Parameter-efficient Continual Learning Framework in Industrial Real-time
Text Classification System

Tao Zhu, Zhe Zhao | Weijie Liu, Jiachi Liu, Yiren Chen, Weiquan Mao, Haoyan Liu,
Kunbo Ding, Yudong Li, and Xuefeng Yang
Tencent Research, Beijing, China

{mardozhu, nlpzhezhao, jagerliu, jiachiliu, yirenchen, weiquanmao, haoyanliu, karlding, yudongli, ryanxfyang } @tencent.com

Abstract

Catastrophic forgetting is a challenge for model
deployment in industrial real-time systems,
which requires the model to quickly master a
new task without forgetting the old one. Con-
tinual learning aims to solve this problem; how-
ever, it usually updates all the model parame-
ters, resulting in extensive training times and
the inability to deploy quickly. To address this
challenge, we propose a parameter-efficient
continual learning framework, in which effi-
cient parameters are selected through an offline
parameter selection strategy and then trained
using an online regularization method. In our
framework, only a few parameters need to be
updated, which not only alleviates catastrophic
forgetting, but also allows the model to be
saved with the changed parameters instead of
all parameters. Extensive experiments are con-
ducted to examine the effectiveness of our pro-
posal. We believe this paper will provide useful
insights and experiences on developing deep
learning-based online real-time systems.

1 Introduction

In industry, many text-related applications have
enjoyed a superior performance boost from the
emerging of pre-trained language models, such as
word2vec (Mikolov et al., 2013a,b; Zhao et al.,
2017) , ELMo (Peters et al., 2018), GPT (Radford
et al., 2018, 2019), and BERT (Devlin et al., 2019;
Liu et al., 2019; Sun et al., 2019). However, when
a fine-tuned model needs to be updated to master
a new task swiftly, it usually loses the ability to
handle previous tasks. This phenomenon is known
as catastrophic forgetting (French, 1999), and it
poses a significant issue in industrial settings.
Continual learning aims to incrementally ex-
pand acquired knowledge for future learning (Chen
and Liu, 2018), and mitigate the impact of catas-
trophic forgetting in the meantime. Existing con-
tinual learning methods usually use data replay

*Corresponding author.

(Rebulffi et al., 2017b), parameter isolation (Rusu
et al., 2016; Fernando et al., 2017), and regular-
ization (Kirkpatrick et al., 2017; Li and Hoiem,
2017) to make models adapt to new tasks without
catastrophic forgetting. However, these approaches
lack research on implementing continual learning
in industrial scenarios, where endowing models
with continual learning capabilities meets numer-
ous practical constraints. For time constraints,
when new data or tasks arrive, the model should
be launched in minutes or even seconds, which is
common in time-sensitive scenarios, €.g., blocking
certain rumors content. For space constraints, the
strong demand for tracing tasks makes it necessary
to save every model once it is changed. So for the
current large-scale pre-trained models, storage be-
comes an industrial challenge with the increase of
new tasks.

To solve these industrial challenges, we propose
a parameter-efficient continual learning framework
based on an offline parameter selection strategy.
The framework consists of two parts, i.e., offline
calculation and online training. In the offline cal-
culation part, all the parameters that are important
to the old task are selected to be fixed, while the
remaining parameters are employed to learn the
new task. Since in a real industrial scenario, the
arrival of a new task will have an interval of hours
or even days, we can make full use of this inter-
val to advance the selection of parameters. During
the online training phase, the model is parameter-
efficiently trained on a new task within a small
set of parameters and further combines multiple
regularization-based methods (Kirkpatrick et al.,
2017; Li and Hoiem, 2017) to overcome catas-
trophic forgetting. To alleviate storage costs, we
only save the modified parameters for each snap-
shot. Extensive experiments demonstrate that our
framework can maintain the old task performance
while learning a new task quickly. Our implementa-

315

Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 315 - 323
July 10-15, 2022 ©2022 Association for Computational Linguistics

tion is based on UER-py pre-training toolkit' (Zhao
etal., 2019).

The main contributions of this paper can be sum-
marized as follows:

* We are the first to explore continual learning
with only a few model parameters, and show
that updating 0.1% parameters of BERT can
achieve competitive performance.

* We propose a parameter-efficient continual
learning framework that solves issues in
real-world industrial settings by utilizing
parameter-efficient-based offline parameter se-
lection strategies and regularization-based on-
line training methods.

» Extensive experiments on a real-world domain
incremental text classification task verify the
effectiveness of our proposed framework.

2 Related Work

2.1 Continual Learning

The major challenge of continual learning is catas-
trophic forgetting (McCloskey and Cohen, 1989;
French, 1999), which occurs when optimizing for a
new task causes performance degradation on a task
learned previously. Methods designed to mitigate
catastrophic forgetting mainly fall into three cate-
gories: replay methods, parameter isolation meth-
ods, and regularization-based methods (Delange
et al., 2021).

Replay methods explicitly retrain on a subset of
stored old task samples while training on new tasks.
Instead of selecting samples at random, Rebuffi
et al. (2017b) incorporated the Herding technique
(Welling, 2009) to choose samples that best ap-
proximate the mean feature vector of a class, and
it is widely used in Castro et al. (2018), Wu et al.
(2019), Hou et al. (2019), Zhao et al. (2020), Mi
et al. (2020a,b). Ramalho and Garnelo (2019) pro-
posed to store samples that the model is least con-
fident. However, replay methods exploit samples
from old tasks, which will slow down the online
training. To meet the time constraint, they are not
used in our framework.

Parameter isolation methods dedicate different
model parameters to each task, which are divided
in two directions. One is growing a new branch
network for a new task, while freezing previous
task parameters (Rusu et al., 2016; Xu and Zhu,

Uhttps://github.com/dbiir/UER-py/

2018). The other one is masking out parameters
of previous task during new task training, which is
imposed either at parameters level (Fernando et al.,
2017; Mallya and Lazebnik, 2018), or unit level
(Serra et al., 2018). Parameter isolation is unsuit-
able for usage in industrial scenario. It is difficult
to keep track of the model’s scale if the number of
used parameters is continually accumulated as the
number of tasks increases.

Regularization-based methods add an addi-
tional regularization term in the loss function,
which will consolidate previous knowledge when
learning on new data (Delange et al., 2021).
Elastic weight consolidation (EWC) (Kirkpatrick
et al., 2017) is a well-known regularization-based
method, which introduces network parameter un-
certainty in the Bayesian framework. LwF (Li and
Hoiem, 2017) is another regularization method, us-
ing the previous model to infer current data and
taking the outputs as soft labels to mitigate forget-
ting and transfer knowledge.

2.2 Parameter-efficient Training

Training a model with a few parameters is useful
in many applications. Not only does the model
have the potential to achieve better performance,
but also disk space can be saved by only saving
the updated parameters for each task. Recent work
has shown that it is possible to update only a small
subset of the model’s parameters during training.
This kind of work could heavily alleviate storage
and deployment communication requirements . For
example, Adapters (Houlsby et al., 2019; Rebuffi
et al., 2017a; Bapna et al., 2019) introduce addi-
tional trainable parameters into a pre-trained model
in the form of small task-specific modules while
the rest of the model’s parameters are kept fixed.
Many works like Diff Pruning (Guo et al., 2020)
and BitFit (Ben Zaken et al., 2021) have shown
that it is possible to update only a small subset
of the model’s parameters during training, which
can alleviate storage and communication require-
ments. Xu et al. (2021) and Sung et al. (2021)
even show a acceptable performance on random
selection of parameters. Therefore, we choose to
perform parameter-efficient training on continual
learning to quickly master a new task while avoid
catastrophic forgetting.

3 Methodology

We introduce a parameter-efficient continual learn-
ing framework, as shown in figure 1. Our frame-

316

Parameter Inheritance

1 1
1 1
1 1
| {
! EWC Loss !
1 1
1)
| Lwf Loss i
H I
1 1
' CE Loss i
i :
1)
1 1
1 1
' H
1 1
1 1

'

Regularization-based
methods

PRY

Figure 1: The overall architecture of the parameter-efficient continual learning framework.

work is divided into two components. The first
is offline computation, which makes use of the
interval between tasks to evaluate the data and se-
lect the parameters that are crucial to old tasks.
These parameters are kept fixed in the new task.
The other part is online training. In this stage,
we utilize parameter-efficient training to perform
new task training on the parameters that are not
fixed. In addition, we introduce some well-known
regularization-based methods in our framework for
further improvement.

3.1 Offline calculation

The goal of offline calculation is to select the subset
of parameters that are (in some sense) the most im-
portant to all of the old tasks, and fix them. There-
fore, we make full use of the interval between tasks
to review the previous training data, and calculate
the parameters that are important to the previous
tasks in the latest model (snapshot). These parame-
ters will be fixed in the new task, and the remaining
parameters will participate in the training.

As for the method of measuring the impor-
tance of parameters, we consider the indicator of
how much changing the parameter will impact the
model’s output. The Fisher information is particu-
larly well suited to identifying the highly relevant
subset of parameters for previous tasks. It serves
as an useful tool for estimating how much informa-
tion a random variable contains about a parameter
of the distribution (Tu et al., 2016). The Fisher
information assumes that the more important the
parameter towards the target task, the higher value
it conveys. Formally, the Fisher information for the
parameter 6; is as follows:

F(6;) =

D 2
1 |Z| (aalogp (vjlx;:6) 0
j=1

ﬁ . 00,

Traditional training Parameter-efficient training

Figure 2: Illustration of parameter-efficient training.

where D denotes the task-specific training data, x
and y denote the input and the output respectively.

3.2 Parameter-efficient Online training

Given the important parameters selected in offline
stage, we use the remaining parameters for online
training. Updating subset of the parameters can
avoid catastrophic forgetting to some extent and
largely decrease the storage space required by the
snapshot. In addition, we combine the parameter-
efficient training with two typical regularization-
based continual learning methods. The combi-
nation of multiple orthogonal techniques can fur-
ther improve the performance of our system. The
overview optimization objective is as follows:

L(Q*) = LCE(O*) + Lregul—based(e*)’ 0" € Seo
2
where Sy are parameters selected from the of-
fline calculation stage, which have small Fisher
values. Lcg denotes the cross-entropy loss, and
Ly egui-basea denotes regularization-based method
loss.

3.2.1 Parameter-efficient learning

As shown in figure 2, in traditional training setting
(left), all of the model’s parameters are updated.
But in our online training (right), we only train a

317

few parameters, and most of the parameters are
fixed according to the result of offline calculation
to avoid forgetting old tasks. In general, the model
will be easy to forget old tasks while learning new
tasks, if more parameters are updated. Therefore,
in our framework, we choose to perform parameter-
efficient training on parameters that are not impor-
tant to previous tasks, which are not fixed. Refer
to previous experience (Ben Zaken et al., 2021; Xu
etal., 2021), we chose a layer-wise strategy to se-
lect important parameters. We fixed the parameters
from large to small (Fisher information) in a certain
proportion at each layer.

On the other hand, updating a small number
of parameters is beneficial for storage purpose
and rapid deployment. Sometimes we need to de-
ploy our model on thousands of servers. So the
model size needs to be as small as possible (around
1.2 GB for BERT-Large 400 MB for BERT-Base).
Our framework only needs to store the values and
indices denoting the position of the updated pa-
rameters. Our experimental results demonstrate
that only 0.1% trainable parameters of the original
model can achieve competitive performance.

3.2.2 Regularization-based method

EWC and LwF are two representative approaches
for preventing catastrophic forgetting in neural net-
works. They respectively add restrictions on model
parameters and output activation. The two methods
are orthogonal and we combine them as follows:

Lregul—based(g) =4 LEWC(H) + /IZLLWF(Q)
3)
Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017) introduces network parameter
uncertainty in the Bayesian framework. Intuitively,
this approach consists of a L2 penalty on the dif-
ference between the parameters for the old 67 (i
denotes the indexes of the parameters) and the new
0;. It uses the diagonal of the Fisher information
matrix F; (2) to weight different parameters. The
EWC loss (4) slows down the learning process of
task-relevant parameters, which contains knowl-
edge learned previously.

Lewc(6) = > Fi(0; - 60})° @)

From formula (4), we can see that if most of the
parameters are fixed, it is equivalent to reducing

the EWC loss, which is beneficial to preventing
catastrophic forgetting.

Learning without forgetting (LwF) (Li and
Hoiem, 2017) is another method for continual learn-
ing. Before training the new task, network outputs
for the new task data are recorded, which is denoted
by y,,. It will be subsequently used during training
to distill prior task knowledge. LwF employs a vari-
ant of knowledge distillation. In our framework,
we use L2 (5) loss to regulate the outputs:

Lpwr(0) = Z(yo - y/o)z 5
k

4 Experiment

In this section, we empirically verify the effective-
ness and efficiency of our framework under the
setting of incremental text classification tasks in
the industrial scenarios.

4.1 Dataset & Implementation Details

In the experiments, we utilize the Amazon Reviews
dataset (He and McAuley, 2016) to examine our
method, which is widely used in text classification
tasks. The original dataset contains 142.8 million
product reviews collecting from 29 different do-
mains. To be consistent with our industrial sce-
nario, we firstly create a reduced dataset by ran-
domly selecting 10000 pieces of data from 12 do-
mains as the base task, 6000 of which are used as
training set, 2000 as validation set, 2000 as test set.
In the incremental learning session, we construct
17 subsequent tasks with 300 examples for training,
100 for validation and 100 for test from the rest
domains.

We adopt the BERT-Base model (Devlin et al.,
2019) and the BERT default uncased vocabulary.
All runs use the AdamW optimizer” (Kingma and
Ba, 2014; Devlin et al., 2019) with 5 epochs, 32
batch size and 0.1 dropout rate. For the base task,
we set learning rate as 2e-5. For the incremental
tasks, we set learning rate as 2e-3, 4; as 0.35 and
A> as 1. Based on offline calculation results, we
only pick up 0.1% parameters to participate in each
training process. Our experiments are conducted in
Intel(R) Xeon(R) CPU E5-2699 v4 at 2.20GHz, 2
Nvidia Tesla P40 GPU with 24 GB of RAM.

Zhttps://www.fast.ai/2018/07/02/adam-weight-decay/

318

Order | ~ Method —» | EWC LwF EWC&LwWF PE-rand PE-* | Lower Bound Upper Bound
I 4739 47.6 45.76 50.6 50.46 45.14 51.59
II 48.54 4795 48.3 51.35 51.63 45.81 53.18
1 40.44 45.23 42.11 4542 49.51 38.29 51.1
v 43.27 45.16 41.04 42.07 46.8 41.27 54.78
Average Acc 4491 46.49 43.30 47.36 49.6 42.63 52.66

Table 1: Main result of text classification (above) averaged accuracy score respectively (see Appendix A for the

dataset orderings).

4.2 Models

We compare our proposed models with the a series
of baseline methods in our experiments:

¢ lower-bound: a standard classification model
is fine-tuned on the individual task without
any continual learning strategy, which can be
considered as the lower-bound method.

* upper-bound: a model is trained on all tasks
simultaneously, which can be considered as
the upper-bound method since it has access to
the whole dataset.

* EWC & LwF: Two classical regularization-
based methods for continual learning.

* PE-rand: Our proposal model is trained
by randomly choosing some parameters and
keeping them unchanged during online train-
ing stage, instead of using the offline calcula-
tion strategy.

e PE-*: Our continual learning framework,
including offline calculation and parameter-
efficient online training.

4.3 Results

The models are trained on the current training set
and evaluated on the union of all the test sets. To
ensure the robustness of the task ordering, we eval-
uate our methods on the four different orderings
(chosen randomly), which are shown in Appendix
A.

Table 1 provides a summary of our main results.
We report the micro-averaged accuracy for the clas-
sification task. The lower bound is trained in the
current task without using any continual learning
strategy to overcome catastrophic forgetting, while
the upper bound is trained on all data after the new
task comes, which can be considered multi-task
method. There is a significant gap between the
lower bound and the upper bound, which illustrates
the need for continual learning. As the classical CL

methods, EWC and LwF outperform the standard
model without any specific continual learning, but
still suffer from catastrophic forgetting in the order
IV. It can be seen that our proposed PE-* achieves a
better performance than EWC, LwF and their com-
bination. This is because most of the parameters
in BERT are fixed, which is equivalent to posing
a strict regularization to the parameters to prevent
catastrophic forgetting while using the remaining
parameters to learn new tasks. Compared to PE-
rand, PE-* has a better average accuracy, which
verifies the importance of parameter selections. Al-
though the random selection method outperforms
PE-* in order I, it is difficult to obtain a suitable
set of parameters in most cases for models to learn
new tasks while maintaining previous knowledge.

Moreover, according to the principles of EWC
and LwF, the former records the initial model pa-
rameters, and the latter records the data features of
new tasks. As the training progresses, their regular
loss terms especially Lgwc (6) will get bigger and
bigger in model like BERT-Base with 110M pa-
rameters. What’s more, in real industrial scenarios,
each new task may have different suitable hyper
parameters. We do not have time to do grid search
of the best hyper parameters, so Agwc and Ap,r
may not be optimal solutions. This results in an un-
balanced ratio of L(6) to Lgwc(0) and Ly, (6),
where L(6) may much smaller than Lgwc(68) and
L1wr(0). Therefore, as the number of tasks in-
creases, the training of new tasks will become
more and more difficult with the same set of hyper-
parameters. However, the previous tasks have not
been fully learned. This problem accumulates grad-
ually in regularization-based method and leads to
results that are not as good as our method (PE-*)
which just handles a very small amount parameters.

Figure 3 shows the accuracy of model on the first
task test set as the model are trained on more tasks.
The figure illustrates how well each model retains
its previously acquired knowledge as it learns new
knowledge. We can see that our framework is con-

319

. ~# lower-bound ” Y
—+ EWC&LWF — unper-bound
] | - PE-rand

Figure 3: Performance on the first task test examples of
order I during training as training progresses.

Reserved Percent | Orderl Order2 Order3 Order4
0.50% 50.46 51.63 49.51 46.8
1.00% 50.04 51.63 49.05 47.34
5.00% 45.11 48.61 46.44 44.43
10.00% 39.08 38.36 34.38 37.61

Table 2: The effect of layer-wise parameter reserved
percentage on accuracy.

sistently better and more stable compared to other
methods.

4.4 Parameter-efficient Strategy

Figure 4 shows the weight map of Fisher informa-
tion. It can be seen that in the BERT model, the
parameters of the embedding-layer have little effect
on our classification task. Most of the important pa-
rameters are concentrated in the transformer block
layer, and the importance of the attention layer
is higher than that of the feed forward layer. In
addition, according to our statistics, we found that
13%(about 14M) of the parameters’ Fisher informa-
tion is 0, and most of them are in embedding-layer.

In our experiments, we found that the param-
eters to be fixed cannot be determined simply in
order of magnitude. According to (Jawahar et al.,
2019), BERT encodes rich linguistic information
in different transformer blocks. Therefore, refer to
previous experience (Ben Zaken et al., 2021; Xu
et al., 2021), we chose a layer-wise strategy to se-
lect important parameters. We fixed the parameters
from large to small in a certain proportion at each
layer of the model. To this end, each layer has
parameters for new tasks to learn.

4.5 Model Size

We set layer-wise parameter reserved for new task
to different values, 0.5%, 1%, 5% and 10%, and
the percent of parameters fixed for old task are
99.5%, 99%, 95% and 90%. The advantage of
our parameter-efficient continual learning becomes

Fisher Information Weight Map
embedding

atten
feed_forward

atten
feed_forward

atten
feed_forward

atten
feed_forward

atten
feed_forward

atten
feed_forward

BERT Layer

atten
feed_forward

atten
feed_forward

atten
feed_forward

atten
feed_forward

atten
feed_forward

atten
feed_forward

Parameter Weights

Figure 4: Calculating the model Fisher information by
review old tasks, where dark colors are weighted more
than light colors. The layers of BERT are ordered from
bottom to top (i.e. the embedding layer is shown at the

top).

Method Acc | Saved Parameters | Saved model size
EWC 47.49 110B 421MB
LwF 47.95 110B 421MB
EWC&LWF | 48.65 110B 421MB
PE-* 51.63 0.1B 1.2MB

Table 3: Comparison of storage costs.

more pronounced at extreme sparsity rates. In Ta-
ble 2, we report the accuracy across different task
orders and reserved rates. We can observe that
the more parameters fixed, the better the effect on
alleviating catastrophic forgetting.

In the above experiments, we only trained 0.1%
of the parameters in the BERT model. We use the
sparse-matrix method to store the model, and only
store the index and value each time, occupying
about 1.2 Mb of space, which is 0.3% of the entire
model, as shown in Table 3. Parameter-efficient
strategy greatly saves network bandwidth and stor-
age requirements.

5 Conclusion

This paper introduces a parameter-efficient contin-
ual learning framework, which is designed for real-
time incremental learning system. In offline stage,
the framework identifies the parameters that are
less important to the old tasks. By updating these

320

parameters in online training stage, the model is
able to learn new tasks in short time without for-
getting the old ones. Furthermore, we surprisingly
find that decent results can be achieved by only
training a small subset of parameters (e.g. 0.1%).
This observation enables us to largely decrease the
storage of the snapshot, which is important for the
system requiring frequent update.

References

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat.
2019. Simple, scalable adaptation for neural machine
translation. arXiv preprint arXiv:1909.08478.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv e-prints, pages arXiv—2106.

Francisco M Castro, Manuel J Marin-Jiménez, Nicolas
Guil, Cordelia Schmid, and Karteek Alahari. 2018.
End-to-end incremental learning. In Proceedings of

the European conference on computer vision (ECCV),
pages 233-248.

Zhiyuan Chen and Bing Liu. 2018. Lifelong machine
learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3):1-207.

Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and
Tinne Tuytelaars. 2021. A continual learning sur-
vey: Defying forgetting in classification tasks. /IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

Chrisantha Fernando, Dylan Banarse, Charles Blundell,
Yori Zwols, David Ha, Andrei A Rusu, Alexander
Pritzel, and Daan Wierstra. 2017. Pathnet: Evolution
channels gradient descent in super neural networks.
arXiv preprint arXiv:1701.08734.

Robert M French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,

3(4):128-135.

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.
Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of

321

the 25th international conference on world wide web,

pages 507-517.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang,
and Dahua Lin. 2019. Learning a unified classifier
incrementally via rebalancing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 831-839.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-

ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651-3657, Florence, Italy. Association for
Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521-3526.

Zhizhong Li and Derek Hoiem. 2017. Learning without
forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935-2947.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Arun Mallya and Svetlana Lazebnik. 2018. Packnet:
Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages
7765-T773.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109-165. Else-
vier.

Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi
Faltings. 2020a. Generalized class incremental learn-
ing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops,
pages 240-241.

Fei Mi, Xiaoyu Lin, and Boi Faltings. 2020b. Ader:
Adaptively distilled exemplar replay towards contin-
ual learning for session-based recommendation. In

https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356

Fourteenth ACM Conference on Recommender Sys-

tems, pages 408—413.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227-2237.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Tiago Ramalho and Marta Garnelo. 2019. Adap-
tive posterior learning: few-shot learning with a
surprise-based memory module. arXiv preprint
arXiv:1902.02527.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017a. Learning multiple visual do-
mains with residual adapters. arXiv preprint
arXiv:1705.08045.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017b. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001-2010.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.

2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. 2018. Overcoming catastrophic forget-
ting with hard attention to the task. In International
Conference on Machine Learning, pages 4548—4557.
PMLR.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-
tation through knowledge integration. arXiv preprint
arXiv:1904.09223.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021.
Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems,
34.

Ming Tu, Visar Berisha, Martin Woolf, Jae-sun Seo,
and Yu Cao. 2016. Ranking the parameters of deep
neural networks using the fisher information. In 2016
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2647-2651.
IEEE.

Max Welling. 2009. Herding dynamical weights to
learn. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, pages 1121-
1128.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. 2019. Large
scale incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 374-382.

Ju Xu and Zhanxing Zhu. 2018. Reinforced continual
learning. arXiv preprint arXiv:1805.12369.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuangqi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a child in large language model: To-
wards effective and generalizable fine-tuning. arXiv
preprint arXiv:2109.05687.

Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and
Shu-Tao Xia. 2020. Maintaining discrimination and
fairness in class incremental learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13208-13217.

Zhe Zhao, Hui Chen, Jinbin Zhang, Wayne Xin Zhao,
Tao Liu, Wei Lu, Xi Chen, Haotang Deng, Qi Ju,
and Xiaoyong Du. 2019. Uer: An open-source
toolkit for pre-training models. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
241-246.

Zhe Zhao, Tao Liu, Shen Li, Bofang Li, and Xiaoyong
Du. 2017. Ngram2vec: Learning improved word
representations from ngram co-occurrence statistics.
In Proceedings of the 2017 conference on empirical

methods in natural language processing, pages 244—
253.

A Task order

We use the following task orders (chosen randomly)
for text classification:

* Kindle_Store — Arts_Crafts_and_Sewing
— Electronics — Magazine_Subscriptions
— Pet_Supplies — Sports_and_Outdoors
— Prime_Pantry — Office_Products

322

— Movies_and_ TV — Automotive —
CDs_and_Vinyl — Gift_Cards — Digi-
tal_Music — Clothing_Shoes_and_Jewelry
— Home_and_Kitchen — Software —
Grocery_and_Gourmet_Food

Pet_Supplies — Gift_Cards — Electronics
— Prime_Pantry — Office_Products — Dig-
ital_Music — Magazine_Subscriptions —
Home_and_Kitchen — CDs_and_Vinyl —
Grocery_and_Gourmet_Food

Digital_Music — Arts_Crafts_and_Sewing
- Office_Products - Maga-
zine_Subscriptions — Kindle_Store —
Software — Automotive — Prime_Pantry
— Grocery_and_Gourmet_Food —
Movies_and_ TV — Electronics —
Home_and_Kitchen — Pet_Supplies
— CDs_and_Vinyl — Cloth-
ing_Shoes_and_Jewelry — Gift_Cards

Magazine_Subscriptions —
Sports_and_Outdoors — Dig-
ital_Music — Electronics —
Prime_Pantry - CDs_and_Vinyl
N Grocery_and_Gourmet_Food —

Home_and_Kitchen — Software —
Arts_Crafts_and_Sewing - Cloth-
ing_Shoes_and_Jewelry — Pet_Supplies
— Office_Products — Kindle_Store —
Gift_Cards

323

