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Abstract

Large language models (LLMs) have demon-
strated human-level performance on a vast spec-
trum of natural language tasks. However, it
is largely unexplored whether they can better
internalize knowledge from a structured data,
such as a knowledge graph, or from text. In this
work, we propose a method to infuse structured
knowledge into LLMs, by directly training TS
models on factual triples of knowledge graphs
(KGs). We show that models pre-trained on
Wikidata KG with our method outperform the
T5 baselines on FreebaseQA and WikiHop, as
well as the Wikidata-answerable subset of Triv-
1aQA and NaturalQuestions. The models pre-
trained on factual triples compare competitively
with the ones on natural language sentences
that contain the same knowledge. Trained on
a smaller size KG, WikiMovies, we saw 3 X
improvement of exact match score on MetaQA
task compared to TS baseline. The proposed
method has an advantage that no alignment be-
tween the knowledge graph and text corpus is
required in curating training data. This makes
our method particularly useful when working
with industry-scale knowledge graphs.

1 Introduction

Large pre-trained language models, such as BERT
(Devlin et al., 2019), GPT-3 (Brown et al., 2020),
T5 (Raffel et al., 2019), REALM (Guu et al., 2020)
and ERNIE (Sun et al., 2021) have become the
state-of-the-art technology for many tasks. They
are commonly pre-trained using unstructured text
corpora, on tasks such as next word prediction,
next sentence prediction (NSP) or masked lan-
guage modelling (MLM). Especially for TS, self-
supervised learning on unlabelled text corpus with
MLM has been a common pre-training recipe
(Roberts et al., 2020). This is normally followed
by a fine-tuning step on the task of interest (Ruder
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et al., 2019), although large language models have
also proved useful without this task-specific fine-
tuning (Brown et al., 2020).

Beyond the capacity of contextual understand-
ing, human-level language understanding pivots on
the knowledge about the world. The world knowl-
edge is often expressed as factual triples (c.f. Ji
et al., 2020), in the form of (subject entity, relation,
object entity). A knowledge graph (KG) defined by
a set of factual triples consists of the subjects and
objects as vertices/nodes, and the relations form-
ing the edges connecting them. Most of the large
scale KGs (e.g. Wikidata, Vrandeci¢ and Krotzsch,
2014) are stored in triple format.

LLMs demonstrate some capacity of learning
world knowledge from the natural text corpus
(Roberts et al., 2020), but it is unclear to what
degree they are also able to learn and memorize
new knowledge directly from structured KG triples,
or from text describing them explicitly.

In order to infuse knowledge into a LLM, one
option is to generate a textual version of the knowl-
edge base, and apply the standard training objec-
tives, e.g. MLM. This is unfortunately highly non-
trivial. One can either align sentences with KG
triples, as done in ERNIE (Sun et al., 2021), or
generate sentences from triples, as done in KELM
(Agarwal et al., 2021). These approaches are un-
fortunately hard to port to knowledge graphs with
different schemas. These processes are also lossy
in that not every triple can be aligned or produce
a valid sentence, and there is not a good under-
standing whether this can introduce unnecessary
selection biases on top of biases existing in the
original KG.

In this work, we propose a method of Knowl-
edge Infusion for Large Language Models
(SKILL), where LLMs directly learns from knowl-
edge triples. Experiment results shows the check-
points trained with proposed method on Wikidata
KG outperform the TS5 baselines on four standard
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closed-book question-answering (QA) tasks. With
a smaller KG, WikiMovies, the proposed method
gain 3x exact match score performance improve-
ment on MetaQA task. The models learning di-
rectly from knowledge triples performs competi-
tively with the ones with the aligned natural sen-
tences that contain the same amount of knowledge.
Being able to learn directly from knowledge triples
enables easy addition of structured knowledge into
language modeling pre-training.

2 Related work

Previous works that use knowledge graphs to en-
hance the quality of knowledge-intensive down-
stream tasks can be divided into two groups: using
knowledge graphs at the inference time, and in-
fusing knowledge into the model weights at the
pre-training time. The proposed method falls in the
latter group.

Explicit usage of knowledge graphs. A
retrieval-augmented model is commonly used,
in order to retrieve and apply the knowledge
from external memories or sources. FILM (Verga
et al., 2021) and EaE (Févry et al., 2020) extend
Transformer (Vaswani et al., 2017) models with
external entity (both FILM and EaE) and fact
(FILM) memories. REALM (Guu et al., 2020)
is pre-trained to perform reasoning over a large
textual knowledge corpus on-the-fly during infer-
ence. UniK-QA (Oguz et al., 2020) combines the
structured and unstructured information to improve
the open-domain QA tasks with a retriever-reader
framework. The main difference between the
proposed method, SKILL, and retrieval-augmented
models is that SKILL doesn’t introduce retrieval
system or external memories to the model, but
it directly embeds knowledge into the model
parameters, which introduces no extra cost at
inference time.

Knowledge infusion. A common way of param-
eterized knowledge infusion is to map or convert
structured knowledges into natural language text.
ERNIE 3.0 (Sun et al., 2021) trains a knowledge-
enhanced model on a corpus combining triples and
their aligned sentences, by randomly masking re-
lation in a triple or words in a sentence. On the
contrary, SKILL trains only on triples.

KnowBert (Peters et al., 2019) incorporates
knowledge from Wikipedia and WordNet (Miller,
1995) into a BERT model through entity

embeddings with knowledge-attention and re-
contextualization mechanism. BERT-MK (He et al.,
2020) is a BERT-based model that integrates graph
contextual knowledge of a medical KG, which
demonstrates the utility of graph-level knowledge.
These approaches requires entity linking and sen-
tences contextualizing the knowledge graph infor-
mation.

KG-FiD (Yu et al., 2021) extends the Fusion-in-
Decoder model (Izacard and Grave, 2021) with a
module that filters and re-ranks passages based on
structural connections in knowledge graph between
entities described in those passages. In contrast to
the SKILL method that we propose, it requires
the existence of natural text passages describing
each knowledge graph entity, so Wikipedia corpus
was used since it naturally provides articles that
describe entities.

Heinzerling and Inui (2021) explored the ability
of language models to memorize and understand
information from knowledge graphs, but used nat-
ural language representation of triples based on
predefined templates instead of structured represen-
tation. Usage of predefined templates significantly
limits scalability and therefore only relatively small
knowledge graphs were used, such as Google-RE'.

In contrast to the new method presented in this
paper, all of these approaches require an explicit
mapping between the knowledge graph entities
or facts and corresponding natural language sen-
tences, which can limit applications to industry-
scale knowledge graphs that don’t have such a map-

ping.

Different goals of using knowledge graphs. Be-
sides that, some papers embed knowledge into
model weights but pursue different goals rather
than improving performance on downstream tasks.
COMET (Bosselut et al., 2019) is most similar to
our work and trains a commonsense-aware Trans-
former Language Model by learning to generate
loosely structured commonsense descriptions in the
natural language given the structured knowledge.
Similar to us, it also uses KG triples in surface
form as a source for training data, but in contrast
to our research, the final goal of COMET is to gen-
erate new knowledge instead of utilizing existing
ones. Another important difference is the scale:
COMET uses Atomic (Sap et al., 2019) and Con-
ceptNet (Speer et al., 2017) Knowledge Graphs

"https://ai.googleblog.com/2013/04/50000-lessons-on-
how-to-read-relation.html
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that are much smaller than Wikidata (Vrandecic
and Krotzsch, 2014).

KELM (Agarwal et al., 2021) fine-tunes a TS
model to convert KGs to synthetic natural language
sentences to augment existing pre-training corpora.
We build our research on top of it and use the
KELM dataset to compare structured and natural
language representations of knowledge.

3 Method

There are two components of knowledge infusion
for LLMs (SKILL): the corpus and the training
method. We introduce the method based on Wiki-
data KG, but it can be applied to any other KGs.

Training corpus. We use two corpora with dif-
ferent knowledge representations: Wikidata KG
(Vrandeci¢ and Krotzsch, 2014) in triple format,
and KELM corpus® (Agarwal et al., 2021) as
synthetic natural language sentences converted
from Wikidata KG. The KELM corpus contains
15,628,486 synthetic sentences. To ensure two
corpora share the same knowledge, we take the
snapshot of the Wikidata KG used to created the
KELM corpus, which contains 35, 697, 715 triples.

To prevent the degradation of model perfor-
mance on natural language understanding, we mix
the Wikidata corpus or KELM corpus with natural
text from C4 (Raffel et al., 2019), 50 : 50, for the
knowledge infusion training data.

Training method. T5 (Raffel et al., 2019) was
trained through masked-language modelling with
random span corruption on the C4 corpus. Roberts
et al. (2020) found that masking salient terms (Guu
et al., 2020) in pre-training TS5 models, instead of
masking random token spans, could significantly
improve the performance on downstream tasks, e.g.
closed-book QA.

We apply salient span masking for unsupervised
learning in our knowledge-infusing training. To
mask the same amount of information is for both
corpora, the following method is applied. For a
knowledge triple, we mask either the subject or
object entity. For a KELM sentence, we identify
the aligned triple, with details in Appendix A, and
mask the full spans corresponding to the subject
or object in the triple. The relation tokens are
never masked, as there is no robust way to map
the abstract relation in knowledge triples to natural

*Data is available at https://github.com/google-research-
datasets/KELM-corpus

language tokens in KELM sentences. Examples of
the inputs for both corpora are in Table 1.

4 Experiments

We assess SKILL by training and evaluating the
knowledge infused models on closed-book QA
tasks, where questions are provided without sup-
porting context and external knowledge.

4.1 Experiment Setup

SKILL pre-training. We apply SKILL on three
T5.1.1 pre-trained checkpoints3, base, large, and
XXL, with sizes of ~ 250M, ~ 800M and ~ 11B
parameters, respectively. For T5.1.1-base and -
large, SKILL training is performed for 500K steps
with batch size 1024, which translates to ~ 7.17
epochs on Wikidata KG and ~ 16.38 epochs in
KELM sentences. For T5.1.1-XXL, the model is
trained for 100K steps to finish training in a feasible
time.

As baseline we use pre-trained TS5 checkpoints
of the same size. To make sure that improvements
come from knowledge infusion instead of from
longer C4 pre-training, we use a second baseline by
further training the T5 checkpoints on C4 for half
of the aforementioned steps, to match the amount
of C4 pre-training used in SKILL.

All the model variations are optimized by
AdaFactor (Shazeer and Stern, 2018) with 1073
learning rate and 0.1 dropout rate, the same set-
tings that were used for TS.

Fine-tuning on closed-book QA tasks. We
evaluate the checkpoints by fine-tuning on the
following QA benchmarks: FreebaseQA (Jiang
et al., 2019), WikiHop (Welbl et al., 2018), Triv-
1aQA (Joshi et al., 2017) and NaturalQuestions
(Kwiatkowski et al., 2019), with the aforemen-
tioned hyper-parameters for optimization and 128
batch size. For the benchmarks without a zest split,
we use the dev split for test, and the last 10% of
train as dev split.

The Exact Match (EM) scores on the test sets
are calculated after being fine-tuned for 50K steps
for T5.1.1-base and -large models, and 10K steps
for -XXL models. All models converged with no
noticeable over-fitting according to the EM scores
on validation sets.

Wikidata-answerable QA. We found that the
majority of the questions in FreebaseQA and Wiki-

3https://goo.gle/t5-checkpoints
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Wikidata triple KELM sentence Wikidata input KELM input Target
("Pulp Fiction", Quentin Tarantino Pulp Fiction, Quentin Tarantino

"award received", won the Palme d’Or in 1994  award received, = won the [MASK] in 1994  Palme d’Or
"Palme d’Or") for Pulp Fiction. [MASK] for Pulp Fiction.

Table 1: Example inputs for SKILL pre-training with Wikidata and KELM corpora.

Model FreebaseQA WikiHop TQA-matched TQA NQ-matched NQ

dev test dev test dev test dev test dev test dev test
base 25.24  27.55 19.09 18.38 31.24 33.55 22.64 2293 36.64 32.68 25.04 25.48
base + C4 26.19 2833 19.57 1936 329 344 2454 2539 36.98 32.03 25.88 25.84
base + WikiKG  26.92 28.38 20.28 20.22 34.21 35.08 24.73 25.77 37.41 3333 2551 25.76
base + KELM 26.64 28.15 20.62 19.81 33.64 35.54 25.22 25.75 36.98 329 2531 26.2
large 30.22  32.88 20.92 21.12 36.7 38.09 29.24 30.03 39.22 35.06 27.12 27.15
large + C4 3255 34.01 22,5 21.51 38.78 40.6 30.32 30.83 39.74 355 2746 28.17
large + WikiKG  33.22 35.29 235 234 39.19 41.02 29.74 3047 41.12 3593 27.38 27.89
large + KELM 32.65 34.16 23.34 2291 39.45 40.76 30.51 30.65 40.95 355 27.67 28.56
XXL 43.67 45.02 24.76  24.8 51.73  53.1 4244 4221 46.47 43.72 31 32.27
XXL + C4 42.01 44.14 23.34 2223 50.59 52.19 40.66 40.99 45.43 40.26 30.35 31.08
XXL + WikiKG  45.22 47.25 27.57 27.65 54.17 54.18 4255 43.54 49.14 44.37 31.11 32.74
XXL +KELM  45.42 459 26.11 26.26 53.65 54.21 42.68 4295 4853 44.16 31.79 32.6

Table 2: Exact match scores achieved by fine-tuning the checkpoints on closed-book QA tasks. base, large,
XXL represent the corresponding T5.1.1-* checkpoints. x—C4 are the checkpoints additionally trained on C4 corpus
as discussed in Section 3. x-WikiKG and *—-KELM are the checkpoints trained on Wikidata KG triple corpus and
KELM sentence corpus. The best performed checkpoints are in bold. Details about datasets are in Appendix B.

Hop can be answered directly from triples in Wiki-
data. This is because FreebaseQA was created by
matching question-answer pairs with triples in Free-
base (Bollacker et al., 2008), most of which was
imported into Wikidata (Vrandeci¢ and Krotzsch,
2014). For WikiHop, the questions were generated
from Wikidata triples.

However, TriviaQA and NaturalQuestions were
created independently of Wikidata, and not every
question can be answered using this knowledge
base. We found frequent freshness issues, e.g. the
golden answer for question "Who is the largest
supermarket chain in the UK?" is "Aldi", while
today it would be "Tesco". Some other questions
can not be answered by WikiData, e.g. "Who, dur-
ing a radio microphone test in 1984 said, ’I just
signed legislation which outlaws Russia forever.
The bombing begins in five minutes?’", with the
golden answer "Ronald Reagan".

To mitigate this, we created subsets of TriviaQA
(TQA) and NaturalQuestions (NQ) that were some-
what more likely to have answers in Wikidata. We
selected all the items for which there exist a triple in
Wikidata that has the answer either as subject or ob-
ject, and the other entity in the triple is mentioned
in the question. We match the entities by entity
name, case-insensitive. We name the Wikidata-
aligned version of TQA and NQ as TQA-matched
and NQ-matched, respectively. The dataset sizes

of all QA tasks are summarized in Appendix B.

4.2 Results

The results for closed-book QA tasks are sum-
marized in Table 2. SKILL pre-trained models
show improvements on FreebaseQA, WikiHop, and
Wikidata-answerable versions of TriviaQA and Nat-
uralQuestions, but no significant improvement on
original TriviaQA and NaturalQuestions. As dis-
cussed in previous section, we believe this is due
to the misalignment between the datasets and Wiki-
data.

Models pre-trained on Wikidata KG gives com-
petitive results with ones on KELM sentences. It
shows that the triple representation is as good as
natural language representation, while being much
easier to scale up for larger KG.

For T5.1.1-base and -large, additional pre-
training on C4 boosts performance in comparison
to the original baseline. For T5.1.1-XXL, this addi-
tional pre-training leads to a performance regress.
In (Raffel et al., 2019), it is mentioned that training
on C4 for multiple times may reduce the perfor-
mance of a T5 model.

Impact of model size. As shown in Figure 1,
SKILL pre-training introduces bigger improve-
ments when applied on larger models. With more
than 35M triples in Wikidata KG, it is harder for

1584



== FreebaseQA
WikiHop

41 =@= TQA-matched

=®= NQ-matched

base large XXL
Model size

Figure 1: Performance improvements on closed-book
QA tasks for different model sizes. The improvements
are measured by the difference of exact match score
(AEM) between knowledge-infused model trained with
Wikidata triples and the baseline trained with C4 corpus.

Dataset Split Baseline +C4 +KG
I-hop dev 24.3 23.12  71.52
test 24.5 23.53 71.47
2-hop dev 32.05 32.23 3349
test 32.65 32.78 33.57
3-hop dev 42.08 39.22  43.79
test 42.31 39.66 43.41

Table 3: Exact match scores achieved by fine-tuning
different T5.1.1-large checkpoints on MetaQA task.

smaller size models, e.g. T5.1.1.-base with 300M
parameters, to memorize them efficiently. We view
this as an encouraging result, suggesting that as
model size grows, gains from SKILL pre-training
may increase further.

Performance on a smaller KG. The Wiki-
Movies KG (Miller et al., 2016) contains 134, 741
triples. T5.1.1-large should have enough parame-
ters to memorize the KG. We train a T5.1.1-large
model on the KG for 100K steps, ~ 380 epochs,
with the same hyperparameters as for Wikidata KG.
We evaluate the checkpoints with MetaQA (Zhang
et al., 2018) benchmark that was constructed over
WikiMovies KG. The benchmark contains 3 dif-
ferent sub-tasks: 1-hop QA (e.g. "What films
does Paresh Rawal appear in?"), 2-hop QA (e.g.
"Who are the directors of the films written by Laura
Kerr?"), 3-hop QA (e.g. "Who directed the movies
written by the writer of Millennium Actress?").

The results in Table 3 demonstrate the effective-
ness of SKILL pre-training, when it’s possible to
memorize the whole knowledge graph.

As 1-hop questions are supported by single
triples in the WikiMovies KG, a 3x improvement
on EM score is observed for the sub-task. In or-
der to answer 2/3-hop questions it is not enough to
memorize the triples, the model needs to be able

to reason with them. This requires a better un-
derstanding of the graph structure. Training with
single triples may not be enough, and the observed
improvement is notably smaller. The performance
could be further improved by representing more
explicitly the graph structure in the training data,
which we leave for future work.

5 Conclusion

We proposed a method to directly infuse knowledge
from knowledge graphs into T5 models through
pre-training. Empirical results show that TS5 can
learn directly from structured data and apply the
learned knowledge to improve closed-book QA
results. We also demonstrated that the models
pre-trained on factual triples perform competitively
with the ones on natural language sentences that
contain the same knowledge. By enabling knowl-
edge infusion directly from triples, this method can
be very easily applied to industry-scale KGs.

6 Ethical and Broader Impact

In this work, we are introducing a new method
to pre-train a well known natural language under-
standing model, TS5, on the full corpora of public
knowledge graphs. To the best of our knowledge,
the method will not introduce extra bias to either
the model or the dataset beyond the one potentially
inherited from Wikidata (Vrandeci¢ and Kro6tzsch,
2014) and WikiMovies (Miller et al., 2016) knowl-
edge graphs. On the other hand, through knowl-
edge fusion pre-training introduced in this work,
a language model will be able to learn factual
information to improve the quality of parameter-
ized knowledge embedded in the model, which is
demonstrated by improvements on various closed-
book question-answering tasks. The proposed
method and recipe will provide positive impact
to the natural language processing community and
help to improve the factualness in pre-trained large
language model checkpoints.

Limitations. A factual triple is the basic ingredi-
ent of a knowledge graph. However, as a seman-
tic network, the graph structure of a knowledge
graph describes how the factual triples are con-
nected. This information is not easy to directly
represent by random set of triples. We leave the ex-
ploration of how to infuse the information implied
by the graph structure for future work. We expect
that this will further improve the results, especially
for multi-hop question-answering tasks.

1585



References Bin He, Di Zhou, Jinghui Xiao, Xin Jiang, Qun Liu,

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami
Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554-3565, Online. As-
sociation for Computational Linguistics.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD 08, page 1247-1250, New York,
NY, USA. Association for Computing Machinery.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762—4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-

Nicholas Jing Yuan, and Tong Xu. 2020. BERT-MK:
Integrating graph contextualized knowledge into pre-
trained language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 2281-2290, Online. Association for Computa-
tional Linguistics.

Benjamin Heinzerling and Kentaro Inui. 2021. Lan-

guage models as knowledge bases: On entity repre-
sentations, storage capacity, and paraphrased queries.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1772-1791, Online.
Association for Computational Linguistics.

Gautier Izacard and Edouard Grave. 2021. Leveraging

passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874-880, Online. Association for Computa-
tional Linguistics.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-

nen, and Philip S. Yu. 2020. A survey on knowledge
graphs: Representation, acquisition and applications.
CoRR, abs/2002.00388.

Kelvin Jiang, Dekun Wu, and Hui Jiang. 2019. Free-

baseQA: A new factoid QA data set matching trivia-
style question-answer pairs with Freebase. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 318-323, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke

Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

nologies, Volume 1 (Long and Short Papers), pages ~ 1om Kwiatkowski, Jennimaria Palomaki, Olivia Red-

41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGer-
ald, Eunsol Choi, and Tom Kwiatkowski. 2020. En-
tities as experts: Sparse memory access with entity
supervision. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4937-4951, Online. Association

field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

for Computational Linguistics. Alexander Miller, Adam Fisch, Jesse Dodge, Amir-

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International Con-
ference on Machine Learning, pages 3929-3938.
PMLR.

1586

Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1400-1409, Austin, Texas. Associ-
ation for Computational Linguistics.


https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.400
https://doi.org/10.18653/v1/2020.emnlp-main.400
https://doi.org/10.18653/v1/2020.emnlp-main.400
https://doi.org/10.18653/v1/2020.findings-emnlp.207
https://doi.org/10.18653/v1/2020.findings-emnlp.207
https://doi.org/10.18653/v1/2020.findings-emnlp.207
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
http://arxiv.org/abs/2002.00388
http://arxiv.org/abs/2002.00388
https://doi.org/10.18653/v1/N19-1028
https://doi.org/10.18653/v1/N19-1028
https://doi.org/10.18653/v1/N19-1028
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39-41.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2020.
UniK-QA: Unified representations of structured and
unstructured knowledge for open-domain question
answering. arXiv preprint arXiv:2012.14610.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 43-54, Hong Kong, China. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418-5426,
Online. Association for Computational Linguistics.

Sebastian Ruder, Matthew E. Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Transfer
learning in natural language processing. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational
Linguistics: Tutorials, pages 15-18, Minneapo-
lis, Minnesota. Association for Computational
Linguistics.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
CoRR, abs/1804.04235.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Thirty-first AAAI conference on
artificial intelligence.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen,
Yanbin Zhao, Yuxiang Lu, et al. 2021. Ernie 3.0:
Large-scale knowledge enhanced pre-training for lan-
guage understanding and generation. arXiv preprint
arXiv:2107.02137.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Pat Verga, Haitian Sun, Livio Baldini Soares, and
William Cohen. 2021. Adaptable and interpretable
neural MemoryOver symbolic knowledge. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3678-3691, Online. Association for Computational
Linguistics.

Denny Vrandeci¢ and Markus Krétzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78-85.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel.
2018. Constructing datasets for multi-hop reading
comprehension across documents. Transactions of
the Association for Computational Linguistics, 6:287—
302.

Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao
Yu, Shuohang Wang, Yichong Xu, Xiang Ren, Yim-
ing Yang, and Michael Zeng. 2021. Kg-fid: In-
fusing knowledge graph in fusion-in-decoder for
open-domain question answering. arXiv preprint
arXiv:2110.04330.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
AAAL

A Matching of entities in KELM
sentences

To find Wikidata KG entities in corresponding
KELM sentences, we use Algorithm 1. Additional
cycle on line 22 is needed because some entities
have an information in brackets that should not
be in a sentence, for example John Doe (born
1990). This algorithm matched at least one en-
tity to 15, 383, 248 out of 15, 628, 486 KELM sen-
tences.

We don’t try to match relation part of triples,
because it could be represented in many different
forms. For example, the triple (Pulp Fiction,
cast member, John Travolta) could
be represented as "John Travolta was
an actor in Pulp Fiction", "John
Travolta starred in Pulp Fiction",
"John Travolta played Vincent
Vega in Pulp Fiction", etc., and there is
no way to robustly align a relation to all possible
surface forms.
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Algorithm 1 KELM-Wikidata matching algorithm
that finds spans in KELM sentences corresponding
to Wikidata KG entities. ¢ C b means that ¢ is a
substring of b. * represents any string.
1. KELMpatched < 0

2: for each k € K E LM sentences do
3 for each t € triples(k) do

4 for each e € entities(t) do
5: ep < PREPROCESS(e)
6
7
8
9

k, < PREPROCESS(k)
spans <— MATCHENTITY (e, kp)
K ELMyatcheq-insert([k, spans))

end for
10: end for
11: end for
12:
13: function MATCHENTITY(e: entity, k: KELM
sentence)
14: spans < ()
15: for each s C k : date(e) = date(s) do
16: spans.insert(s)
17: end for
18: foreachds C k:e=sdo
19: spans.insert(s)
20: end for
21: if spans = () then
22: foreachds C k:e=s+" (¥)" do
23: spans.insert(s)
24: end for
25: end if
26: return spans
27: end function
28:
29: function PREPROCESS(str: string)
30: str <— Lowercase(str)
31: str < RemovePunctuation(str)
32: return str

33: end function

B Dataset

Wikidata (Vrandeci¢ and Krétzsch, 2014) was re-
leased under the Creative Commons CCO License.
KELM (Agarwal et al., 2021) was released under
the Creative Commons CC BY-SA 2.0 License.
NaturalQuestions (Kwiatkowski et al., 2019) and
WikiHop (Welbl et al., 2018) were released un-
der Creative Commons CC BY-SA 3.0 License.
MetaQA (Zhang et al., 2018) was released under
Creative Commons CC BY-ND 3.0 License. C4
(Raffel et al., 2019) and TriviaQA (Joshi et al.,
2017) were released under Apache-2.0 License.
WikiMovies (Miller et al., 2016) was released un-
der MIT License. FreebaseQA (Jiang et al., 2019)*
was released without a license.

train dev test
FreebaseQA 20, 358 3,994 3,996
WikiHop 39, 364 4,374 5,129
TQA 78,785 8,837 11,313
TQA-matched 20,948 2,289 3,064
NQ 79,168 8,757 3,610
NQ-matched 10,487 1,160 462
MetaQA-lhop 96,106 9,992 9,947
MetaQA-2hop 118,980 14,872 14,872
MetaQA-3hop 114,196 14,274 14,274

Table 4: Dataset sizes for the closed-book QA tasks.
TQA and NQ stands for TriviaQA and NaturalQuestions,
respectively. *-matched are the selected dataset with
the Wikidata KG answerable questions, and the KG
alignment details can be found in Section 4.1.

*nttps://github.com/kelvin-jiang/
FreebaseQA
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