Temporal Generalization for Spoken Language Understanding

Judith Gaspers, Anoop Kumar, Greg Ver Steeg, Aram Galstyan
Amazon Alexa Al

Abstract

Spoken Language Understanding (SLU) mod-
els in industry applications are usually trained
offline on historic data, but have to perform
well on incoming user requests after deploy-
ment. Since the application data is not avail-
able at training time, this is formally similar
to the domain generalization problem, where
domains correspond to different temporal seg-
ments of the data, and the goal is to build a
model that performs well on unseen domains,
e.g., upcoming data. In this paper, we explore
different strategies for achieving good tempo-
ral generalization, including instance weight-
ing, temporal fine-tuning, learning temporal
features and building a temporally-invariant
model. Our results on data of large-scale SLU
systems show that temporal information can
be leveraged to improve temporal generaliza-
tion for SLU models.

1 Introduction

Spoken Language Understanding (SLU) models
play an important role in voice-controlled devices,
such as Alexa or Google Home. Two common SLU
tasks are intent classification (IC) and slot filling
(SF). Given a user request, IC aims to extract the
user’s intent, while SF is a sequence labeling task
which assigns a slot label to each of the tokens. For
example, the user request “play volbeat” should be
classified as PlayMusic by the IC task, while SF
should assign the labels O and Artist to “play” and
“volbeat”, respectively. State-of-the-art approaches
typically model the two tasks jointly via DNNs (Do
and Gaspers, 2019; Chen et al., 2019).

In deployed industry SLU systems, new data con-
tinuously flows into the system, and the underlying
data distributions keep drifting over time. In this
paper, we focus on the setting of temporal covari-
ate drift, where the distribution of utterances may
change, but the correct label for an utterance or to-
ken remains fixed (i.e., no concept drift) (Scholkopf
et al., 2012). Such data drifts happen, for example,

37

because customer usage patterns change over time,
as new movies are being released or new artists
and songs become popular. Another cause of data
drifts are seasonal changes or changes related to
(re-)occurring events. For instance, the utterance
“will it snow tomorrow” is more likely to appear
during the winter than the summer season, and the
utterance “put on the Christmas lighting” is likely
uttered around Christmas.

To accommodate for temporal distributional
changes, industry SLU models are typically re-
trained and redeployed over time; in the follow-
ing sections, we also refer to this process as model
release, and we assume that model releases are ex-
ecuted at fixed time intervals, e.g., once per month.
We further assume that for each release, new la-
beled data become available, which were collected
since the previous release, yielding data belonging
to different time periods.

The common approach to utilize new data is to
simply combine them with all previously available
data, and subsequently split them into training, val-
idation, and test datasets. We can then build and
evaluate a model on these datasets, which we also
refer to as offline data in this paper. In industry ap-
plications, SLU models are subsequently deployed
to customers and have to perform well on incoming
customer requests, which we also refer to as online
data. Importantly, aiming to provide the best possi-
ble experience for our customers, our main goal is
building models which perform well on the online
rather than the offline data. Since the online data
are not available for model building and evaluation,
we need to utilize the offline data to build a model
which generalizes well to unseen online data from
the upcoming time period.

In this paper, we study this temporal general-
ization task assuming that data from several con-
secutive time periods, i.e., months in our case, are
available, and we aim to build a SLU model which
yields high performance on data from an upcoming

Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 37 - 44
July 10-15, 2022 ©2022 Association for Computational Linguistics

time period. We aim to improve performance over
the common approach of simply combining all of-
fline data, which ignores the temporal nature of
the data and implicitly assumes that data from all
time periods are equally useful for model training.
Instead, relating back to the previous examples, we
assume that modeling the temporal nature of the
data may be beneficial and that data from certain
time periods may be particularly valuable. For in-
stance, data from recent time periods may better
reflect upcoming trends, and w.r.t. seasonality pat-
terns, data from the same period in previous years
may be particularly valuable.

To tackle the task, we explore four directions:
i) instance weighting based on our assumptions
about the task, ii) temporal finetuning, iii) learning
temporal features and iv) building a temporally-
invariant model. We present extensive experiments
on real-world SLU data of German and Portuguese
voice-controlled devices. Our results indicate that
temporal information can be leveraged to improve
temporal generalization of SLU models. We also
show that simple temporal fine-tuning is not very
effective and in fact leads to performance drop in
certain cases.

2 Related Work

To the best of our knowledge, the temporal gen-
eralization scenario studied in this paper has not
yet been explored for SLU in the literature, which
may be due to the fact that common Academic SLU
datasets are rather small and do not have a temporal
notation. In general, work addressing the tempo-
ral nature of SLU datasets has been limited. Kim
et al. (2017) address temporal data drift by adapt-
ing from stale to current data with an adversarial
domain adaptation approach, treating the stale and
current dataset as source and target domain, respec-
tively. Contrasting with our work, they assume the
availability of data from the target and they focus
on two time periods only. Other work has explored
short-term temporal information, e.g., the utterance
context provided by a couple of prior utterances to
resolve ambiguities (Lin et al., 2021).

In NLP, previous research has explored the sig-
nificance of temporal drift for several tasks, such
as headline generation (Sggaard et al., 2021), sen-
timent analysis (Lukes and Sggaard, 2018) and
named entity recognition (NER) (Rijhwani and
Preotiuc-Pietro, 2020), providing evidence that
model performance drops when training data age

38

increases compared to the test data. However, de-
spite this evidence, the vast majority of NLP re-
search does not take the temporal nature of data
into account for evaluation (Lazaridou et al., 2021).

Lazaridou et al. (2021) show that (downstream
task) performance of pre-trained language models
suffers when performance is measured on future
data. Since (re-)training of larger language models
is costly, the authors propose to update model pa-
rameters by executing few steps of gradient decent
on new data. Other approaches to mitigate tem-
poral drift include predictive feature selection for
sentiment analysis (Lukes and Sggaard, 2018), and
selecting data based on frequent n-grams for NER
(Chen et al., 2021). The most similar to our work
is the study conducted by Rijhwani and Preotiuc-
Pietro (2020) who tackle temporal drift for a small-
scale NER task, i.e., including only 3 named enti-
ties. They consider data from several consecutive
years and aim to build a model which performs well
on data of the following year, focusing — in line
with the previously described work — on the effects
of data receny. The best performance is achieved
by using instance weighting of recent data and tem-
poral finetuning for a Bi-LSTM-CRF with Flair
and GloVe embeddings, respectively. By contrast,
we study temporal generalization in the context of
a large-scale SLU production system covering a
large numbers of labels. We focus on smaller time
periods, i.e., spanning one month instead of a year,
and we consider cyclic/seasonal changes in addi-
tion to data recency. For this purpose, we include
methods which have not yet been explored in tem-
poral generalization tasks, such as building models
that leverage temporally-invariant representations.

3 Method

Given labeled SLU data from several consecutive
time periods, our goal is to build a model which
generalizes well to unseen data from an upcoming
time period. In the following, we first provide a
formal definition for our tasks and subsequently
present the modeling approaches.

3.1 Learning scenario

We assume that labeled data are available, which
span N consecutive time periods, i.e., D =
[Dl, c. 7l)]\[] with D; € D = {(.%'i’j,yaj)}‘ljD:ill,
where x; j, , ..., x;j, is an utterance with n tokens
which was observed during time period D;. For the
SF task, a slot label is available for each token in

x; j, and y; ; is a sentence-level intent label for the
IC task. In this work, each D; € D comprises data
of one month.

The goal is to build a model using
[D1,...,Dn—1] which generalizes well to
the unseen data Dy. [D1, ..., Dn_1] corresponds
to the offline data in a release scenario, while Dy
corresponds to the online data.

Note that this learning scenario corresponds to
the task of domain generalization (DG) (Wang
et al., 2021) when considering the time periods
as individual domains. In DG, one aims to build a
model given several different but related domains
(datasets) which works well on data of a new (un-
seen) domain during testing. However, in work
addressing DG, typically the domains under consid-
eration are more distant than the datasets of differ-
ent time periods in our scenario, which are in fact
drawn from the same overall source (domain), and
contrasting with our scenario, the domain datasets
in DG usually do not have a natural order.

Note further that DG differs from domain adap-
tation (DA) in that DA assumes the availability of
some (unlabeled) data of the target domain, which
can be utilized for adaptation.

3.2 Basic SLU model

Our basic SLU model is a common state-of-the-art
SLU architecture for joint intent classification and
slot filling. It is comprised of a BERT encoder,
an intent decoder and a slot decoder. The BERT
encoder’s outputs at sentence and token level are
used as inputs for the intent and slot decoders, re-
spectively. The intent decoder is a standard feed-
forward network including two standard dense lay-
ers and a softmax layer on top. The slot decoder
uses a CRF layer on top of two dense layers to
leverage the sequential information of slot labels.
As loss we use a weighted sum of the loss of IC L;
and the loss of SF L, i.e.

L=)\sz + ASL& (D
where \; and A\ are weights. We use cross-entropy
and CRF loss for IC and SF, respectively.

3.3 Instance weighting

Instance weighting assigns a weight to each train-
ing data instance. In a DA task, a weight may be
selected such that it reflects the instance’s similar-
ity to the target (Jiang and Zhai, 2007). However,
since we do not assume the availability of data

39

from the target time period, we cannot compute
such similarity scores. Instead, we simply weight
instances based on our assumptions about the task.

We assume that recent data, i.e., data from the pe-
riod prior to the target period, may be particularly
valuable, because this period may better reflect
recent and upcoming trends, Moreover, instance
weighting of data from a recent year has already
been shown to improve performance on data of a fu-
ture year for a small-scale NER task (Rijhwani and
Preotiuc-Pietro, 2020). On the other hand, with
respect to seasonal changes, data from the same
period in previous years could also be of particu-
lar value. Thus, taken together, we explore three
instance weighting strategies based on recency, sea-
sonality, and combination of both:

1. Reweight each data instance in the period

prior to the target period by a weight w > 1

(i.e., reweight Dy _1),

Reweight each data instance from the same

calendar month as the target data by w > 1,

. Reweight all instances from either the same
calendar month as the target data or from the
period prior to the target data by w > 1.

Given an utterance and a corresponding weight, we
weight the losses of both IC and SF.

The described instance weighting techniques do
not require any temporal information during the
application phase and no architectural changes.

3.4 Temporal finetuning

We explore temporal finetuning, as it has been
previously shown to improve performance on
other temporal tasks. In particular, Rijhwani and
Preotiuc-Pietro (2020) 1) trained Bi-LSTM-CRF
models for a small-scale NER task on data from
several years, and ii) fine-tuned these models on
data of the most recent year, yielding improved per-
formance over the initial models when evaluated
on data of a future year. Similarly, we first train a
model on all offline data, i.e.,on D1 U...UDpy_1,
and subsequently we finetune it on data of the most
recent offline time period, i.e., on Dy _1 A

'We do not explore sequential temporal finetuning, i.e.,
first train on D1, then on D3, etc. This approach degraded per-
formance on the small-scale NER task explored by Rijhwani
and Preotiuc-Pietro (2020), and we expect it to not perform
well for our task either, as it corresponds to a life-long learn-
ing scenario in which catastrophic forgetting of previously
acquired knowledge is a known issue.

BERT
Encoder

Subword
embedding [>

Position
embedding

Play Christmas songs [y

BN

Month
decoder

——» SFdecoder |Ls DyPlay| O Christmas | Genre Songs | Media
L .
—» IC decoder | ‘r)PlayMusic

L
tty December

Figure 1: SLU architecture for joint IC and SF with an auxiliary task for predicting the month of an input utterance.
While the model is trained by alternating across tasks, during inference only the SF and IC decoders are used.

This technique does not require any temporal
information during the application phase and no
architectural changes.

3.5 Learning temporal features

We hypothesize that learning temporal features
could be beneficial for our SLU task and therefore
aim to build a temporally-aware model. For this
purpose, we explore two established techniques
for injecting auxiliary information, i.e., i) via ad-
ditional input features, and ii) via an auxiliary
task. The training of an auxiliary prediction task
to improve embeddings is sometimes called self-
supervised learning, and has also been shown to im-
prove generalization in vision tasks (Albuquerque
et al., 2020).

3.5.1 Using additional input features

We define a special token for each month, e.g.,
“[JAN]”, ... “[DEC]”. For each utterance, informa-
tion about the month in which it was observed is
added before model training and inference using
the corresponding special token. E.g., “[DEC] play
Christmas songs” indicates that the utterance “play
Christmas songs” was observed in December.

While this technique does not require any archi-
tectural changes, temporal information is needed
during the application phase, which, however,
should be easily accessible in most cases.

3.5.2 Using an auxiliary task

We extend the basic SLU model described in sec-
tion 3.2 by an auxiliary task which predicts the
month given an utterance. Specifically, we apply a
multi-task model which is comprised of a joint IC
and SF task and an additional classification task;
the overall architecture is illustrated in Fig. 1. The
auxiliary task decoder is a standard feed-forward
network comprising two standard dense layers and
a softmax layer on top. We optimize the model by
alternating across the two subtasks (joint SF and
IC vs month prediction), and we use a combined

40

loss

L =MNL;+ AsLs+ MLy 2)

where L;, L; and L; are the losses of the IC, SF
and month prediction tasks, respectively, and A;,
As and \; are weights. We use cross-entropy loss
for the IC and month prediction tasks and CRF loss
for the SF task.

For inference, we apply only the joint SF and IC
task, and temporal information is not required dur-
ing the application phase. The intuition is that via
the joint training, temporal information is acquired
by the model which can then influence the SF and
IC predictions during inference.

3.6 Building a temporally-invariant model

Relating back to section 3.1, our learning scenario
corresponds to the task of DG when considering
the time periods as individual domains. We se-
lected a popular direction explored in DG (Wang
et al., 2021) and DA (Ramponi and Plank, 2020),
i.e., invariant representation learning. The intuition
is that by removing information which is specific
to individual domains, the model should generalize
better to an unseen target domain. Thus, contrast-
ing with the approaches described in the previous
section which aim to learn temporal features, in this
approach we aim to build a temporally-invariant
model by removing features which are specific to
certain time periods.

Note that both approaches may be reasonable,
as there may be different kinds of temporal fea-
tures and artifacts related to our data, out of which
we may want to leverage some, but abstract away
from others. For instance, it may be beneficial if
the models learn a notation of seasonality and/or
recency, but we may want to abstract away from
artifacts related to out-dated trends, annotation in-
consistencies across time, etc.

One established approach to domain-invariant
representation learning is adding an auxiliary do-
main classifier to a main task predictor, and then

optimizing for an accurate task predictor while ap-
plying an adversarial training strategy to confuse
the auxiliary domain classifier by making the fea-
tures from source and target domain indistinguish-
able, thus yielding domain-invariant features. A
gradient-reversal layer can be applied for this pur-
pose (Ganin and Lempitsky, 2015; Ganin et al.,
2016). We adapt the approach from Ganin and
Lempitsky (2015) to build a temporally-invariant
model, i.e., we apply it with our SLU model as
the main task predictor and using an auxiliary
month classifier instead of the domain classifier
(and BERT as the feature extractor).

As in case of learning temporal features using an
auxiliary task, for inference we apply only the main
task, and thus temporal information or architectural
changes are not required during the application
phase.

4 Experiments

4.1 Data

We use data from large-scale industry SLU sys-
tems comprising user requests to voice-controlled
devices; all requests were de-identified, annotated
with intent and slot labels, and marked with a time
stamp. We collected data for two languages, i.e.
German and Portuguese, and three domains, i.e.
Music, Video and Shopping. The data range from
May 2019 to December 2020, and we split them
into one dataset per month based on timestamps,
resulting in 20 datasets Dy, ..., Dy for each do-
main and language. Thus, one dataset is available
per month, domain and language. For each do-
main and language, Dy is used for testing, and
for Dy, ..., D19 we create training and validation
datasets. For German, for each domain we have
more than 100,000 data instances available, while
for Portuguese for each domain the data amounts
are on the order of tens of thousands.

Qualitative data analyses indicate that both grad-
ual and seasonal drifts are indeed present in the
data, but there are domain-specific differences. Due
to confidentiality reasons, a detailed data analysis
is beyond the scope of this paper.

4.2 Experimental setup

For each domain and language, we use the
Dy, ..., D9 training datasets for model training,
and D»g for testing. Since we do not have access
to target period data, we study two options for cre-
ating an offline validation dataset:

41

. val, comprises the offline validation data
from Dy, ..., Dyg. This corresponds to the
common approach.

val, comprises only recent offline validation
data, i.e., the validation data of Dqg.

We train and evaluate our modeling approaches on
the described setup. As baseline, we train a model,
1.e., the basic SLU model described in section 3.2,
following the common approach of simply training
on the combined offline data (without leveraging
any temporal information). In the following, we
refer to this approach as concat.

We measure performance using a semantic error
rate, which measures intent classification and slot
filling jointly and is defined as follow:

#(slot+intent errors)

SemER = 3)

#slots in reference + 1

4.3 Settings

We used pre-trained multilingual BERT (Devlin
et al., 2019) (size 768, 110M parameters)z, and
max-pooling for sentence representations. Each
of our decoders has 2 dense layers of size 768
with gelu activation. The dropout values used in
IC, SF and month decoders are 0.5, 0.2 and 0.5,
respectively. We used equal weights for A; and
A; (1.0:1.0) and Adam optimizer with a learning
rate of 0.1 and a Noam learning rate scheduler.
We trained our models for 20 and 25 epochs for
German and Portuguese, respectively, with a batch
size of 32. These hyper-parameters were used for
all models (where they apply). The best models
were selected on offline validation data (valg; or
valye.). We tried w € [2, 5] and we varied Ay from
0.2 to 0.6. Each model was trained on a single
GPU.

5 Results and discussion

The results on the “online” test data for using either
all offline validation data val,; or recent validation
data val,.. to select the best model are shown in
Table 1. For confidentiality reasons, we report the
relative change in SemER compared to the concat
baseline using val,;. In the following, we discuss
the results w.r.t. different research questions.

>The model is taken from https:/github.com/google-
research/bert/blob/master/multilingual.md (Apache 2.0) and
was used for experiments only, not for production cases.

German Portuguese

Method Music Video Shopping Music Video Shopping

val, | val, val, val, valg, | val, val, | val, val, | val, valg, | valy,
Concat 0 -148 | O 3.0 |0 -459 1 0 -1.67 | O -11.0 | O -0.54
Weight prev. period | -1.48 | -0.67 | -2.96 | -4.47 | -8.68 | -7.06 | -1.89 | -0.33 | -4.85 | -4.86 | -1.99 | -5.87
Weight same month | -1.75 | -0.47 | 0.84 -148 | 149 | -5.09 | 0.39 | -0.78 | -4.56 | -8.73 | -0.09 | -3.07
Weight both 1.34 | -0.2 -1.96 | -2.96 | -447 | -9.31 | -1.83 | -0.39 | -7.15 | -5.14 | -2.8 -5.78
Temporal finetuning | -0.2 -0.2 -1.76 | -3.04 | 484 | -273 | 0.06 | 2.33 | -3.05 | 0.11 | 343 | O
Month feature -0.94 | -1.28 | 1.045 | 1.52 | -1.61 | -0.99 | -1.1 1.0 -3.38 | -1.69 | -2.35 | 3.61
Auxiliary task -1.75 | <175 | -1.72 | -2.32 | -298 | -7.94 | -3.06 | -2.22 | -596 | -2.37 | -8.57 | -6.23
Temp.-invariant -3.63 | -0.74 | -092 | 1.76 | -4.84 | -5.58 | -2.44 | -0.67 | -6.65 | -1.19 | -3.88 | -9.2

Table 1: Results on the “online” test data for using either all offline validation data (val,) or recent offline validation
data (val,-). We report the relative change in SemER compared to the concat baseline using val,.

RQ 1: Can temporal information be leveraged
to improve temporal generalization for SLU?
Across all domains and languages, improvements
in SemER on future data can be achieved by tak-
ing the temporal nature of data into account. The
best methods differ across domains and languages,
which is expected, given that there are domain and
language specific differences w.r.t. seasonal and
gradual shifts. However, two of the methods yield
consistent gains across all domains and languages,
i.e., instance weighting of the previous time period
and using an auxiliary task yield improved perfor-
mance compared to the baseline for all considered
conditions. Using an auxiliary task achieves the
best performance most often.

RQ 2: What is the impact of seasonality and re-
occurring events vs recency effects? Previous
work in NLP on temporal adaptation and gener-
alization has focused on larger time periods and
the effects of data recency, showing strong perfor-
mance for instance weighting of recent data and
temporal finetuning on a small-scale NER task (Ri-
jhwani and Preotiuc-Pietro, 2020). By contrast, our
domain datasets cover smaller time periods, with
different seasonal effects and re-occruring patterns.

On our task, temporal finetuning gives mixed re-
sults, with decreasing performance in several cases.
We assume that the models may overfit to the re-
cent data, and some previously acquired knowledge
related to older time periods might have been for-
gotten. However, unlike in the NER task which
included only the three named entities PER, LOC,
and ORG and in which there might be mostly grad-
ual temporal trends, in our task seasonal drifts exist,
potentially making certain older knowledge more
relevant. By finetuning on recent data, the models
may lose too much relevant seasonal knowledge,
harming performance for domains with changes
related to seasons or re-occurring events. Instance

42

weighting of recent data gives consistent improve-
ments, which is in line with previous findings,
while instance weighting of the same time period
gives mixed results, i.e., it helps in some cases,
but decreases performance in others. To some ex-
tent this may be due to domain-specific differences.
However, an issue might also be that there can be
conflicting seasonal and gradual drifts. In particu-
lar, weighting is performed at the dataset level and
a dataset from a year ago might include relevant
seasonal data instances, but also less useful data
instances such as data related to older (already out-
dated) trends. The negative effects can be mitigated
to some extent by selecting the best model on re-
cent validation data, which yields consistent gains
in performance across all domains and languages.
Future work may explore how to disentangle these
effects, and in temporal DA scenarios one may se-
lect utterances based on the similarity to the target.
Howeyver, in our scenario which does not assume
the availability of target period data, modeling sea-
sonal and re-occurring patterns indirectly via an
auxiliary month prediction task appears to be a bet-
ter choice in most cases, yielding consistent — and
in most cases higher — gains.

How to create a validation dataset without
having access to target data? For half of the
domain-language pairings, performance is im-
proved by using a recent offline validation dataset.
The choice of the best validation dataset may be
both method-specific and domain-specific, as drifts
differ across domains.

Interestingly, performance of the concat base-
line model, which ignores the temporal nature of
the data, is consistently improved across domains
and languages when using recent validation data.
This shows that model performance can also be
improved by taking the temporal nature of the data
into account for creating a validation dataset in-

stead of model building.

Should we aim for a temporally aware or in-
variant model? In this paper, we have explored
both building temporally-aware and temporally-
invariant models, since there may be different kinds
of temporal features and artifacts related to our data,
out of which we may want to leverage some, but
abstract away from others. Our results show con-
sistent gains for temporally-aware models using
an auxiliary month classifier as well as gains in
all but one case for temporally-invariant models,
with temporally-aware models giving better per-
formance in most, but not all cases. Thus, both
directions appear to be generally promising.
Future work may explore different approaches to
learning temporally aware or invariant models, for
instance, by exploring others DG approaches in the
latter case. One potentially interesting direction is
to learn disentangled representations that separate
temporally-invariant and seasonal components.

6 Conclusion

We studied a temporal generalization task in which
we used offline data of time periods spanning one
month each to build a model that performs well
on future online data. We explored four directions
to leverage temporal information which are rather
easy to apply in production, i.e., i) instance weight-
ing based on our assumptions about the task, ii)
temporal finetuning, iii) learning temporal features
and iv) building a temporally-invariant model. Our
results on real-world SLU data covering two lan-
guages and three domains each show that temporal
information can be leveraged to improve tempo-
ral generalization for SLU. While several of the
explored methods provide consistent gains across
all domain-language pairings, the best methods
differ, as different domain datasets have different
gradual and seasonal drifts. Moreover, our results
indicate that methods, such as temporal finetun-
ing, which have been previously shown to provide
strong performance on small-scale academic tasks
with longer time periods and mostly gradual tem-
poral drifts, do not necessarily yield the best per-
formance in our large-scale SLU task including
seasonality patterns.

Acknowledgements

We would like to thank Yannick Versley and the
NAACL reviewers for helpful feedback for revising
the paper.

43

References

Isabela Albuquerque, Nikhil Naik, Junnan Li, Ni-
tish Shirish Keskar, and Richard Socher. 2020.
Improving out-of-distribution generalization via

multi-task self-supervised pretraining. CoRR,
abs/2003.13525.
Q. Chen, Z. Zhuo, and W. Wang. 2019. Bert

for joint intent classification and slot filling.
arXiv:1902.10909.

Shuguang Chen, Leonardo Neves, and Thamar Solorio.
2021. Mitigating temporal-drift: A simple approach
to keep ner models crisp. In SOCIALNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Quynh Ngoc Thi Do and Judith Gaspers. 2019. Cross-
lingual transfer learning for spoken language under-
standing. Proceedings of the 2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, ICASSP.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsuper-
vised domain adaptation by backpropagation.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, Francois Lavio-
lette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. J.
Mach. Learn. Res., 17(1):2096-2030.

Jing Jiang and ChengXiang Zhai. 2007. Instance
weighting for domain adaptation in NLP. In Pro-
ceedings of the 45th Annual Meeting of the Associ-
ation of Computational Linguistics, pages 264-271,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Young-Bum Kim, Karl Stratos, and Dongchan Kim.
2017. Adversarial adaptation of synthetic or stale
data. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1297-1307, Vancouver,
Canada. Association for Computational Linguistics.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri-
bovskaya, Devang Agrawal, Adam Liska, Tayfun
Terzi, Mai Gimenez, Cyprien de Masson d’ Autume,
Sebastian Ruder, Dani Yogatama, Kris Cao, Tomads
Kocisky, Susannah Young, and Phil Blunsom. 2021.
Mind the gap: Assessing temporal generalization in
neural language models. Proceedings of NeurIPS,
abs/2102.01951.

Tzu-Hsiang Lin, Yipeng Shi, Chentao Ye, Yang Fan,
Weitong Ruan, Emre Barut, Wael Hamza, and

http://arxiv.org/abs/2003.13525
http://arxiv.org/abs/2003.13525
http://arxiv.org/abs/arXiv:1902.10909
http://arxiv.org/abs/arXiv:1902.10909
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1904.01825
http://arxiv.org/abs/1904.01825
http://arxiv.org/abs/1904.01825
http://arxiv.org/abs/1409.7495
http://arxiv.org/abs/1409.7495
https://aclanthology.org/P07-1034
https://aclanthology.org/P07-1034
https://doi.org/10.18653/v1/P17-1119
https://doi.org/10.18653/v1/P17-1119
http://arxiv.org/abs/2102.01951
http://arxiv.org/abs/2102.01951

Chengwei Su. 2021. Contextual domain classifica-
tion with temporal representations. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies: Industry Pa-
pers, pages 41-48, Online. Association for Compu-
tational Linguistics.

Jan Lukes and Anders Sggaard. 2018. Sentiment anal-

ysis under temporal shift. In Proceedings of the 9th
Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, pages
65-71, Brussels, Belgium. Association for Compu-
tational Linguistics.

Alan Ramponi and Barbara Plank. 2020. Neural unsu-

pervised domain adaptation in NLP—A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6838-6855,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Shruti Rijhwani and Daniel Preotiuc-Pietro. 2020.
Temporally-informed analysis of named entity
recognition. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7605-7617, Online. Association for
Computational Linguistics.

Bernhard Schélkopf, Dominik Janzing, Jonas Peters,

Eleni Sgouritsa, Kun Zhang, and Joris Mooij. 2012.
On causal and anticausal learning. In Proceedings
of the 29th International Coference on International
Conference on Machine Learning, pages 459-466.

Anders Sg@gaard, Sebastian Ebert, Jasmijn Bastings,
and Katja Filippova. 2021. We need to talk about
random splits. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
1823-1832, Online. Association for Computational
Linguistics.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong
Ouyang, and Tao Qin. 2021. Generalizing to unseen
domains: A survey on domain generalization. In 1J-
CAL

44

https://doi.org/10.18653/v1/2021.naacl-industry.6
https://doi.org/10.18653/v1/2021.naacl-industry.6
https://doi.org/10.18653/v1/W18-6210
https://doi.org/10.18653/v1/W18-6210
https://doi.org/10.18653/v1/2020.coling-main.603
https://doi.org/10.18653/v1/2020.coling-main.603
https://doi.org/10.18653/v1/2020.acl-main.680
https://doi.org/10.18653/v1/2020.acl-main.680
https://doi.org/10.18653/v1/2021.eacl-main.156
https://doi.org/10.18653/v1/2021.eacl-main.156

