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Abstract

Users often leave feedback on a myriad of as-
pects of a product which, if leveraged success-
fully, can help yield useful insights that can
lead to further improvements down the line.
Detecting actionable insights can be challeng-
ing owing to large amounts of data as well as
the absence of labels in real-world scenarios. In
this work, we present an aggregation and graph-
based ranking strategy for unsupervised detec-
tion of these insights from real-world, noisy,
user-generated feedback. Our proposed ap-
proach significantly outperforms strong base-
lines on two real-world user feedback datasets
and one academic dataset.

1 Introduction

Collecting vast amounts of user feedback on prod-
ucts and services is a common practice these days
for a multitude of companies. This can prove to
be a rich resource for product owners to improve
the quality of their product offerings, correct fail-
ures and gauge the general performance of their
product from both implicit and explicit signals that
might be present in the feedback. However, in most
cases, including the one we address in this work,
the feedback is unstructured and voluminous, and
can therefore remain underutilized for the most
part. In our particular use-case, we receive thou-
sands of textual feedback daily on average ', and it
is time-consuming and laborious for product own-
ers to manually extract actionable insights from
them.

Users leave feedback on a variety of aspects they
experience in the course of using the product (Table
1). These consist of functionalities they find useful
(calculate total size), issues they encounter when
attempting to perform an action (scroll sideways),
requests around enabling certain features (sort by

"'We take our responsibility to protect customer content

extremely seriously. For this research, we followed Amazon’s
Customer Content policy guidelines.

] User Feedback Examples \

loved the new calculate total size!
Please let me sort by Date Modified
Why can‘t I scroll sideways on my mac
specifically in the new console?

Table 1: Feedback examples from real-world (internal)
datasets that illustrate user issues and feature requests
when performing an action (underlined).

Date Modified), and so on. In this work, our goal
is to capture short informative phrases, or themes
which reflect actionable insights in the feedback.
In capturing these actionable insights, we wish to
focus on desired actions that users want to be able
to carry out (e.g. scroll sideways).

Owing to the influx of this data in large amounts,
and the cost of annotations, it often remains unla-
beled. Therefore, in this work, we present an un-
supervised framework to detect actionable insights
from such data. In order to capture these insights
from an aggregated view of the data, we propose
the following two-step approach: a) aggregating
similar feedback such that each cluster represents
coherent insights; b) detecting themes from clus-
ters that are pertinent to actionable insights. For
instance, in Figure 1, the red cluster consists of
feedback expressing users’ need to be able to down-
load several files at one time, for which a possible
theme could be download files. As seen in these
examples, the desired themes may consist of non-
contiguous tokens appearing in text and typically
contain a verb mentioning the action. Prior work
(see Section 2) uses keyphrase extraction which ex-
tracts contiguous words within a noun phrase and
thus, cannot capture the kind of actionable insights
we find in our data. We utilize unsupervised clus-
tering algorithms for the aggregation step, and a
graph-based ranking strategy for the theme detec-
tion step.
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Would be a nice feature if I could download
multiple files with one action.

i can't even select two <MASK> and view their
monitoring graphs at the same time.

provide the ability to download several files at once

Monitoring tab - cannot see a full view of a graph like

in the old experience. I could open the graph in <MASK>,
however it is easier to watch different graphs in full yiew
for comparison

download files
# view graphs

It would be nice to download more than one file at once.
Selecting them + action download would be super !

Figure 1: Our pipeline is illustrated above. User feed-
back documents are first grouped into various clusters.
Here, two clusters (blue and red), each representing
different insights are shown. For each cluster, we au-
tomatically identify a “theme” (right part of the figure)
that concisely captures the desired actions expressed
in the cluster, e.g. download files for the red cluster;
view graphs for the blue cluster. <MASK> tokens are
inserted to maintain anonymity when displaying the ex-
amples above.

Contributions of the paper:

* We propose a novel approach of identifying ac-
tionable user insights in an unsupervised manner.
We do so by framing the problem as a clustering
and cluster theme detection problem.

* Our approach is unique in the utilization of graph-
based ranking in the identification of cluster
themes, especially focused on capturing actions
that users want to perform.

* We find our method to significantly outperform
baselines on two real-world datasets and one aca-
demic dataset.

2 Related Work

There is limited work that focuses on uncovering
insights from real-world user feedback data. Most
of the work involves labeled academic datasets,
requiring approaches that involve some form of su-
pervision. For instance, Lin et al. (2012) involves a
weakly supervised joint sentiment-topic model that
detects sentiment and topic simultaneously from
text, applied to two labeled academic datasets. Ap-
proaches that are unsupervised (Qiu et al., 2021;
Liu et al., 2010) are largely based on Latent Dirich-
let Allocation (LDA) (Blei et al., 2003), which
yields distribution of unigrams as topics. Although
Qiu et al. (2021) adopt an unsupervised strategy, it
has not been explored on user feedback data. These
approaches are not directly applicable to our prob-
lem setting since we require short phrases focusing

on the performance of an action by the user.

Approaches such as TextRank (Kazemi et al.,
2020), SingleRank (Wan and Xiao, 2008), Ex-
pandRank (Wan and Xiao, 2008), TopicRank
(Bougouin et al., 2013), TopicalPageRank (Sterckx
et al., 2015), PositionRank (Florescu and Caragea,
2017), Bi-LSTM-CREF Sequence Labeling (Alzaidy
et al., 2019), FACE (Chau et al., 2020), and Mul-
tipartiteRank (Boudin, 2018) have been applied
to the task of key phrase extraction from docu-
ments as opposed to theme detection from clusters.
For cluster-labeling, there has been work around
using keyword extraction from clusters, utilizing
WordNet synsets to expand the keywords, followed
by a selection procedure to assign the final label
(Poostchi and Piccardi, 2018; Chang and McKe-
own, 2019). None of these approaches focus on
the extraction of short actionable phrases, a.k.a.
themes, as is our use case. In most of these ap-
proaches, candidate key phrases are assumed to
appear in contiguous positions in a document and
are concatenated to form phrases. As described
earlier (Figure 1), it is unrealistic to make such
assumptions on real-world user feedback data and
our proposed approach considers non-contiguous
candidate phrases as well.

3 Data
. # of samples
Split # of samples per intent
Train 15K 100
Dev 3K 20
Test 4.5K 30

Table 2: CLINC150 Data Statistics

In this work, we use two internal unlabeled
datasets containing user feedback in English on two
product offerings. The feedback collection pipeline
has opt-in and opt-out mechanisms in place to al-
low the user to decide whether their data can be
used for further analysis. User-specific information
has been removed from these datasets for privacy
and confidentiality reasons. These datasets vary
in content based on the specific product they con-
tain feedback about, and in the number of feedback
documents contained in each. We refer to them as
Prod; and Prod,. Prod; received orders of mag-
nitude more feedback than Prod,. For exploration
purposes we sampled about 10K documents for
Prod; and 1.5K documents for Prod,. In addition,
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II?;EI;; Document
find i need your help finding my lost
phone phone
i‘m inquiring about the availability
book
hotel of a room that fits 10 people from
monday to tuesday in manhattan
schedule | please find someone who specializes
mainte- in cars, my check engine light has
nance turned on

Table 3: Examples with various intent labels from
CLINC150 Dataset. Note that labels are utilized
merely for evaluation purposes.

we conduct evaluations and report results on an
intent classification dataset - CLINC150 (CC 3.0)
(Larson et al., 2019; Zhang et al., 2020) that con-
tains English utterances labeled with one of 150
intents, thereby containing document-level labels.
The data contains utterances from 10 domains, e.g.
Banking, Travel, Kitchen & Dining etc. Table 3
contains utterance examples. The intent labels in
this data (e.g. find phone, book hotel, schedule
maintenance, etc.) are similar in form to the clus-
ter themes we aim to discover from our product
feedback data, which makes it a good candidate for
evaluating our approach. We obtain proxy ground-
truth labels (details in Section 5.3) from the data to
evaluate and report metrics on this dataset. Note
that the labels were used for the sole purpose of
evaluation and not training, since the real-world
use case is in an unsupervised setting. We use the
same train/dev/test splits provided with this dataset,
statistics of which are reported in Table 2.

4 Methodology

In this section, we describe our proposed approach
for extracting themes that help in discovering in-
sights from user-generated text (outlined in Figure
2). In order to discover coherent emerging insights
from the vast amounts of user-generated data, we
first aggregate semantically similar feedback using
clustering algorithms, and extract a representative
set of documents per cluster. This is described in
Section 4.1. Thereafter, themes for these clusters
are generated as detailed in Section 4.2. The entire
pipeline is unsupervised.
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can you re
can you
| Clustering }——-i Representative set selection

Noun Phrase
Extraction

Graph-based Candidate Theme |, Depenc!ency -
Ranking Extraction Parsing

tell tive pressure

Figure 2: Outline of proposed approach.

4.1 Document Aggregation & Representative
Set Selection

Documents are embedded using Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019), which we
find to capture semantic similarity well even for our
internal datasets. k-means (MacQueen et al., 1967)
is selected as our clustering approach of choice. Ad-
ditionally, we explore the use of DNN-based clus-
tering approaches such as Deep Embedded Clus-
tering (DEC) (Xie et al., 2016) which has been
shown to outperform k-means for a few academic
text classification datasets (e.g. REUTERS (Lewis
et al., 2004)). When applied to our real-world user-
generated text, we find DEC to perform well on
the larger dataset, Prod; but not on the smaller
dataset Prod, (Table 4), while k-means performs
well across both datasets. Thus, for the remainder
of the paper, we report results using k-means as the
clustering strategy.

Based on the hypothesis that the centroid of a
cluster is representative of the overall cluster itself,
we rank documents based on their proximity to the
centroid for each cluster. 10 documents closest
to the centroid per cluster are subsequently con-
sidered for cluster label detection. We chose 10
documents as it provided a good balance between
having good representative members of the cluster
while also ensuring that we have very few noisy
cluster members, if any. Henceforth, we refer to
these as the representative set of a cluster.

4.2 Unsupervised Cluster Theme
Identification

Here, we describe the procedure for cluster theme
identification. =~ As previously mentioned, our
themes could consist of non-contiguous tokens. We
begin by extracting candidate themes using a depen-
dency parsing approach, followed by a graph-based
ranking strategy to assign a theme per cluster.



tell

oo me . [ ny

mod
pressure in
ADP PRON NOUN

can
AUX PRON VERB PRON DET NOUN NOUN

Figure 3: Example of dependency parsing output on
CLINC150 utterance.

4.2.1 Cluster Theme Candidate Extraction

* Noun Phrase Extraction: Nouns, Proper Nouns
and Noun Phrases are extracted from the repre-
sentative set per cluster. All pronouns that oc-
cur in the beginning/end of noun phrases are re-
moved, e.g. my check engine light converted to
check engine light. This is done to capture more
generic noun phrases. Those that occur > 2 times
throughout the ranked set are retained.

* Dependency Parsing: We run a Dependency

Parser and extract all verbs for which any of the

above selected set of nouns and noun phrases are

a nominal subject or object. For instance in Fig.

3, tire pressure is an object for verb fell.

Candidate Theme Extraction: Phrases of the

form <VERB, NOUN> are thus constructed. For

cases where the Noun is part of a previously se-
lected noun phrase, we expand the phrases to
<VERB, NP>. These act as candidate themes for

a given cluster.

4.2.2 Graph-based Ranking for Theme
Identification

Graph-based ranking algorithms are often em-
ployed in approaches for unsupervised document
summarization to measure the importance of a sen-
tence for inclusion in a summary (Erkan and Radev,
2004; Zheng and Lapata, 2019). We apply a similar
approach for cluster theme detection. Inspired by
these approaches, we construct a graph per cluster,
where the nodes consist of the candidate themes
and the edge weights capture the semantic similar-
ity between pairs of themes, obtained using cosine
similarity between SBERT embeddings of corre-
sponding themes. We then use a graph-based rank-
ing strategy, PageRank (Brin and Page, 1998) and
assign the phrase with the highest rank as the clus-
ter theme.

5 Experiments

In this Section, we describe the experimental de-
tails of the pipeline, and provide details on the
baselines we compare with.

5.1 Data Processing

Since user-generated text tends to be noisy in na-
ture, we preprocess our internal datasets before-
hand. This includes converting to lowercase, re-
moving URLSs, special characters, and removing
text consisting only of digits. For CLINC150,
the only pre-processing performed is to replace
underscores in the intent labels with spaces, i.e.
book_hotel converted to book hotel, since the gen-
erated themes are of a similar form.

5.2 Baselines

We use two baselines to compare with, which are
described below.

Poostchi and Piccardi (P&P) This work pro-
poses an approach for cluster labeling by leverag-
ing word embeddings and the synonymy and hyper-
nymy relations in the WordNet (Miller, 1995) lexi-
cal ontology. Similar to Chang and McKeown who
adapt this method for their clusters, we perform the
following steps for each of our clusters. We extract
keywords using RAKE (Rose et al., 2010) from
the representative set per cluster, to ensure a fair
comparison with our methodology. Hypernyms of
the component words (restricted to Nouns) of these
keywords are obtained, expanded by synonyms
(via synsets, WordNet’s synonym sets). We use
CentHyp - the best strategy as per Poostchi and Pic-
cardi, to assign the final cluster label. This selects
hypernyms that are most central w.r.t. the centroid
of the cluster. SBERT embeddings are used for
this purpose, to ensure a fair comparison with our
approach. Since we could not find offical code for
this work, we used our own implementation.

Random baseline We also compare with a ran-
dom baseline in which the cluster theme is selected
at random from the generated set of cluster themes
using our proposed approach (Section 4.2.1).

Dataset Mean Accuracy Score (Human
Eval)
k-means ‘ DEC
Prod, 90.0 80.0
PI‘Od2 65.0 45.0

Table 4: k-means and DEC clustering algorithms com-
pared on the internal datasets. Annotators provide a
score of 0 or 1 to the clusters, based on whether they
agree with the quality. Average accuracy per annotator
is computed. Scores reported in this table are an average
of the annotator scores.
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5.3 Evaluation Strategies & Metrics Reported

CLINC150 For this dataset, we leverage the
document-level intent labels to generate a proxy
groundtruth label per cluster. The same represen-
tative set (as in Section 4.1) is selected per cluster
and the cluster theme is determined by a majority
vote over the intent labels of these documents. For
the rare case where there is no clear majority, we
consider the label of the centroid to be the clus-
ter label. We compute METEOR (Denkowski and
Lavie, 2014) and BERTScore (Zhang et al., 2019)
metrics w.r.t. the model outputs and proxy labels
for our baselines as well as the proposed approach.

| Data | Method] METEOR | BERTScore |

P&P 21.30 0.8892
+0.69 +0.0033

Dev | pandoml  21.12 0.8921
+0.27 +0.0021

Ours 25.79 0.8962
+0.55 +0.0023

P&P 20.94 0.8912
+1.37 +0.0034

Test | pondoml  19:59 0.8955
+1.47 +0.0023

Ours 25.31 0.9026
+0.69 +0.0018

Table 5: Mean and standard deviation for METEOR
and BERTScores reported for the proposed approach
(Ours) against baselines, P&P (Poostchi and Piccardi)
and Random on CLINC150, for 3 runs.

Internal Datasets Since Prod; and Prod; do not
contain labels either on the document or cluster
level, we utilize human annotations to evaluate the
efficacy of our methodology w.r.t. the baselines.
We employ 2 internal annotators who are presented
with the cluster themes generated on both datasets,
and the representative set of documents per cluster
that the themes were detected from. An annotator
votes 1 if they completely agree with the cluster
theme, O if they completely disagree. The final
scores are an average of the scores of both annota-
tors. IAA (Cohen’s kappa) score is 0.72.

5.4 Modeling Details

We use Stanford Stanza (Qi et al., 2020) for POS
tagging and dependency parsing, and scikit-learn’s
(Pedregosa et al., 2011) k-means implementation
for clustering. Using input number of clusters to
be the same as the number of intent labels k = 150

Human
Dataset Method | o Iuation Score

P&P 32.89

Random 29.70

Prod; Ours 72.60
P&P 16.67

Random 8.00

Prod, Ours 40.00

Table 6: Performance of the proposed approach (Ours)
against baselines, P&P (Poostchi and Piccardi) and Ran-
dom on our internal datasets.

yields the best results for CLINC150. For our in-
ternal datasets, £ = 150 for Prod; and k = 25 for
Prod, are used. For PageRank, we use networkx’s
(Hagberg et al., 2008) package, with maximum
number of iterations set to 100. CPU-based com-
puting instances are used for both baselines and our
methodology.

(Proxy) Baseline
Cluster (P&P) Pregi‘gion
Theme Prediction
pay bill electric bill pay bill
calendar check check
calendar
meeting toda schedule
schedule Y meeting
. . update
insurance insurance .
chanoe olic insurance
£ policy policy
shopping list ShO[.)plIlg buy milk
list
change accent change change voice

Table 7: Comparing cluster theme predictions from P&P
(Poostchi and Piccardi) & our approach on CLINC150
test set. Themes in bold are those that are qualitatively
most similar to the proxy cluster theme.

6 Results

Model performance on CLINC150 Table 5 il-
lustrates the performance of the baseline models
and our proposed approach on the dev and test
splits of the CLINC150 dataset, over 3 experimen-
tal runs.

Dev set:  Statistical significance tests conducted
show that on the dev set, our methodology signifi-
cantly outperforms random baseline on METEOR
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Representative set of documents per cluster

P&P

Ours

- The new monitoring tab is very poor. It doesn’t show enough data
and you can’t click on graphs to get detailed views.

- I cannot see the monitoring of 2 <MASK> <MASK> side by side.
Unreliable reporting of metrics, graphs are sometime unavailable.
- i can’t even select two <MASK> and view their monitoring graphs
at the same time.

detailed view

view graphs

- Need to see the <MASK> alarms setup per <MASK> like before
instead of loosing this functionality in a new <MASK>.
- I miss the alarm status ""button"" that shows all alarms connected
to <MASK> <MASK>
- On the new <MASK> dashboard all alarms connected to <MASK>
<MASK> do not show as it does in the old console. On the old

console you get a direct view if any of your <MASK> has any issues
while we on the new get that there are no alarms for the <MASK>.

alarms

shows alarms

Table 8: Comparing cluster themes from the baseline P&P method (Poostchi and Piccardi, 2018) vs ours. The
documents are in ascending order of proximity to centroid. Text in bold highlights themes that best capture the

action being performed by a user.

score by 4.67 points on average (p-value 0.0004).
On mean BERTScore, we outperform the random
baseline by 0.0041 points (p-value 0.1449). Com-
pared with (Poostchi and Piccardi, 2018), we find
our methodology to yield a significantly better per-
formance on METEOR score - an increase of 4.49
points (p-value 0.003). Further, we outperform
Poostchi and Piccardi (2018) on BERTScore by
0.007 points (p-value 0.148).

Test set:  We significantly outperform both base-
lines - random and Poostchi and Piccardi (2018),
by 5.72 points (p-value 0.0076) and 4.37 points
(p-value 0.0159) respectively, on METEOR score.
Performance gains obtained using our method over
both baselines for BERTScore are also statistically
significant - an increase of 0.0071 points (p-value
0.0293) w.r.t. random baseline and that of 0.0114
points (p-value 0.0132) w.r.t. Poostchi and Piccardi
(2018).

Model performance on Internal datasets Table
6 demonstrates the significant boost in performance
our proposed approach provides over the baselines,
as measure by human evaluation scores. We find
our approach to outperform both baselines by a
large margin for both datasets. On Prod;, we im-
prove upon the random baseline by 42.9 points
and upon Poostchi and Piccardi (2018) by 39.71
points. For Prod,, we obtain an improvement of 32
points w.r.t. the random baseline and 23.33 points
as compared to Poostchi and Piccardi (2018).

Error Analysis In Tables 7 and 8, we present
examples comparing the cluster theme predictions
from Poostchi and Piccardi (2018) with ours on
the CLINC150 test set, and our internal datasets,
respectively. Our method is able to yield more
descriptive phrases as cluster themes, that help cap-
ture the action being performed. In comparison,
the baseline captures shorter and less descriptive
phrases. For instance, our method generates themes
such as pay bill and update insurance policy on
clusters from the CLINCI150 test set, where the
corresponding baseline themes are electric bill and
insurance policy, respectively. Similarly, for a clus-
ter from the internal dataset (Prod;), the theme
assigned by our proposed approach is show alarms,
whereas the theme detected by the baseline method
is alarms.

7 Conclusion & Future Work

This work addresses the problem of discovering
actionable insights from unlabeled real-world user
feedback data, in an unsupervised fashion. Data is
clustered into groups containing coherent insights,
followed by theme detection per cluster using a
graph-based ranking approach. Experiments con-
ducted on two real-world user feedback datasets
as well as an academic dataset show our proposed
approach to significantly outperform baselines by
a large margin. In the future, we would expand the
scope of our work to datasets with other characteris-
tics and distributions (e.g. review datasets) to study
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the applicability of our approach to those use-cases.
Further, we would explore the use of generative
models to obtain abstractive themes from data.
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