±0.0 50.2±0.1
MVM-L 85.4±0.4 84.9±0.8 86.9±1.7 86.5±1.7 51.0±0.1 50.2±0.1
MVM-E 59.6±1.6 59.5±1.1 - - - -

MVMA-G 87.0±0.4 85.3±0.5 91.6±0.5 91.3±0.3 90.5±0.5 89.6±0.7
MVMA-L 86.7±1.0 85.4±1.0 91.4±0.5 91.3±0.5 89.4±0.6 89.2±0.6
MVMA-E 81.4±1.1 80.8±1.5 - - - -
MVMA-ME 83.2±0.5 81.9±0.3 90.6±0.5 90.2±0.3 80.6±0.5 80.1±1.1

GRU 84.9±0.9 84.9±0.5 92.1±0.1 91.6±0.3 87.7±0.2 87.2±0.3
LSTM 84.3±0.8 84.4±0.3 91.9±0.4 91.5±0.5 89.0±0.1 88.7±0.4
Elman 79.1±0.3 79.7±1.4 87.5±0.5 87.5±0.6 67.0±1.9 66.7±0.9

Table 3: Accuracy percentage (↑) on sentiment analysis
(text classification) datasets (averaged over 3 runs). “-”
means the model failed to converge.

tion classification. For language modeling, models
were trained with the Adam optimizer (Kingma
and Ba, 2014). We ran word-level models with
truncated backpropagation through time (Williams
and Peng, 1990) where the truncated length was set
to 35. Adaptive softmax (Joulin et al., 2017) was
used for Wiki103. For NER, models consist of one
embedding layer, one bidirectional RNN layer, one
projection layer and one conditional random field
(CRF) layer. The SGD optimizer was used. Final
models were chosen based on the best validation
results. More implementation details can be found
in the appendix.

5.1 Comparison of Representation Models
We investigate how baseline n-gram representation
models9, the MVM model, and the MVMA model
perform on the aforementioned testbeds. We also
compare with the standard RNN models.

Sentiment Analysis Apart from the GRU and
LSTM models, it can be observed that our MVMA-
G and MVMA-L models are also able to achieve
competitive results on three sentiment analysis
datasets, as we can see from Table 3, demonstrating
the efficacy of those recurrence-induced n-gram

spectral normalization (Miyato et al., 2018) was used on the
weight matrices Wh∗ for standard RNNs.

9We excluded VM, which we found was hard to train. We
also excluded MVM-R which only considers bigrams.

1629

representations. Although Elman RNN and its cor-
responding MVMA-E and MVM-E models also
have a mechanism for capturing n-gram informa-
tion (similar to GRU and LSTM), they did not per-
form well, which may be attributed to a limited
expressive power of their A and g functions when
used for defining n-grams as described previously.

Both MM and VA-EW fail to converge on AG-
news and IMDB, showing challenges for them to
handle long instances. This may be explained
by the lengthy matrix multiplication involved in
their representations, which may result in vanish-
ing/exploding gradient issues. Interestingly, MVM-
G and MVM-L, which solely rely on the longest n-
gram representation, are also able to achieve good
results on SST-2, indicating a reasonable expres-
sive power of such n-gram representations alone.
However, they fail to catch up with MVMA-G
and MVMA-L on IMDB which contains much
longer instances, confirming the significance of
the context representation, which captures n-grams
of varying lengths.

Unlike MVMA-E, the MVMA-ME model does
not suffer from loss stagnation on AG-news and
IMDB but the performance on IMDB obviously
falls behind MVMA-G and MVMA-L as shown
in Table 3. This indicates a sufficiently expressive
A(xt) (such as the Jacobian matrices of GRU and
LSTM) may be needed to handle long instances.

Relation Classification & NER For relation clas-
sification, context representations (or final hidden
states) are used for classification. For NER, we use
the concatenated context representations (or hid-
den states) at each position of bidirectional mod-
els to predict entities and their types. Table 4
shows that MVMA-G and MVMA-L outperform
the MVM-G and MVM-L models respectively on
both tasks, again confirming the effectiveness of
the context representations. MVM(A)-E did not
perform as well as MVM(A)-G and MVM(A)-L,
which demonstrates the significance of expressive
power for the A and g functions. Similar to the
results in sentiment analysis, MVMA-ME did not
perform as well as MVMA-G and MVMA-L. How-
ever, to our surprise, MVMA-ME did not outper-
form VA-EW on NER, suggesting that a delicate
choice of A can be important for this task. The poor
performance of VA-W on NER might be explained
by a weak expressive power of its n-gram represen-
tations. MM fails to converge on the relation clas-
sification task, which implies it is not robust across
different datasets. Interestingly, it is remarkable
that MVMA-G, MVMA-L and MVMA-E could
yield competitive results compared to GRU, LSTM

Model Relation Classification NER
dev test dev test

MM - - 33.9±0.6 30.8±0.4
VA-W 41.2±0.2 37.9±0.9 17.6±0.6 16.5±1.6
VA-EW 39.7±1.1 38.3±0.7 70.8±0.7 63.4±1.0
MVM-G 51.2±0.5 52.6±0.7 54.2±1.6 47.6±2.2
MVM-L 48.8±1.3 50.5±1.5 53.8±1.7 46.6±1.6
MVM-E - - 27.8±0.9 25.6±0.9

MVMA-G 62.2±1.0 59.7±0.1 75.0±0.4 67.7±0.5
MVMA-L 57.5±0.3 56.2±0.8 75.6±0.2 67.9±0.3
MVMA-E 27.8±0.9 25.6±0.9 69.0±0.4 61.7±0.1
MVMA-ME 46.3±0.9 46.2±0.6 67.0±0.5 57.6±0.8

GRU 67.2±0.6 62.2±0.2 75.6±0.5 67.9±0.5
LSTM 65.2±0.9 61.3±1.4 76.3±0.5 68.1±0.5
Elman 27.8±0.9 25.6±0.9 67.1±0.9 58.6±0.6

Table 4: F1 scores (↑) (averaged over 3 runs) on the
relation classification and NER tasks. “-” means the
model failed to converge.

Model PTB Wiki2 Wiki103

GRU
dev 118.4±0.4 146.1±0.4 109.4±0.6
test 110.1±0.4 136.8±0.1 113.3±0.8

MVMA-G
dev 119.8±0.4 150.3±0.8 111.8±0.5
test 111.1±0.2 140.2±1.0 115.2±0.5

MVM-G
dev 146.5±1.3 170.1±2.8 -
test 138.8 ±1.0 160.0±2.6 -

LSTM
valid 118.6±0.4 150.6±0.6 108.3±0.6

test 109.8±0.4 140.4±0.8 112.4±0.8

MVMA-L
dev 121.5±0.5 152.0±0.5 109.1±0.6
test 113.2±0.5 142.5±0.7 112.6±0.6

MVM-L
dev 124.3±1.5 155.6±0.9 -
test 117.0±1.0 145.7±1.6 -

MVMA-ME
dev 140.7±0.9 169.0±1.0 153.1±4.2
test 134.0±1.0 158.4±1.4 157.4±4.3

Table 5: Perplexities (↓) on language modeling (aver-
aged over 5 runs). “-”: the model failed to converge.

and Elman on NER, implying such n-gram repre-
sentations could be crucial for our NER task.

Language Modeling For the language modeling
task, we choose MVMA-G, MVMA-L, MVM-G
and MVM-L for experiments. We also run MVMA-
ME. As we can see from Table 5, there are perfor-
mance gaps between the MVMA models and the
standard RNNs – though the gaps often do not ap-
pear to be particularly large. This indicates there
may be extra information within higher order terms
of the standard RNN functions useful for such a
task. Yet, such information cannot be captured by
the MVMA models that employ simplified func-
tions. The gaps between the MVM models and
MVMA models are remarkable, which again in-
dicates that the correct way of defining the left
context representation can be crucial for the task
of next word prediction. MVMA-ME did not per-
form well on the language modeling task, which
might be attributed to the less expressive power of
its functions A and g.

5.2 Interpretation Analysis

We conduct some further analysis to examine the
interpretability of n-gram representations. Specif-
ically, we examine whether the models are able
to capture certain linguistic phenomena such as
negation, which is important for sentiment anal-
ysis (Ribeiro et al., 2020). We also additionally

1630

made comparisons with the vanilla Transformer
(Vaswani et al., 2017) here10 despite the fact that it
remains largely unclear how it precisely captures
sequence features such as n-grams.

We could also obtain the n-gram representations
and the corresponding context representations from
the learned standard RNN models, based on their
learned parameters. We denote such n-gram repre-
sentations as RNNn-gram, and the context represen-
tations as RNNcontext, where “RNN” can be GRU,
LSTM or Elman. As n-gram representations are
vectors, a common approach is to transform them
into scalars with learnable parameters (Murdoch
et al., 2018; Sun and Lu, 2020). We define the
n-gram polarity score to quantify the polarity in-
formation as captured by an n-gram representation
vi:t from time step i to t, which is calculated as:

svi:t = w⊤vi:t, (14)

where w is the learnable weight vector of the final
fully-connected layer. We also define the context
polarity score for the context as

∑t
i=1 s

v
i:t.

We trained RNNs and baseline models on SST-2
and automatically extracted 73 positive adjectives
(e.g., “nice” and “enjoyable”) and 47 negative ad-
jectives (e.g., “bad” and “tedious”) from the vocab-
ulary11. N -gram polarity scores were calculated
for those adjective unigrams and their negation bi-
grams formed by prepending “not” to them. For
VA-EW and VA-W, their n-gram representations
do not involve tokens other than the last token.
Such limitations prevent them from capturing any
negation information. We therefore calculate the
context polarity scores using their context represen-
tations instead (which in this case is a bigram). This
also applies to Transformer for the same reason.

We observed that, for the GRU and LSTM mod-
els along with their corresponding MVMA models,
the n-gram representations are generally able to
learn the negation for both the adjective and their
negation bigrams as shown in Figures 2a and 2b12,
prepending “not” to an adjective will likely reverse
the polarity. This might be a reason why they could
achieve relatively higher accuracy on the sentiment
analysis tasks. Interestingly, MVM-G could also
capture negation as shown in Figure 2c, again sug-
gesting the impressive expressive power of such
n-gram representations alone.

10The mean of output representations was treated as the
context representation for Transformer during training. We
also tried to use the concatenation of the first and last token,
following (Luan et al., 2019), which yielded similar results.

11Such adjectives and detailed automatic extraction process
can be found in the appendix.

12Results of LSTM are similar to GRU, which can be found
in the appendix.

However, as shown in Figure 2, models such
as VA-W, MVMA-E, and MM are struggling to
capture negation for negative adjectives, again im-
plying a weaker expressive power of their n-gram
representations. Specifically, MVMA-E fails to
capture negation for negative adjectives, which may
be attributed to a relatively weaker Jacobian ma-
trix function A (as compared to those of GRU and
LSTM) preventing them from pursuing optimal
conditions.

Figure 2e shows that the MVMA-ME model,
which has a function A less complex than the ones
from MVMA-G and MVMA-L but more complex
than the one from MVMA-E, still can generally
learn negation of negative adjectives better than the
MVMA-E model. This demonstrates the necessity
of choosing more expressive A and g functions.

Interestingly, both VA-W and Transformer are
struggling with capturing the negation phenomenon
for negative adjectives in our experiments as shown
in Figures 2g and 2h, which suggests that they may
have a weaker capability in modeling sequential
features in our setup. However, we found they
could still achieve good performances on the AG-
news and IMDB datasets13. We hypothesize this
is because the nature of SST-2 makes these two
models suffer more on this dataset – it has rich
linguistic phenomena such as negation cases while
the other two datasets do not.

Additionally, we examined the ability for GRU,
LSTM, MVMA-G and MVMA-L to capture both
the negation and intensification phenomena. For
such experiments, instead of using SST-2, we
trained the models on SST-5, which comes with
polarity intensity information. Polarity intensities
were mapped into values of {−2,−1, 0,+1,+2},
ranging from extremely negative to extremely posi-
tive. We conducted some experiments based on the
same setup above for capturing negation on SST-2.
To our surprise, our preliminary results show that
all models were performing substantially worse in
terms of capturing intensification than capturing
negations. We hypothesize that this is caused by
the imbalance between negation phrases and inten-
sification phrases. Specifically, the intensification
word “very” (1,729 times) was exposed less than
the negation word “not” (4,601 times) in the train-
ing set of SST-5.

One approach proposed in the literature for sen-
tence classification is to consider all the hidden
states of an RNN in an instance (Bahdanau et al.,
2015). We believe this may actually be able to al-

13We conducted additional experiments for Transformers
on sentiment analysis. Results are in appendix.

1631

p-adj [-]p-adj n-adj [-]n-adj
15

10

5

0

5

10

Po
la

rit
y

Sc
or

e

(a) GRUn-gram

p-adj [-]p-adj n-adj [-]n-adj

15

10

5

0

5

10

Po
la

rit
y

Sc
or

e

(b) MVMA-G
p-adj [-]p-adj n-adj [-]n-adj

15

10

5

0

5

10

Po
la

rit
y

Sc
or

e

(c) MVM-G
p-adj [-]p-adj n-adj [-]n-adj

3

2

1

0

1

2

3

Po
la

rit
y

Sc
or

e

(d) MVMA-E

p-adj [-]p-adj n-adj [-]n-adj

6

4

2

0

2

4

Po
la

rit
y

Sc
or

e

(e) MVMA-ME
p-adj [-]p-adj n-adj [-]n-adj

10

5

0

5

10

Po
la

rit
y

Sc
or

e

(f) MM
p-adj [-]p-adj n-adj [-]n-adj

6

4

2

0

2

4

Po
la

rit
y

Sc
or

e

(g) VA-W
p-adj [-]p-adj n-adj [-]n-adj

4

2

0

2

4

6

Po
la

rit
y

Sc
or

e

(h) Transformer

Figure 2: Distribution of polarity scores for adjectives and their negation bigrams on SST-2. p-adj and n-adj refer to
the positive and negative adjectives respectively. [-] refers to the negation operation (prepending the word “not”).
Circles refer to outliers. More results can be found in the appendix.

0 10 20 30 40 50 60 70
Word Index

1

0

1

2

3

Po
la

rit
y

Sc
or

e

original
negation
intensification

0 10 20 30 40
Word Index

4

3

2

1

0

1

Po
la

rit
y

Sc
or

e

original
negation
intensification

Figure 3: Context polarity scores (MVMA-G, SST-5)
for positive (L) and negative (R) adjectives along with
their negation and intensification bigrams.

leviate the above issue as it allows more n-grams
within an instance to be exposed to the label in-
formation. Thus, we followed their approach for
training our MVMA and MVM models14.

We can see that the negation and intensification
phenomena can be explained by both the context
representations in Figure 315. Specifically, prepend-
ing either positive or negative adjectives with “very”
will likely strengthen their polarity while adding
“not” will likely weaken their polarity. These results
suggest that RNNs are able to capture information
of linguistic significance within the sequence, and
our identified n-gram representations within their
hidden states appear to be playing a salient role.

5.3 Discussion
From the experiments above, we can see that our
introduced n-gram representations, coupled with
the corresponding context representations, are pow-
erful in practice in capturing n-gram information
better than the baseline compositional models intro-
duced in the literature. We also found that RNNs
can induce such representations due to their recur-
rence mechanism16.

However, there can be several factors that af-
fect the efficacy of different representations. First,
through comparisons with different variants of

14However, for simplicity, in this work we only used the
mean context representations (or hidden states) instead of a
weighted sum of them.

15More results are in the appendix.
16We also visualized the context representations and n-

gram representations in the appendix, which provide intuitive
understanding of them.

MVMA, we can see that the precise way of parame-
terizing the functions A(xt) and g(xt) matter. Sec-
ond, through the comparison between MVMA and
MVM, we can see that defining an appropriate con-
text representation that incorporates a correct set of
n-grams is also important. Third, for models which
do not capture such explicit n-gram features like
ours, interestingly, they may still be able to yield
good performances on certain tasks. For example,
though VA-W and Transformer did not perform
well on SST-2, they yielded results competitive to
GRU and LSTM on AG-news and IMDB. This ob-
servation indicates there could be other useful fea-
tures captured by such models that can contribute
towards their overall modeling power.

Although in this work we did not aim to propose
novel or more powerful architectures, we believe
our work can be a step towards better understand-
ing of RNN models. We also hope it can provide
inspiration for our community to design more in-
terpretable yet efficient architectures.

6 Conclusion

In this work, we focused on investigating the under-
lying mechanism of RNNs in terms of handling se-
quential information from a theoretical perspective.
Our analysis reveals that RNNs contain a mecha-
nism where each hidden state encodes a weighted
combination of salient components, each of which
can be interpreted as a representation of a classi-
cal n-gram. Through a series of comprehensive
empirical studies on different tasks, we confirm
our understandings on such interpretations of these
components. With the analysis coupled with exper-
iments, we provide findings on how RNNs learn to
handle certain linguistic phenomena such as nega-
tion and intensification. Further investigations on
understanding how the identified mechanism may
capture a wider range of linguistic phenomena such
as multiword expressions (Schneider et al., 2014)
could an interesting future direction.

1632

Acknowledgements

We would like to thank the anonymous reviewers
and our ARR action editor for their constructive
comments. This research/project is supported by
the Ministry of Education, Singapore, under its
Tier 3 Programme (The Award No.: MOET32020-
0004). Any opinions, findings and conclusions or
recommendations expressed in this material are
those of the authors and do not reflect the views of
the Ministry of Education, Singapore.

References
Leila Arras, José Arjona-Medina, Michael Widrich, Gré-

goire Montavon, Michael Gillhofer, Klaus-Robert
Müller, Sepp Hochreiter, and Wojciech Samek. 2019.
Explaining and interpreting lstms. In Explainable ai:
Interpreting, explaining and visualizing deep learn-
ing, pages 211–238. Springer.

Leila Arras, Grégoire Montavon, Klaus-Robert Müller,
and Wojciech Samek. 2017. Explaining recurrent
neural network predictions in sentiment analysis. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Me-
dia Analysis.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of EMNLP.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2017. What do neural ma-
chine translation models learn about morphology? In
Proceedings of ACL.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The journal of machine learning re-
search, 3:1137–1155.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceedings
of EMNLP.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep
neural networks for learning graph representations.
In Proceedings of AAAI.

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020.
Generating hierarchical explanations on text classifi-
cation via feature interaction detection. In Proceed-
ings of ACL.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
EMNLP.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Universal
transformers. In Proceedings of ICLR.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning
research, 12(Jul):2121–2159.

J. Elman. 1990. Finding structure in time. Cogn. Sci.,
14:179–211.

Melikasadat Emami, Mojtaba Sahraee-Ardakan, Parthe
Pandit, Sundeep Rangan, and Alyson K Fletcher.
2021. Implicit bias of linear rnns. In Proceedings of
ICML.

Rémi Eyraud and Stéphane Ayache. 2020. Dis-
tillation of weighted automata from recurrent
neural networks using a spectral approach.
https://arxiv.org/abs/2009.13101.

Gottlob Frege. 1948. Sense and reference. The philo-
sophical review, 57(3):209–230.

Surya Ganguli, Dongsung Huh, and Haim Sompolin-
sky. 2008. Memory traces in dynamical systems.
Proceedings of the National Academy of Sciences,
105:18970 – 18975.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2018. Improving neural language models with a
continuous cache. In Proceedings of ICLR.

Pankaj Gupta and Hinrich Schütze. 2018. LISA: Ex-
plaining recurrent neural network judgments via
layer-wIse semantic accumulation and example to
pattern transformation. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Transactions of
the Association for Computational Linguistics.

Jie Hao, Xing Wang, Baosong Yang, Longyue Wang,
Jinfeng Zhang, and Zhaopeng Tu. 2019. Modeling re-
currence for transformer. In Proceedings of NAACL.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 task 8: Multi-
way classification of semantic relations between pairs
of nominals. In Proceedings of the 5th International
Workshop on Semantic Evaluation.

1633

https://doi.org/10.18653/v1/W17-5221
https://doi.org/10.18653/v1/W17-5221
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/D10-1115
https://www.aclweb.org/anthology/D10-1115
https://www.aclweb.org/anthology/D10-1115
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://onlinelibrary.wiley.com/doi/epdf/10.1207/s15516709cog1402_1
https://proceedings.mlr.press/v139/emami21b.html
http://arxiv.org/abs/2009.13101
http://arxiv.org/abs/2009.13101
http://arxiv.org/abs/2009.13101
http://arxiv.org/abs/1612.04426
http://arxiv.org/abs/1612.04426
https://doi.org/10.18653/v1/W18-5418
https://doi.org/10.18653/v1/W18-5418
https://doi.org/10.18653/v1/W18-5418
https://doi.org/10.18653/v1/W18-5418
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.18653/v1/N19-1122
https://doi.org/10.18653/v1/N19-1122
https://aclanthology.org/S10-1006
https://aclanthology.org/S10-1006
https://aclanthology.org/S10-1006

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan
Dyer, and Behnam Neyshabur. 2022. Block-recurrent
transformers. https://arxiv.org/abs/2203.07852.

Armand Joulin, Moustapha Cissé, David Grangier,
Hervé Jégou, et al. 2017. Efficient softmax approxi-
mation for gpus. In Proceedings of ICML.

Daniel Jurafsky and James H. Martin. 2009. Speech and
Language Processing (2nd Edition). Prentice-Hall,
Inc., USA.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
convolutional neural networks for discourse compo-
sitionality. In Proceedings of the Workshop on Con-
tinuous Vector Space Models and their Composition-
ality.

Sekitoshi Kanai, Yasuhiro Fujiwara, and Sotetsu Iwa-
mura. 2017. Preventing gradient explosions in gated
recurrent units. In Proceedings of NeurIPS.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
http://arxiv.org/abs/1506.02078.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard
Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Skip-thought vectors. In Proceedings
of NeurIPS.

Gérard Lallement. 1979. Semigroups and combinatorial
applications. John Wiley & Sons, Inc.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
Proceedings of NAACL.

Tao Lei. 2021. When attention meets fast recurrence:
Training language models with reduced compute. In
Proceedings of EMNLP.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of NAACL.

Jiwei Li, Thang Luong, and Dan Jurafsky. 2015a. A
hierarchical neural autoencoder for paragraphs and
documents. In Proceedings of ACL.

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard
Hovy. 2015b. When are tree structures necessary
for deep learning of representations? In Proceedings
of EMNLP.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of NAACL.

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A general
framework for information extraction using dynamic
span graphs. In Proceedings of NAACL.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of ACL.

Niru Maheswaranathan and David Sussillo. 2020. How
recurrent networks implement contextual processing
in sentiment analysis. In Proceedings of ICML.

Niru Maheswaranathan, Alex H. Williams, Matthew D.
Golub, S. Ganguli, and David Sussillo. 2019. Re-
verse engineering recurrent networks for sentiment
classification reveals line attractor dynamics. In Pro-
ceedings of NeurIPS.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. https://arxiv.org/abs/1609.07843.

William Merrill. 2019. Sequential neural networks as
automata. In Proceedings of the Workshop on Deep
Learning and Formal Languages: Building Bridges.

William Merrill, Gail Weiss, Yoav Goldberg, Roy
Schwartz, Noah A. Smith, and Eran Yahav. 2020.
A formal hierarchy of RNN architectures. In Pro-
ceedings of ACL.

José Meseguer and Ugo Montanari. 1990. Petri nets are
monoids. Information and computation, 88(2):105–
155.

Tomas Mikolov, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013a. Efficient estima-
tion of word representations in vector space.
https://arxiv.org/abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In Proceedings of NeurIPS.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
ACL.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama,
and Yuichi Yoshida. 2018. Spectral normalization
for generative adversarial networks. In Proceedings
of ICLR.

1634

https://arxiv.org/abs/2203.07852
https://arxiv.org/abs/2203.07852
https://arxiv.org/abs/1609.04309
https://arxiv.org/abs/1609.04309
https://aclanthology.org/W13-3214
https://aclanthology.org/W13-3214
https://aclanthology.org/W13-3214
http://papers.nips.cc/paper/6647-preventing-gradient-explosions-in-gated-recurrent-units.pdf
http://papers.nips.cc/paper/6647-preventing-gradient-explosions-in-gated-recurrent-units.pdf
http://arxiv.org/abs/1506.02078
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/2021.emnlp-main.602
https://doi.org/10.18653/v1/2021.emnlp-main.602
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.3115/v1/P15-1107
https://doi.org/10.3115/v1/P15-1107
https://doi.org/10.3115/v1/P15-1107
https://doi.org/10.18653/v1/D15-1278
https://doi.org/10.18653/v1/D15-1278
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://aclanthology.org/N19-1308/
https://aclanthology.org/N19-1308/
https://aclanthology.org/N19-1308/
https://www.aclweb.org/anthology/P11-1015
http://proceedings.mlr.press/v119/maheswaranathan20a.html
http://proceedings.mlr.press/v119/maheswaranathan20a.html
http://proceedings.mlr.press/v119/maheswaranathan20a.html
https://proceedings.neurips.cc/paper/2019/hash/d921c3c762b1522c475ac8fc0811bb0f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d921c3c762b1522c475ac8fc0811bb0f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d921c3c762b1522c475ac8fc0811bb0f-Abstract.html
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://doi.org/10.18653/v1/W19-3901
https://doi.org/10.18653/v1/W19-3901
https://www.aclweb.org/anthology/2020.acl-main.43
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://www.aclweb.org/anthology/P08-1028
https://www.aclweb.org/anthology/P08-1028
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-

Andriy Mnih and Yee Whye Teh. 2012. A fast and
simple algorithm for training neural probabilistic lan-
guage models. In Proceedings of ICML.

W. James Murdoch, Peter J. Liu, and Bin Yu. 2018.
Beyond word importance: Contextual decomposition
to extract interactions from LSTMs. In Proceedings
of ICLR.

W. James Murdoch and Arthur Szlam. 2017. Auto-
matic rule extraction from long short term memory
networks. In Proceedings of ICLR.

Emin Orhan and Xaq Pitkow. 2020. Improved mem-
ory in recurrent neural networks with sequential non-
normal dynamics. In Proceedings of ICLR.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP.

Guillaume Rabusseau, Tianyu Li, and Doina Precup.
2019. Connecting weighted automata and recurrent
neural networks through spectral learning. In Pro-
ceedings of AISTATS.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of ACL.

Grzegorz Rozenberg and Arto Salomaa. 2012. Hand-
book of Formal Languages: Volume 3 Beyond Words.
Springer Science & Business Media.

Sebastian Rudolph and Eugenie Giesbrecht. 2010. Com-
positional matrix-space models of language. In Pro-
ceedings of ACL.

Nathan Schneider, Emily Danchik, Chris Dyer, and
Noah A. Smith. 2014. Discriminative lexical se-
mantic segmentation with gaps: Running the MWE
gamut. Transactions of the Association for Computa-
tional Linguistics, 2:193–206.

Chandan Singh, W James Murdoch, and Bin Yu. 2019.
Hierarchical interpretations for neural network pre-
dictions. In Proceedings of ICLR.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of EMNLP.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of ENMLP.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Xiaobing Sun and Wei Lu. 2020. Understanding atten-
tion for text classification. In Proceedings of ACL.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019. LSTM networks can
perform dynamic counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages:
Building Bridges.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of CoNLL.

Ke Tran, Arianna Bisazza, and Christof Monz. 2018.
The importance of being recurrent for modeling hier-
archical structure. In Proceedings of EMNLP.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NeurIPS.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the practical computational power of finite precision
RNNs for language recognition. In Proceedings of
ACL.

Ronald J. Williams and Jing Peng. 1990. An efficient
gradient-based algorithm for on-line training of re-
current network trajectories. Neural Computation,
2(4):490–501.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and
Karthik Narasimhan. 2021. Self-attention networks
can process bounded hierarchical languages. In Pro-
ceedings of ACL-IJCNLP.

Ainur Yessenalina and Claire Cardie. 2011. Composi-
tional matrix-space models for sentiment analysis. In
Proceedings of EMNLP.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of NeurIPS.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-based
bidirectional long short-term memory networks for
relation classification. In Proceedings of ACL.

1635

https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
https://openreview.net/forum?id=rkRwGg-0Z
https://openreview.net/forum?id=rkRwGg-0Z
https://arxiv.org/abs/1702.02540
https://arxiv.org/abs/1702.02540
https://arxiv.org/abs/1702.02540
https://openreview.net/forum?id=ryx1wRNFvB
https://openreview.net/forum?id=ryx1wRNFvB
https://openreview.net/forum?id=ryx1wRNFvB
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://proceedings.mlr.press/v89/rabusseau19a/rabusseau19a.pdf
http://proceedings.mlr.press/v89/rabusseau19a/rabusseau19a.pdf
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://www.aclweb.org/anthology/P10-1093
https://www.aclweb.org/anthology/P10-1093
https://doi.org/10.1162/tacl_a_00176
https://doi.org/10.1162/tacl_a_00176
https://doi.org/10.1162/tacl_a_00176
https://openreview.net/forum?id=SkEqro0ctQ
https://openreview.net/forum?id=SkEqro0ctQ
https://www.aclweb.org/anthology/D12-1110
https://www.aclweb.org/anthology/D12-1110
https://www.aclweb.org/anthology/D13-1170/
https://www.aclweb.org/anthology/D13-1170/
https://jmlr.org/papers/v15/srivastava14a.html
https://jmlr.org/papers/v15/srivastava14a.html
https://www.aclweb.org/anthology/2020.acl-main.312
https://www.aclweb.org/anthology/2020.acl-main.312
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/D18-1503
https://doi.org/10.18653/v1/D18-1503
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.1162/neco.1990.2.4.490
https://doi.org/10.1162/neco.1990.2.4.490
https://doi.org/10.1162/neco.1990.2.4.490
https://doi.org/10.18653/v1/2021.acl-long.292
https://doi.org/10.18653/v1/2021.acl-long.292
https://www.aclweb.org/anthology/D11-1016
https://www.aclweb.org/anthology/D11-1016
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034

A Dataset Statistics

The statistics of the sentiment analysis, relation
classification and NER datasets are shown in Table
6. The language modeling datasets are obtained
from Einstein.ai and the statistics are shown in
Table 7.

Data Train Dev Test V.size Max.len Class

SST-2 98,794 872 1,821 17,404 54 2
IMDB 17,212 4,304 4,363 63,311 437 2
AG-news 110,000 10,000 7,600 85,568 212 4
SST-5 318,582 41,447 82,600 18,025 54 5
SemEval 7,000 1,000 2,717 27,115 91 10
CoNLL-2003 14,987 3,466 3,684 26,873 113 20

Table 6: Statistics of the sentiment analysis, relation
classification and NER datasets. “V.size” indicates the
vocabulary size and “Max.len” indicates the maximum
length of the instances. “SemEval” refers to the Se-
mEval 2010 Task 8 dataset for relation classification.
For CoNLL-2003, “class” refers to the tag size.

We created the binary dataset SST-2 by extract-
ing instances (including phrases) with polarity from
the constituency parse trees in the original SST
dataset (Socher et al., 2013). We merged the labels
extremely positive and positive as positive and the
labels extremely negative and negative as negative.
We also extracted all the phrases in the constituency
parse trees from the original dataset and created
the 5-class dataset SST-5. The labels extremely
positive, positive, neutral, negative and extremely
negative were mapped into +2, +1, 0, -1, and -2
respectively.

B More Result from the SST datasets

B.1 Negation and Intensification

Figure 4 shows that the n-gram representations
from the LSTM model together with its correspond-
ing MVMA-L and MVM-L models can also cap-
ture negation on the extracted adjectives from SST-
2. However, VA-EW fails to capture the negation
phenomenon for the negative adjectives, which may
be explained by that: the n-gram representation
of VA-EW solely involves the current token, thus
being less expressive compared to the one from
models such as MVMA-L and MVMA-G. More-

Dataset Train Dev Test

PTB Token Num 887,521 70,390 78,669
Vocab Size 10,000

Wiki2 Token Num 2,088,628 217,646 245,569
Vocab Size 33,278

Wiki103 Token Num 103,227,021 217,646 245,569
Vocab Size 267,735

Table 7: Statistics of the language modeling datasets.

p-adj [-]p-adj n-adj [-]n-adj

4

2

0

2

4

Po
la

rit
y

Sc
or

e

(a) VA-EW
p-adj [-]p-adj n-adj [-]n-adj

15

10

5

0

5

Po
la

rit
y

Sc
or

e

(b) LSTMn-gram

p-adj [-]p-adj n-adj [-]n-adj

10

5

0

5

10

Po
la

rit
y

Sc
or

e

(c) MVM-L
p-adj [-]p-adj n-adj [-]n-adj

10

5

0

5

10

Po
la

rit
y

Sc
or

e

(d) MVMA-L

Figure 4: Distribution of polarity scores for adjectives
and their negation bigrams. p-adj and n-adj refer to the
positive and negative adjectives respectively. [-] refers
to the negation operation (prepending the word “not”).
Circles refer to outliers.

0 10 20 30 40 50 60 70
Word Index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Po
la

rit
y

Sc
or

e

original
negation
intensification

(a) GRUcontext, positive adjectives

0 10 20 30 40
Word Index

4

3

2

1

0

1

Po
la

rit
y

Sc
or

e

original
negation
intensification

(b) GRUcontext, negative adjectives
Figure 5: Context polarity scores for positive adjec-
tives (a) and negative adjectives (b) along with their cor-
responding negation and intensification bigrams from
SST-5.

over, the MVMA-G model can also capture the
negation and intensification phenomena on SST-5
as shown in Figure 5. The intensification token
will generally strengthen the polarity of an adjec-
tive while the negation token will generally weaken
the polarity of it.

We also visualized the polarity score of each n-
gram within a sentence. Two examples are shown
in Figures 6a and 6b, where a warmer color indi-
cates a higher polarity score (i.e., the n-gram is
more positive). For example, “never” itself has
a remarkably negative polarity score while “loses”
has a remarkably positive one. Consequently, the n-
grams starting from “never” (while ending with an-
other word) generally have positive polarity scores.

1636

https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset

hardly the
most

original
fantasy film ever

made

hardly

the

most

original

fantasy

film

ever

made

15

10

5

0

5

(a)

never
loses its

ability to
shock and

amaze .

never

loses

its

ability

to

shock

and

amaze

.

12

8

4

0

4

8

(b)
Figure 6: Polarity scores for n-gram representations
within two example sentences. SST-2, MVMA-G.

Such visualization results show that our identified
representations defined over the linguistic units as
captured by RNNs can be highly interpretable.

B.2 First-order Approximation
To examine how well the recurrence relation in
Equation 7 can approximate the standard RNNs,
we followed the method in the work of Mah-
eswaranathan and Sussillo (2020) and compared
the hidden state of the standard RNNs (ht =
RNN(xt,ht−1)) at each time step to the corre-
sponding context representations (ĥt = g(xt) +
A(xt)ht−1). The error at each time step is defined
as

||ht − ĥt||2/||ht||2. (15)

We used the current standard hidden state to predict
the next hidden state and the context representa-
tions on the SST-2 test set.

We noticed that the weight decaying coefficient
has a remarkable impact on the error. Specifically, a
larger coefficient can result in smaller errors. When
the coefficient is 1e−5, the average errors on the El-
man, GRU, and LSTM models were 26.2%, 21.7%
and 46.6% and respectively. When the coefficient
is 3e− 4 the the average errors dropped to 17.1%,
15.1%, and 33.3% respectively. Note that since
this is the single step error, the accumulated errors
across many times steps can be large, particularly
for LSTM, and thus the first-order approximation
cannot fully replace standard RNNs. Despite this,

class 1
class 2
class 3
class 4

(a) MVMA-G

class 1
class 2
class 3
class 4

(b) MVM-G
Figure 7: (a) and (b): T-sne visualization of the context
representation for phrases (<30 tokens) from the AG-
news dataset with four topics.

the resulting context and n-gram representations
can help us understand how RNNs process contex-
tual information such as n-gram features.

C T-sne Visualization

We visualized the context representations from the
MVMA-G model using t-sne (van der Maaten and
Hinton, 2008), which provides us with an intuitive
understanding on the efficacy of our identified rep-
resentations. We automatically extracted 2,188
phrases with less than 30 tokens from AG-news
with 4 topics17 and projected their context repre-
sentations to a two-dimension space. Figures 7a
and 7b show there exist four major clusters corre-
sponding to the four topics, indicating those repre-
sentations can generally learn the topic information
and explain the differences. Similar to the previous
analysis, the MVM-G model is able to learn the
topic information with the n-gram representations.

D Results on Transformer

We have also run the Transformer model on the
sentiment analysis datasets and the results are listed
in Table 8.

17Although SST-5 has 5 lables, most of its phrases are
neutral, we therefore did not use this dataset for visualization.

1637

SST-2 AG-news IMDB

dev test dev test dev test
83.4±0.4 82.0±0.1 90.9±0.5 90.5±0.4 88.4±0.2 88.1±0.2

Table 8: Accuracy on sentiment analysis tasks. Trans-
former

E Implementation Details

E.1 Sentiment Analysis

Settings For the SST-2, AG-news, and IMDB
datasets, we used the cross-entropy as the loss
function to train the models. Embeddings were
randomly initialized and trainable during training.
For the SST-5 dataset, we treated the classification
as a regression problem as the labels are polarity
intensity. The mean-squared error was used as the
loss function during training. Note that we initial-
ized embeddings with pre-trained GloVe (Penning-
ton et al., 2014) and fixed them during training on
SST-5 for the analysis of both the negation and
intensification phenomena.

Furthermore, for the MM model, each token was
represented as a matrix and the matrix size was set
as 32×32. For the other models, the embedding
and hidden sizes were both set as 300.

Polarity Adjectives We automatically extracted
adjectives with polarity (examples shown in Table
9) from SST-2 in two steps. In the first step, follow-
ing the method of Sun and Lu (2020), we calculated
a frequency ratio for each token (in the vocabulary)
between the frequencies of the token seen in the
positive and negative instances respectively. If a
token has a frequency ratio either larger than 3 or
less than 1/3, it will be extracted as an positive to-
ken or an negative token. In the second step, we
used the textblob package 18 to detect positive and
negative adjectives from those positive tokens and
negative tokens respectively.

E.2 Relation Classification

Following the work of Gupta and Schütze (2018),
we examined the RNN, baseline, MVMA and
MVM models on SemEval 2010 Task 8 (Hendrickx
et al., 2010) which has 9 directed relationships and
an undirected other type. We used the final hidden
states of the standard RNNs (or context representa-
tions of the MVMA, MVM and baseline models) as
the instance representations for classification. The
cross-entropy loss was employed during training.

18https://textblob.readthedocs.io/en/dev/

E.3 Named Entity Recognition

At each time step, we concatenated the context
representations (or hidden states) from both di-
rections in a bidirectional model, fed them to a
projection layer and then to a linear CRF layer.
More details about the architecture can be referred
to the biLSTM-CRF model in the work of Lam-
ple et al. (2016). We also referred to the code
at https://github.com/allanj/pytorch_neural_crf for
the implementation of the linear CRF layer.

CoNLL-2003 contains four types of entities:
persons (PER), organizations (ORG), locations
(LOC) and miscellaneous names (MISC). The orig-
inal dataset was labeled with the BIO (Beginning-
Inside-Outside) format. For example, “United Arab
Emirates” are labeled as “B-LOC I-LOC I-LOC”.
We transform the tags into the IOBES format where
two prefixes “E-” and “S-” are added. Specifically,
“E-” is used to label the last token of an entity span.
The “S-” prefix is used for a single-token span. For
example, “United Arab Emirates” are labeled as
“B-LOC I-LOC E-LOC” in this format. There are
20 categories of tags in total including the starting,
ending and padding tags. We trained the models to
predict each entity.

The embedding size and hidden size were set to
300 and 200 respectively. The SGD optimizer was
used to learn parameters.

E.4 Language Modeling

The embedding size and hidden size were both 512
for PTB and Wiki2, and 256 and 512 respectively
for Wiki103. The cross-entropy loss was used dur-
ing training. For PTB and Wiki2, the output of
the final fully-connected layer was fed to a soft-
max function while the Adaptive softmax (Joulin
et al., 2017) was used for Wiki103 (because of its
large vocabulary size). We only considered the
word-level models. We trained each model for 50
epochs, chose the model which had the best perfor-
mance on the development set as the final model
and evaluated the final model on the test set.

F Jacobian matrix of LSTM

Unlike GRU and Elman RNN, LSTM has a mem-
ory cell apart from a hidden state. Here, we de-
scribe how to get their Jacobian matrices. An

1638

https://github.com/allanj/pytorch_neural_crf

Type Adjectives Size

Pos

outstanding, ecological, inventive, comfortable, nice, authentic, spontaneous, sympathetic, lovable,
unadulterated, controversial, suitable, grand, happy, enthusiastic, adventurous, successful, noble,
true, detailed, sophisticated, sensational, exotic, fantastic, remarkable, impressive, charismatic,
good, effective, rich, popular, unforgettable, famous, comical, energetic, ingenious, extraordinary, ...

73

Neg

bad, tedious, miserable, psychotic, didactic, inexplicable, feeble, sloppy, disastrous, stupid,
amateurish, false, cynical, farcical, terrible, unhappy, horrible, atrocious, idiotic, wrong, pathetic,
angry, uninspired, vicious, unfocused, unnecessary, artificial, troubled, questionable, arduous,
stereotypical, ...

47

Table 9: Examples of the extracted adjectives from the SST-2 dataset. “Pos” refers to positive adjectives and “Neg”
refers to negative adjectives.

LSTM cell can be written as

it = σ(Wiixt +Whiht−1),

ft = σ(Wifxt +Whfht−1),

ot = σ(Wioxt +Whoht−1), (16)
cmt = tanh(Wicxt +Whcht−1),

ct =ft ⊙ ct−1+it ⊙ cmt ,ht=ot ⊙ tanh(ct),

where it, ft, ot ∈ Rd are the input gate, forget gate
and output gate respectively. cmt ∈ Rd is the new
memory, and ct is the final memory.

Let us expand the memory state and hidden state
at time step t as

ct = gc(xt) +B(xt)ct−1

+D(xt)ht−1 + oc(ct−1,ht−1),

ht = gh(xt) + E(xt)ct−1

+ F (xt)ht−1 + oh(ct−1,ht−1),

(17)

where B, D, E and F ∈ Rd×d are all Jacobian
matrices. oc(ht−1) and oh(ht−1) are remainder
terms of the Taylor expansion.

We concatenate the memory state and hidden
state and view the concatenation as an “extended
hidden state”. The context representation for the
“extended hidden state” at time step t (assuming of
zero vectors as initial states) will be written as:

[
ĉt
ĥt

]
=

t∑

i=1

[
vc
i:t

vh
i:t

]
=

t∑

i=1

[
i+1∏

k=t

A(xk)

][
gc(xi)
gh(xi)

]
,

(18)
where ĉt and ĥt refer to the context representations
corresponding to the memory state and hidden state
respectively. gc, gh ∈ Rd, and A ∈ R2d×2d are all
functions of inputs. A(xk) contains many interac-
tion terms resulting from the gating mechanism,
which may result in a strong expressive power. As
the hidden state ht is commonly used for down-
stream tasks, we will only consider vh

i:t as the n-
gram representation on our tasks, and the context
representation will be

∑t
i=1 v

h
i:t.

1639

