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Abstract

Dialogue systems can benefit from being able
to search through a corpus of text to find in-
formation relevant to user requests, especially
when encountering a request for which no man-
ually curated response is available. The state-
of-the-art technology for neural dense retrieval
or re-ranking involves deep learning models
with hundreds of millions of parameters. How-
ever, it is difficult and expensive to get such
models to operate at an industrial scale, espe-
cially for cloud services that often need to sup-
port a big number of individually customized
dialogue systems, each with its own text corpus.
We report our work on enabling advanced neu-
ral dense retrieval systems to operate effectively
at scale on relatively inexpensive hardware. We
compare with leading alternative industrial so-
lutions and show that we can provide a solution
that is effective, fast, and cost-efficient.

1 Introduction

Dialogue systems such as Amazon Lex, IBM Wat-
son Assistant, or Microsoft Azure Bot Service op-
erate mainly through intent detection. A subject
matter expert (SME) creates a dialogue system by
defining a fixed set of intents that a user might
have and provides scripted responses for each of
them. Machine learning models are adopted to
identify the user intent and route to the correspond-
ing dialogue nodes and responses. It usually takes
a considerable amount of human curated data to
train an intent detection model. Adding features or
content to a dialogue system would require adding
new intents and training the model all over again.
To alleviate such limitations, an alternative ap-
proach to enabling the same user experience is to
have a system automatically search through a cor-
pus of text to find relevant responses to each user
request. One motivation behind this approach is to
replace the intent detection, so to make it flexible,
quicker, and easier to set up and maintain a dia-
logue system, because the SME does not need to
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enumerate all the intents they expect a user to have.
Applying text retrieval in such a system can also
complement intent detection: intent detection can
handle the anticipated user needs and text search
can handle unanticipated requests. In either case,
the value of the text retrieval depends critically on
how accurate it is. Another big advantage of the
text retrieval approach is that it could provide rea-
sonable accuracy even when there is little or no
labeled training data.

A popular line of text retrieval methods is match-
ing sparse terms and weighing those matches by
how frequent they are in the document being found
and how infrequent they are in the corpus. For
example, BM25 (Robertson et al., 1995) is an ex-
tremely popular algorithm of this sort that provides
an excellent balance between accuracy and compu-
tational cost. However, in the recent years, research
has shown that neural network solutions can pro-
vide superior accuracy to sparse term matching
approaches like BM25. In particular, neural dense
retrieval approaches such as DPR (Karpukhin et al.,
2020) and ColBERT (Khattab and Zaharia, 2020;
Khattab et al., 2021) have achieved outstanding
results in retrieval and re-ranking even at zero-
shot setting, and further boosted accuracy when
in-domain training data is available.

Neural dense retrievers achieve high accuracy
but usually involve models with hundreds of mil-
lions of parameters and require long training time.
However, in real-world scenarios, a cloud service
sometimes supports many different deployed dia-
logue applications at the same time, hence needs
to be able to process requests for all of those ap-
plications at the same time. This can be extremely
expensive if each application has a model that de-
mands an enormous amount of memory and/or pro-
cessing power when handling requests. A practical
system needs to be able to balance the benefits of
a sophisticated model with the costs of running it.
Furthermore, dialogue system administrators want
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to be able to add training data to an existing, de-
ployed system and start getting improved results
quickly.

We explore various approaches to addressing
these requirements, including scaling techniques
such as distilled encoders and dimension reduction,
self-directed iterative learning and asynchronous
learning. We conduct thorough experiments on our
datasets to benchmark these approaches, and show
that we have emerging technology that achieves
accuracy that is competitive with state-of-the-art
research solutions with substantially less expensive
resource requirements.

2 Related Work

In Information Retrieval (IR), popular relevancy
algorithms such as TF-IDF and BM25 (Robertson
et al., 1995) match keywords with an inverted in-
dex and compute relevancy using heuristic func-
tions. Together with pre-processing methods such
as stemming and removal of curated stop words,
sparse-term-based retrieval works fairly well with-
out training, and is widely adopted in real world
applications.

Dense passage retrieval (Karpukhin et al., 2020;
Khattab and Zaharia, 2020; Khattab et al., 2021;
Xiong et al., 2021; Luan et al., 2021; Santhanam
et al., 2021) has gained a lot of attention lately with
applications extending beyond retrieval tasks into
areas including open-domain question answering,
language model pre-training, fact checking, dia-
logue generation (e.g., RAG (Lewis et al., 2020),
REALM (Guu et al., 2020), MultiDPR (Maillard
et al., 2021), KILT (Petroni et al., 2021), Con-
vDR (Yu et al., 2021), RocketQA (Qu et al., 2021)).
In dense passage retrieval, the query g and each pas-
sage p are separately encoded into dense vectors,
and relevance is modeled via similarity functions
such as dot-product. Recent works improve ef-
ficiency and effectiveness of single-vector dense
retrieval systems, including model distillation (Hof-
stétter et al., 2020; Lin et al., 2021), hard negative
sampling (Xiong et al., 2021; Zhan et al., 2021),
etc..

Another line of related work is cross-encoder
document ranking (MacAvaney et al., 2019; Dai
and Callan, 2019; Nogueira and Cho, 2019).
Query—document pairs are concatenated and sent
through Transformer-based encoders, an additional
layer on top of the encoded representation is
adopted to produce a relevance score of the docu-

ment to the query, which is then used for ranking.

Arora et al. (2020) and Qi et al. (2021) bench-
mark intent detection models on intent detection
datasets such as CLINC150 (Larson et al., 2019)
where sufficient training examples exist for each
intent. On the other hand, our use case focuses
on the scenarios where answer text is available but
training examples are insufficient.

3 Task and Baselines

The task we are dealing with is a real-world use
case of answer text retrieval in an FAQ dialogue
system.

Formally, we have a corpus P of answer text
snippets (passages). For each answer text passage
p in P, we have a limited number of associated
example queries (),. The system is expected to
retrieve the most relevant answer text passage for
each incoming user query ¢. It needs to deliver
a good latency, and work well when the size of
@Q)p is small, i.e., when there are not many training
examples available. Most importantly, the resource
consumption must be kept low.

To address the use case, we start with two lead-
ing industrial solutions as baselines:

* One approach is to map each answer text p
as a class ¢, and train a classifier on {(c;, g,) for
each p and each ¢, in )} to predict the incom-
ing queries. With the recently ubiquitous large
pre-trained language models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
classifiers equipped with both hand-crafted fea-
tures and neural embedding features are very pow-
erful and deliver decent predictions when there
are enough training examples. However, obtain-
ing large amounts of high-quality training data is
expensive. Often there is little or no training data.

* Sparse-term-based retrieval (e.g., BM25) on
the answer text is another natural approach to ad-
dress the task without the demand for training data.
It has the advantage of having minimal resources
requirement. On the other hand, it could not well
leverage training data when it is available.

The two aforementioned approaches each have
their own strength. The classifier approach lever-
ages query examples and machine learning, while
the sparse-term-based retrieval approach utilizes
answer text but not query examples, and does not
involve training. We seek to get the benefits from
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both approaches. One option is to capture the
cross-attention between query ¢ and each candidate
passage p by feeding (g, p) pair to a Transformer-
based encoder and learn over the encoded out-
put (MacAvaney et al., 2019; Dai and Callan, 2019;
Nogueira and Cho, 2019). However, due to the
need to cross-encode the incoming query together
with each passage, this approach requires more
computation by orders of magnitude and is not
practical for our task setting.

Dense passage retrieval methods (Karpukhin
et al., 2020; Khattab and Zaharia, 2020; Santhanam
etal., 2021; Luan et al., 2021; Humeau et al., 2020;
MacAvaney et al., 2020; Xiong et al., 2021) have
gained a lot of attention lately and achieved state
of the art results on various retrieval and ranking
datasets. Dense retrievers are efficient compared
to other neural methods such as transformer-based
cross-encoder models: passages are encoded and
indexed offline, at inference time only the query
needs to be encoded once; also they leverage ANN
(approximate nearest neighbor) algorithms to effi-
ciently search for relevant dense vectors. Dense re-
trievers are effective compared to traditional sparse-
term-based IR methods such as BM25: They are
not restricted by rigid keyword matching; They use
transformers to encode both the queries and the
passages, and benefit from transfer learning from
large retrieval/re-ranking datasets. Being effective
and efficient, neural dense retrievers make an ideal
solution for our task setting and requirements.

4 Approach

We first briefly overview the work in neural dense
retrieval and talk about the gaps from practical us-
age in Section 4.1. In the remainder of Section 4,
we explain our efforts applying dense passage re-
trieval to the task and further reducing response
time, memory footprint, and training time.

4.1 Neural Dense Retrieval Preliminaries

In dense passage retrieval, g and p are separately
encoded. All the passages can be encoded and
indexed offline. During inference time, only
the query needs to be encoded; ANN (approx-
imate nearest neighbor) search libraries such as
FAISS (Johnson et al., 2017) are used to efficiently
search for the most relevant passage.

In single-vector retrieval models such as
DPR (Karpukhin et al., 2020) and BERT
Siamese/Dual Encoder (Luan et al., 2021), the

query and passages are separately encoded into
single vectors, models are trained with the objec-
tive of mapping the relevant passage vector close
to the query vector, and pushing the irrelevant
passage vectors far away from the query vector.
During inference time, ANN search is used to re-
trieve directly for the passage vectors closest to
the query vector. Several other systems leverage
multi-vector representations and attention-based re-
ranking, including Poly-encoders (Humeau et al.,
2020), PreTTR (MacAvaney et al., 2020), etc..

In late interaction models such as Col-
BERT (Khattab and Zaharia, 2020; Khattab et al.,
2021; Santhanam et al., 2021), the query and pas-
sages are separately encoded to obtain query to-
ken vectors and passage token vectors. These
models adopt token-decomposed scoring, e.g. the
sum of maximum-similarity (SumMaxSim) scores
to query vectors are used to model the relevance
of passages. During training, models are trained
with the objective of maximizing the SumMaxSim
scores of relevant passage and minimizing those
of irrelevant passages. During inference time, the
passage tokens closest to query tokens are fetched,
and then the relevant passages are re-ranked based
on the SumMaxSim scores.

We experimented with two of the most popu-
lar dense retrieval models, DPR and ColBERT. As
effective as they are, they still consume more com-
puting resources and take longer response time than
required in our real-world use case of hosting thou-
sands of customized systems. Also, in our use case,
dialogue system administrators want to reduce the
time to fine-tune neural retrieval models on custom
training data.

4.2 Dense Retrieval Scaled for Practical Usage

For practical usage we implemented improvement
features into ColBERT code: 1) for encoder, add
flexible accommodation for various transformer
types and models in the Huggingface model hub;
2) new improved batcher and training loop logic by
epochs, flexible shuffling and checkpoint saving.
We benchmark DPR and ColBERT on our
datasets, and experiment reducing response time
and memory footprint at retrieval time as follows.

Distilled transformer encoder We pre-train Col-
BERT model on the Natural Questions (NQ)
dataset (Kwiatkowski et al., 2019) from multiple
small-size or distilled transformers models includ-
ing Electra (Clark et al., 2020), TinyBERT (Jiao
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et al., 2020), DistilBERT (Sanh et al., 2019) and
DistilRoBERTa. After comparing the memory foot-
print, the retrieval time, and the retrieval accuracy,
we chose to use TinyBERT (Jiao et al., 2020) with
4 layers and 312 hidden dimensions!.

Dimension reduction (Khattab and Zaharia, 2020;
Santhanam et al., 2021) showed that a ColBERT
model with quantized and reduced-dimension vec-
tors could perform comparably to the standard
model on big retrieval/ranking benchmarks while
greatly reducing the space requirement for saving
the final representations. For our use case on the
small retrieval datasets, we explored using smaller
dimensions for the vector representations in Col-
BERT. In our experiments, however, reduced di-
mension models yield much lower accuracy.

Shorter query length We decrease the maximum
query length in DPR from 256 to 32, reducing the
response time of DPR by 80%. As this length still
fits the majority of the queries in our task setting,
the effect to accuracy is very tiny and could be
neglected.

4.3 Self-directed Iterative Learning

Dense retrieval training data consists of (g, p™,p~)
triples, where ¢ is the query, p™ is a positive (rel-
evant) passage, and p~ is a negative (irrelevant)
passage. Dense neural retrieval models learn from
such triples to effectively map query token repre-
sentations and relevant answer text token represen-
tations together, and push irrelevant (token) rep-
resentations away. While forming training triples,
one straightforward way is using all the negative
passages to make sure not missing any useful train-
ing data. However, this results in long training
time. Sampling from BM25 top ranked passages is
a widely used approach to select negative passages.
However, this introduces a data bias and limit the
model’s learning ability (Luan et al., 2021). An
alternative approach is to choose negatives pas-
sages from those highly ranked by the model from
the previous training iteration. This allows each
iteration of the training to learn from negative ex-
amples for which the previous model did not do
well (Simo-Serra et al., 2015; Wu et al., 2017).

To be more specific, given a trained ColBERT
model CKPT, we take a query ¢ from training
data, and get CKPT’s top m ranked passages

"https://huggingface.co/huawei-noah/
TinyBERT_General_ 41_312D
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Figure 1: Iterative learning strategy 4.3 and asyn-
chronous learning strategy 4.4.

(p1, ..., pm) for g, suppose the positive passage is
pi, we take each negative passage ranked higher
than p; to form the new batch of training triples
(q,pi,p1),---(q, Pis Pi—1). When i = 1, i.e., the
model gave the right prediction, we still include
several randomly sampled triples, so as to avoid
over-fitting on a few difficult queries.

With the self-directed triple curation, we explore
an iterative learning strategy as illustrated in Fig-
ure 1. In each iteration, the Sampler module and
the Trainer module work together as follows. In
each iteration, first, Sampler uses a recently trained
model checkpoint CKPTy_; to update the represen-
tation of documents in the corpus and refresh the
ANN index, then from the refreshed ANN index
fetch the top ranked negatives P,_; for training
queries () to produce training triples together with
P*. Then, Trainer uses the triples generated by
Sampler to train a new model checkpoint CKPT}.
In each iteration, only the negative examples that
are “hard” for the current model are used to form
the training triples, thus we achieve effective and
focused training with reduced time. Note that simi-
lar strategy was adopted by Khattab et al. (2021) by
training two more stages after the initial ColBERT
model. We make the further exploration by auto-
matically continuing the iterations until the model
reached certain accuracy on training queries.

CKPTm-1 CKPTm CKPTm+1

4.4 Asynchronous Learning

During the iterative learning in Section 4.3, the
Trainer and Sampler wait for each other’s output
to proceed to next round. This causes overhead
and wasted resources. To alleviate that, we adopt
the asynchronous learning approach as described
in ANCE (Xiong et al., 2021) and let the Trainer
and Sampler work asynchronously without wait-
ing on each other, as depicted in Figure 1. To be
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Dataset HRFAQ MEDFAQ
# docs 186 87

# words / doc 354 314

# training queries 5433 862

# words / train query 8.8 4.9

# test queries 1174 462

# words / test queries 6.6 4.5

Table 1: Dataset statistics.

specific, while Sampler is curating the new batch,
the Trainer does not wait but continues training
on the old batch of training triples. After gener-
ating a batch of training triples, the Sampler al-
ways fetches the latest model checkpoint and starts
creating a new batch. Note that the implementa-
tion in ANCE (Xiong et al., 2021) is on BERT
Siamese/Dual Encoder (Luan et al., 2021). As far
as we know, our implementation is the first on Col-
BERT model.

4.5 Ensemble

With the scaling efforts in Section 4.2, we achieve
a neural dense retriever with a latency comparable
to neural-embedding-based SVM and BM25. This
makes it practical to ensemble the two systems with
the neural dense retrieval system. We ensemble a
neural-embedding-based SVM classifier and neural
retrieval in scenarios where training data is avail-
able, and ensemble BM25 and neural retrieval in
scenarios where training data is unavailable.

S Experiments

5.1 Datasets

For our experiments, we obtain datasets from real-
world dialogue systems. We create datasets from
an HR policy FAQ bot (denoted by HRFAQ) and a
medical group portal FAQ bot (denoted by MED-
FAQ), both in English. Each dialogue system
dataset consists of intents, intent examples, dia-
logue node graphs and response texts created by
subject-matter experts. For each dataset, we cre-
ated a test set of queries and ground truth responses
by sampling the real-world chat logs from the de-
ployed dialogue system. The task is measured by
Match@1 score in results tables, which is the per-
centage of test queries for which the top system
result is correct. Table 1 shows the dataset statistics.
Note that the datasets are not big and the queries
are generally short. The challenge in scaling comes
mainly from trying to support many such systems
at once in the same cloud.

5.2 Experimental Settings

For the sparse-term-based retrieval baseline, we use
BM25 (Robertson et al., 1995) as implemented in
ElasticSearch?, with lower-casing, stemming and
stop-word removal.

For the neural-embedding-based classifier, we
train a one vs all SVM classifier with sophisticated
pre-processing, hand-crafted n-gram features, and
neural word/sentence embeddings based on Trans-
formers with 512-dimension vectors®. We also
train a classifier with answer text added as training
queries, denoted by “ NSVM w/ text”, as opposed
to “NSVM” which does not use answer text hence
has no 0-shot numbers.

For DPR experiments, we use the Facebook
research DPR repository*. The DPR full model
before fine-tuning is downloaded from the DPR
repository (March 2021 release). The DPRy;;,,
model before fine-tuning is pre-trained on the
triples created from Natural Questions (NQ)
dataset (Kwiatkowski et al., 2019), also obtained
from the same repository. “DPR(S)” stands for
shorter query setting.

For ColBERT experiments, our code is built on
top of the v0.2 version of CoIBERT code’, which
is in PyTorch and uses Huggingface Transformers®.
We implemented the code for iterative learning and
asynchronous learning in PyTorch. For real-world
usage we also implemented improvement features
into ColBERT code as described in Section 4.2.

The ColBERT full model before fine-tuning
is provided by the authors of ColBERT. The
ColBERT};,,, model before fine-tuning is pre-
trained on triples created from Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019) as speci-
fied in ColBERT (Khattab et al., 2021).

For CPU environment inferencing, all models
and data/indices reside locally on a CPU machine
with four Intel® Core™ i7-8650U CPUs. Neu-
ral models are trained on a single NVIDIA V100
GPU in a computing cluster environment unless
otherwise stated.

Hyper-parameters and other detailed settings are
included in Appendix.

nttp://www.elastic.co/elasticsearch/

3We refrain from giving more details because this is a
commercial product.

*http://github.com/facebookresearch/
DPR

Shttp://github.com/
stanford-futuredata/ColBERT

®http://github.com/huggingface/
transformers

338


http://www.elastic.co/elasticsearch/
http://github.com/facebookresearch/DPR
http://github.com/facebookresearch/DPR
http://github.com/stanford-futuredata/ColBERT
http://github.com/stanford-futuredata/ColBERT
http://github.com/huggingface/transformers
http://github.com/huggingface/transformers

System Size Mem Time
BM25 — —  4.6ms
NSVM 1.1G  2.9G 10ms
DPR 836M  2.5G  267ms
ColBERT 419M  2.4G 59ms
DPR(S) 836M  2.5G 45ms
DPRiny(S) 110M  0.6G 5ms
ColBERT 1y 55M  1.7G 10ms

Table 2: Inference latency and resources usage of dif-
ferent systems on HRFAQ dataset in CPU environment.
Latency is for single query and includes pre-processing
time. DPR and ColBERT model sizes do not include
optimizer variables.

5.3 Experiments and Results

Resources Consumption Table 2 compares the
resource usage and response times of different sys-
tems during inference (retrieval). Full Neural mod-
els have high memory consumption and consume a
lot of disk space because of millions of parameters
in the neural networks. The smaller dense retrieval
models, as scaled in Section 4.2, are able to reduce
both footprints and inference latency drastically.

Choosing Distilled Base Models We conduct
further benchmarking on ColBERT models
based on different distilled language models’
including DistilBERTy,s., DistiIROBERTay,,
EleCtrasmall,discriminator’ TinyBERT4L—312 and
TinyBERTgy,_765. We pre-train a ColBERT model
from each of these transformer models, and test
on the 0-shot setting of the HRFAQ dataset. An
alternative approach would be to distill from fully
trained ColBERT models using the corresponding
distillation algorithms, which we leave for future
work. All models are pre-trained on the NQ dataset
at a batch size of 192 for 40k steps, except Elec-
tra and DistilRoBERTa are trained for 80k steps
because of their lower accuracy at 40k steps. The
results suggest that the general pre-training before
ColBERT training does impact generalization per-
formance of the ColBERT models. Specifically,
larger models, e.g., DistilRoBERTay,s., do not
always result in better generalization, and start-
ing from TinyBERT,; 312 appears to be a good
choice considering efficiency and accuracy. We use
TinyBERT,;, 312 as the distilled base model in the
remainder of the paper and denote it by tiny. The
full models trained from BERT}, . are sub-scripted
by full.

7 All models downloaded from Huggingface model hub
https://huggingface.co/models.

System Size Mem Time M@1
DistilBERT 254M  2.3G  26ms 35.0
DistilRoBERTa 314M  3.8G  32ms 32.3
TinyBERTGL,mg 256M 2.1G 27ms 353
TinyBERT 47,312 55M  1.7G  10ms 36.3
Electra 52M  1.7G  18ms 29.5

Table 3: Inference latency, resources usage, and accu-
racy of different ColBERT models on HRFAQ dataset
in a CPU environment.

HRFAQ 0-shot 1ex/doc 3 ex/doc
1  BM25 29.2 — —
2 NSVM — 23.2(4.4) 43.3(3.6)
3 NSVM w/ text 10.4 27.5(3.7) 46.0(3.5)
4 DPRyuu 29.9 42.3(2.6) 53.5(2.2)
5 ColBERT 38.9 47.8(1.8) 53.6(2.3)
6 DPR¢iny(S) 25.7 37.8(29) 46.2(4.1)
7  ColBERTiny 36.3 42.4(1.7) 50.7(2.0)
8  Ensemble(1,7) 39.0 47.4(1.8) 53.4(2.2)
9 Ensemble(3,7) 304 45.0(2.3) 55.4(2.0)

Table 4: Match@1 scores on HRFAQ test set. For k
ex/doc experiments: we take 10 random seeds; for each
random seed, sample k training queries per answer text,
train a model; finally report avg(std) of the 10 models.
Scores in bold are best in efficient setting.

Fine-tuning Accuracy Tables 4 and 5 show re-
sults or HRFAQ and MEDFAQ. ColBERT ¢,; is the
most accurate single system especially in 0-shot
setting, which is consistent with results from re-
search papers. With more training examples, DPR
catches up in accuracy, showing that retrieval meth-
ods based on single vector similarity instead of to-
ken vector late interactions is at disadvantage trans-
ferring to O-shot use cases, but performs nicely
with some training examples. It is worth noting
that, CoIBERT};,,,, shows only a small degradation
from ColBERT f,;; on HRFAQ, presenting a nice
trade-off between accuracy and efficiency in real-
world industry use cases. In MEDFAQ, there is
a bigger drop in accuracy from ColBERT,; to
ColBERT};;,,,. This may be a result of MEDFAQ’s
vocabulary and content being more distant from
the NQ data used for pre-training, since medical
vocabulary tends to be highly specialized. In 1-shot
and 3-shot settings where the models are trained
with 1 or 3 examples per answer, CoIBERT};,,,, is
more competitive for MEDFAQ.

Ensembling We take a linear combination of 0-
shot BM25 predictions and ColBERT};;,, predic-
tions with heuristic weight 0.3:1, and a 10:1 combi-
nation of SVM predictions and ColBERT};,,,, pre-
dictions, since the scores from the SVM classifier
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MEDFAQ 0-shot 1ex/doc 3 ex/doc
1 BM25 25.1 — —
2 NSVM — 39.7(5.1)  60.0(6.4)
3 NSVMw/text 225 41.4(4.9) 58.6(4.7)
4  DPRpun 37.0  58.5(3.7) 67.2(2.2)
5 CoIBERT,.; 452 57.6(2.5) 67.7(1.7)
6  DPRiny(S) 255  44.7(5.0) 56.9(4.1)
7  ColBERT4iny 26.6  47.1(4.0) 60.44.4)
8 Ensemble(1,7) 28.6 47.5(42) 60.4(4.1)
9 Ensemble(3,7) 299 51.3(7.0) 63.3(5.0)

Table 5: Match@ 1 scores on MEDFAQ test set. Details
same as Table 4.

HRFAQ 1 ex/doc 3 ex/doc
ColBERT}n,  Time M@l Time M@1
All neg 475s  42.4(1.7) 1374s  50.7(2.0)
BM25 Guided 37s  37.1(1.7) 85s  39.4(2.1)
Iterative 104s  44.0(2.1) 226s  49.4(1.6)
Asynchronous 78s  43.02.1) 200s  49.3(1.9)

Table 6: Training time and Match@1 scores of different
training strategies. Scores avg(std) on 10 randomly
sampled training sets.

are in a higher magnitude. As shown in the second
parts of Tables 4 and Table 5, there is a nice boost
from both systems being ensembled, showing en-
sembling to be a feasible and effective approach to
further increase the accuracy.

Self-guided Iterative / Asynchronous Learning
Table 6 compares the retrieval results and training
time efficiency of one-pass training with all neg-
atives, one-pass training with BM25 guided neg-
atives, iterative learning, and asynchronous learn-
ing. We use ColBERT};,,,, for this comparison. For
BM25 guided and iterative/asynchronous learning,
negative examples are curated as described in Sec-
tion 4.3, from top 20 model-guided predictions.
Models are trained for 10 epochs in the one-pass
experiments, and 5 rounds of 6 epochs each in the
iterative and asynchronous learning experiments.
The results demonstrate that, with iterative self-
guided sampling of negative passages, ColBERT
models can achieve results competitive to the mod-
els trained on complete data within 20% training
time. The M@1 score of A11 neg is slightly
lower at 1-shot, likely due to the mismatch of ran-
domly sampled training examples and the testset.

Summary Although with resources consumptions
higher than BM25, dense passage retrieval with
scaling techniques could deliver higher accuracy
than BM25 and neural embedding based classifiers
with similar latency, thus makes a great solution

for our use case.

6 Conclusion

We report on our work on enabling advanced neu-
ral dense retrieval systems to operate effectively at
scale on relatively inexpensive hardware. On our
real-world use case and datasets from dialogue sys-
tems, we show that we can provide a solution that
achieves accuracy that is competitive with state-of-
the-art research solutions with substantially less ex-
pensive resource requirements and shorter response
time.
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HRFAQ 0-shot 1ex/doc 3 ex/doc
1  BM25 41.3 - -
2 NSVM - 35.2(4.9) 58.3(3.1)
3 NSVMw/text 18.7  42.8(2.5) 61.9(1.9)
4 DPRyun 439  58.1(2.77) 67.2(1.6)
5 ColBERT;u; 537 62.5(1.0) 67.1(1.8)
6  DPRyiny(S) 370 528(1.7) 61.023)
7  ColBERT¢iny 453 56.4(1.8) 65.2(1.1)
8 Ensemble(1,7) 49.6  59.2(1.5) 66.8(1.1)
9 Ensemble(3,7) 456  60.0(1.8) 69.1(1.4)

Table 7: Match@3 scores on HRFAQ testset. For &
ex/doc experiments: we take 10 random seeds; for each
random seed, sample k training queries per answer text,
train a model; finally report avg(std) of the 10 models.

A Appendix

A.1 Hyper-parameters
Hyper-parameters for ColBERT:

NQ pre-training batch_size: 192
tuning batch_size: 32
tuning num_epochs: 10
doc_maxlen: 180
mask-punctuation: true
amp: true
learning_rate: 3e-06
weight_decay: 0.0
adam_eps: le-8
similarity: 12
dimension: 128
query_maxlen: 32
doc_maxlen: 128
Hyper-parameters for DPR:
NQ pre-training batch_size: 144

Full model tuning batch_size: 27
Tiny model tuning batch_size: 80
NQ pre-train warmup_steps: 1237
tuning warmup_steps: 100

NQ pre-train num_train_epochs: 40

tuning num_train_epochs: 100
learning_rate: 2e-5
weight_decay: 0.0

adam_eps: le-38

adam_betas: (0.9, 0.999)
max_grad_norm: 2.0

hard_negatives: 1
other_negatives: 0
A.2 More Results

Match@3 scores could be found in Table 7 and
Table 8.
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MEDFAQ 0-shot 1ex/doc 3 ex/doc

COlBERTin, 385  627(3.0) 73.1(3.0)
Ensemble(1,7) 41.8  63.6(3.0) 73.8(3.3)
Ensemble(3,7) 4026 63.7(5.8) 74.4(4.8)

T BM25 372 - -

2 NSVM - 53.9(7.1)  68.9(6.1)
3 NSVMw/text 335 55.5(4.6) 70.6(6.4)
4 DPRyuy 474 72.802.7) 78.7(1.6)
5 ColBERT;.; 617 74.1(2.0) 79.8(1.4)
6  DPRyiny(S) 353 563(4.7) 70.7(3.6)
7

8

9

Table 8: Match@3 scores on MEDFAQ testset. For &
ex/doc experiments: we take 10 random seeds; for each
random seed, sample k training queries per answer text,
train a model; finally report avg(std) of the 10 models.

A.3 Licenses and Potential Risks
The licenses of ColBERT code and DPR

code can be found at https://github.

com/stanford-futuredata/ColBERT/
blob/master/LICENSE and https:
//github.com/facebookresearch/

DPR/blob/main/LICENSE, respectively.
The license of ElasticSearch can be found
at https://github.com/elastic/

elasticsearch/blob/7.16/1licenses/
ELASTIC-LICENSE-2.0.txt. The neural
embedding based SVM classifier is part of
commercial products owned by our organization.

We ran the experiments on our own extracted
datasets for solely research exploration purpose,
and we did not distribute or use the code or data to
make any profit. The datasets are small to check
/ anonymize. We use them solely for benchmark-
ing purpose, and strictly protected access to the
datasets to only a couple of co-authors.

Our work is exploring the efficient and effective
approaches of text retrieval on answer text corpus
curated by chat-bot administrators. The use case
is how to present the most matching answer text to
users, where the answer text itself is created and
closely administered by chat-bot administrators.
The scope of this paper does not cover research on
how to filter offensive content. On the other hand,
our work does not generate any new text, hence
does not create risks to users.
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