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Abstract

We introduce ReFinED, an efficient end-to-end
entity linking model which uses fine-grained
entity types and entity descriptions to perform
linking. The model performs mention detec-
tion, fine-grained entity typing, and entity dis-
ambiguation for all mentions within a docu-
ment in a single forward pass, making it more
than 60 times faster than competitive existing
approaches. ReFinED also surpasses state-of-
the-art performance on standard entity linking
datasets by an average of 3.7 F1. The model
is capable of generalising to large-scale knowl-
edge bases such as Wikidata (which has 15
times more entities than Wikipedia) and of zero-
shot entity linking. The combination of speed,
accuracy and scale makes ReFinED an effec-
tive and cost-efficient system for extracting en-
tities from web-scale datasets, for which the
model has been successfully deployed. Our
code and pre-trained models are available at
https://github.com/alexa/ReFinED.

1 Introduction
Entity linking (EL) is the task of recognising men-
tions of entities in unstructured text documents
and linking them to the corresponding entities in
a Knowledge Base (KB), such as Wikidata. EL is
commonly a first stage in systems for question an-
swering (Wang et al., 2021), automated KB popula-
tion (Hoffmann et al., 2011), and relation extraction
(Baldini Soares et al., 2019).

Currently, EL systems use deep learning meth-
ods to learn representations for entities and men-
tions (Ganea and Hofmann, 2017; Le and Titov,
2018). Initial techniques learned representations
from text alone, which relied on entities appearing
in similar contexts in the training data and meant
models were only able to link mentions to entities
that appeared in the training data. This is problem-
atic both as KBs are continuously growing, and as
it is infeasible to build an EL dataset containing all
entities in a large KB (such as Wikidata with over

90 million entities). The largest public EL dataset
is Wikipedia (using internal hyperlinks as labels),
which covers just 3% of the entities in Wikidata.

Recent models addressed this problem by pro-
ducing entity representations from a subset of KB
information, e.g., entity descriptions (Wu et al.,
2020; Logeswaran et al., 2019) or fine-grained en-
tity types (Onoe and Durrett, 2020; Raiman and
Raiman, 2018), allowing linking to entities not
present in the training data or added to the KB after
training; termed “zero-shot” in the EL literature.1

However, existing zero-shot-capable EL ap-
proaches are an order of magnitude more computa-
tionally expensive than non-zero-shot models (van
Hulst et al., 2020) as they either require numerous
entity types (Onoe and Durrett, 2020), multiple
forward passes of a large-scale model to encode
mentions and descriptions (Wu et al., 2020), or re-
generation of the input text autoregressively (Cao
et al., 2020). This makes large-scale processing ex-
pensive and thus makes it difficult to benefit from
many advantages of zero-shot EL, e.g. the ability
to keep up-to-date with new or updated KBs.

In this paper, we propose an efficient end-to-
end zero-shot-capable EL model, ReFinED2, which
uses fine-grained entity types and entity descrip-
tions to perform entity linking or entity disambigua-
tion (ED; where entity mentions are given). We
show that combining information from entity types
and descriptions in a simple transformer-based en-
coder yields performance which is stronger than
more complex architectures, surpassing state-of-
the-art (SOTA) on 4 ED datasets and 5 EL datasets,
and improving overall EL performance by 3.7 F1
points on average across 8 datasets. Importantly,
ReFinED performs mention detection, fine-grained
entity typing, and entity disambiguation for all men-

1Note the difference to “zero-shot” in the language-model
literature, which refers to using no training data for the task.

2ReFinED stands for Representation and Fine-grained typ-
ing for Entity Disambiguation.
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tions within a document in a single forward pass,
making it comparable in terms of inference speed to
non-zero-shot models. It is 6 times faster than the
most efficient zero-shot-capable baseline (which
has 9 F1 points lower performance), and more than
60 times faster than more accurate systems (which
come within 3 F1 points of ReFinED’s average ED
performance).

As opposed to previous EL models which pri-
marily use Wikipedia as the target KB, ReFinED
targets Wikidata, which enables it to link to 15
times more entities. This is because prior work
uses information (e.g. titles, categories, first sen-
tences) from Wikipedia to perform linking. It is
unclear whether prior work could be expanded to
Wikidata without a drop in performance because
entity descriptions are less informative and there
are fewer types per entity (Weikum et al., 2021).

The combination of high accuracy, scalability
(with respect to KB size) and fast inference speed
makes ReFinED a strong choice for a “web-scale”3

EL system, in which cost scales approximately lin-
early with inference speed. We have successfully
deployed ReFinED to production in a real-world
application and share the lessons learned in Section
6.

Our contributions are as follows:

1. We build a simple and efficient zero-shot capa-
ble end-to-end EL model using entity descrip-
tions and entity typing, which outperforms
previous approaches on standard-EL datasets
by 3.7 F1 points on average.

2. We demonstrate our model is more than 6
times faster than existing low-accuracy zero-
shot capable systems, and 60 times faster than
higher-accuracy systems, whilst also being
capable of disambiguating against Wikidata-
scale entity sets. The combination of accuracy,
speed and scale makes the model suitable for
web-scale information extraction.

3. We release our code and models.

2 Related work
Single architecture for entity linking EL con-
sists of two main tasks, mention detection (MD)
and ED. MD involves recognising mentions of en-
tities in text, and ED assigns a KB entity to each
mention. We follow (Kolitsas et al., 2018) in train-
ing a joint model for MD and ED.

3We refer to corpora with more than 1 billion documents
as “web-scale”.

Entity disambiguation with fine-grained entity
typing In Onoe and Durrett (2020) and Raiman
and Raiman (2018) ED is formulated as an entity
typing problem. A fine-grained entity typing model
is trained on a distantly-supervised dataset consist-
ing of over 10k types derived from Wikipedia cate-
gories (e.g. movies released in a specific year). The
entity typing model is then used to link entities. We
extend their approach to Wikidata, by using a sub-
set of Wikidata triples for providing types instead
of Wikipedia categories.

Entity disambiguation with entity descriptions
Several recent works have used entity descriptions
for ED (Wu et al., 2020; Logeswaran et al., 2019).
Typically, descriptions are sourced from Wikipedia
by joining the entity’s title with the first sentence
of the Wikipedia article. Entities are ranked by con-
catenating mention context and entity description,
then passing each mention-entity pair to a cross-
encoder. Wu et al. (2020) shows a cross-encoder
outperforms a bi-encoder, with the latter missing
many fine-grained interactions between context and
description. In our work, we find that a bi-encoder
is sufficient to achieve SOTA performance when
combined with fine-grained entity typing, and gen-
eralise the approach from Wikipedia (6M entities)
to Wikidata (90M entities).4

3 Proposed method

3.1 Task Formulation

Given a KB5 with a set of entities E =
{e1, e2, . . . , e|E|}, let X = [x1, x2, . . . , x|X|] be
a sequence of tokens in the document, and M =
{m1,m2, ...m|M |} be a set of entity mentions. The
goal of ED is to create a function M : M → E
which assigns each mention the correct entity label.
In EL, both the mention spans and entity labels
need to be predicted. We only consider mentions
with a valid gold entity in the KB during evaluation.

3.2 Overview

We propose an end-to-end EL model which is
jointly optimised for mention detection, fine-
grained entity typing, and entity disambiguation for
all mentions within a document in a single forward
pass. In this section, we describe the components
of our model, depicted in Figure 1.

4We replace Wikipedia titles with Wikidata labels, and
Wikipedia sentences with Wikidata entity descriptions.

5We assume entities in the KB have a textual description
and a collection of facts.
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Figure 1: Our model architecture shown for a document with two mentions, England and FIFA World Cup. The
model performs mention detection, entity typing, and entity disambiguation for all mentions in a single pass.

3.3 Context representation

We encode the tokens xi in the input text docu-
ment using a Transformer model. We use the con-
textualised token embeddings from the final layer,
denoted as hi for the token xi.6

3.4 Mention detection

Entity linking requires entity mentions to be pre-
dicted. We encode mentions using the BIO tagging
format (Ramshaw and Marcus, 1995) with 3 labels
which indicate whether a token is at the beginning,
inside of, or outside of a mention. We train a lin-
ear layer to perform token classification from the
contextualised token embeddings hi using cross-
entropy loss Lm with respect to the gold token
labels.

3.5 Mention representation

A fixed-length embedding mi for each mention mi

is obtained by average pooling the contextualised
tokens embeddings of the mention. All mentions
M in a document X are encoded in a single for-
ward pass, which improves efficiency relative to
previous work that require a forward-pass for each
mention (Wu et al., 2020; Orr et al., 2021).

3.6 Entity typing score ϕ

Given a fixed set of types t ∈ T from a KB, where
t is a relation-object pair (r, o) (e.g. (instance of,
song)), we predict an independent probability for
each type t for each mention by applying a linear
layer f1 followed by a sigmoid activation to the
mention embedding mi. To score mention-entity
pairs using predicted types, we calculate the Eu-
clidean distance (L2 norm) between predicted types

6We use bold letters for vectors throughout our paper, and
treat mi and mi as different terms.

and the candidate entity’s types cj binary vector7:

ϕ(ej ,mi) = ∥σ(f1(mi))− cj∥2 (1)

We follow Onoe and Durrett (2020) by training
the entity typing module on distantly-supervised
type labels from the gold entity using binary cross-
entropy loss Lt. See Appendix A for details on the
choice of types T .

3.7 Entity description score ψ

We use a bi-encoder architecture similar to the
work of Wu et al. (2020) but modified to encode
all mentions mi in a document simultaneously (as
explained in Section 3.5). We represent KB entities
as:

[CLS] label [SEP] description [SEP]
where label and description are the tokens of the
entity label and entity description in the KB. We
use a separate Transformer model (trained jointly
with our mention transformer) to encode the rep-
resentation of KB entities ej into fixed dimension
vectors (description embeddings) dj by taking final
layer embedding for the [CLS] token. We apply
linear layers f2 and f3 to the mention embeddings
mi and entity description embeddings dj respec-
tively to project them to a shared vector space. We
calculate the dot product between the two projected
embeddings to compute the entity scores:

ψ(ej ,mi) = f2(mi) · f3(dj) (2)

We train this module using cross-entropy loss Ld,
with respect to gold entity label.

3.8 Combined score ω

We compute a combined score ω by applying a
linear layer (with output dimension 1) f4 on top

7We use 1 to indicate the presence of an entity type and 0
the absence of an entity type for our binary vector. Note that a
single entity can have multiple entity types.
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of the concatenation of entity typing score, entity
description score, and a global entity prior P̂ (e|m).
The global entity prior is obtained from a corpus
(Hoffart et al., 2011) or a popularity metric (Diefen-
bach and Thalhammer, 2018). We include P̂ (e|m)
to improve results for cases where context is lim-
ited (e.g. short question text). In addition, we add
a special candidate for the NIL entity with an un-
normalised score of 0, which indicates none of the
candidate entities are correct.

ω(ej ,mi) = f4(ψ(ej,mi);ϕ(ej,mi); P̂ (ej|mi))
(3)

We train this module using cross-entropy loss Lc

with respect to the gold entity label.

3.9 Optimisation and inference

We optimise the model using a weighted sum of the
module-specific losses with fixed weights, which
are tunable hyperparameters. At training time, we
use the provided mention spans instead of the pre-
dicted mention spans and train mention detection
alongside the other tasks:

L = λ1Lm + λ2Lt + λ3Ld + λ4Lc (4)

For EL inference, we use the predicted mention
spans and take the KB entity (or NIL) with the
highest combined score. For ED inference, we use
the provided gold mention spans.

3.10 Zero-shot ED

Our proposed method is able to link to zero-shot
(unseen during training) entities because it scores
entities based on types and descriptions. New enti-
ties can be introduced by updating entity lookups.

4 Experiments

4.1 Entity disambiguation

Non-zero-shot ED We evaluate our model on
the ED task using the same experimental setting
as previous work (Ganea and Hofmann, 2017; Le
and Titov, 2018; Cao et al., 2020). We pretrain
on Wikipedia, then use the AIDA-CoNLL dataset
(Hoffart et al., 2011) to fine-tune and evaluate.
We measure out-of-domain performance on the
datasets MSNBC (Cucerzan, 2007), AQUAINT
(Milne and Witten, 2008), ACE2004 (Ratinov et al.,
2011), WNED-CWEB (CWEB) (Gabrilovich et al.,
2013) and WNED-WIKI (WIKI) (Guo and Bar-
bosa, 2018). We report InKB micro-F1 (Röder
et al., 2018). We also evaluate on AIDA-CoNLL
using the candidate list generated by Pershina et al.

(2015), known as PPRforNED, for the sake of com-
parison with previous SOTA results.

Zero-shot ED To compare our method to previ-
ous work, we measure zero-shot ED performance
using the WikiLinksNED Unseen Mentions dataset
(Eshel et al., 2017; Onoe and Durrett, 2020). The
dataset contains a diverse set of ambiguous entities
spanning multiple domains. We train our model on
the provided training data and evaluate accuracy on
the test set for seen and unseen (zero-shot) entities.

4.2 Entity linking

Non-zero-shot EL Following previous work
(Kolitsas et al., 2018; Cao et al., 2020), we use the
GERBIL platform (Röder et al., 2018) to evaluate
EL. We evaluate InKB micro-F1 with strong match-
ing (predictions must match exactly the gold men-
tion boundaries). Similarly to the non-zero-shot
ED experiment, we pretrain on Wikipedia, then
use the AIDA-CoNLL dataset for fine-tuning and
evaluation. For out-of-domain performance evalua-
tion we use MSNBC (Cucerzan, 2007), OKE-2015,
OKE-2016 (Nuzzolese et al., 2015), N3-Reuters-
128 (R128), N3-RSS-500 (Röder et al., 2014), Der-
czynski (Derczynski et al., 2015), KORE50 (Hof-
fart et al., 2012).

4.3 Inference speed

We compare the computational efficiency of our
model to three high-performing EL systems (Wu
et al., 2020; Cao et al., 2020; Orr et al., 2021) for
which code is available. We benchmark both modes
of BLINK (Wu et al., 2020); the bi-encoder (en-
codes mention and entities independently) and the
more accurate cross-encoder (encodes mention and
entities jointly).8 We measure the time to perform
end-to-end EL inference on the AIDA-CoNLL test
dataset using a single V100 GPU. The dataset con-
sists of 231 documents and 4464 mentions.

4.4 Training details

Candidate generation We follow Le and Titov
(2018) by selecting the top-30 candidate entities
using entity priors.9 For training, we only keep 5
candidates, 1 gold candidate, 2 candidates with the
highest p̂(ej |mi) and 2 random candidates. When
the gold entity is not in the candidate list during
training, we use NIL as the correct label.

8We use a max context length of 128 tokens and pre-
computed entity embeddings for the bi-encoder. For the cross-
encoder, we use max context length of 32 tokens.

9Derived from Wikipedia hyperlink count statistics,
YAGO, a large Web corpus and Wikidata aliases.
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Method AIDA MSNBC* AQUAINT* ACE2004* CWEB* WIKI* Avg.

Yang et al. (2018) 93.0 92.6 89.9 88.5 81.8 79.2 87.5
Yang et al. (2019) 93.7 93.8 88.3 90.1 75.6 78.8 86.7
Fang et al. (2019) 94.3 92.8 87.5 91.2 78.5 82.8 87.9
Wu et al. (2020)† 86.7 90.3 88.9 88.7 82.6 86.1 87.2
Cao et al. (2020) 93.3 94.3 89.9 90.1 77.3 87.4 88.7
Orr et al. (2021)∗∗ 80.9 80.5 74.2 83.6 70.2 76.2 77.6

ReFinED (Wikipedia) 87.5 94.4 91.8 91.6 77.8 88.7 88.6
ReFinED (fine-tuned) 93.9 94.1 90.8 90.8 79.4 87.4 89.4

Ablations w/o entity priors (Wikipedia) 86.3 93.7 86.0 92.8 76.0 88.3 87.2
w/o entity types (Wikipedia) 82.2 92.6 91.1 90.1 76.5 87.0 86.6
w/o descriptions (Wikipedia) 85.7 93.9 89.5 91.2 76.1 84.3 86.8
w/o pretraining (fine-tuned) 88.2 92.3 86.8 90.6 75.1 74.5 84.6

Table 1: ED InKB micro F1 scores on in-domain and out-of-domain test sets. The best value in bold and second best
is underlined. †Normalised accuracy is reported. *Out-of-domain datasets. ∗∗Result obtained using code released
by authors.

Wikipedia pretraining We use Wikidata as our
KB (i.e. for entity types and descriptions). To
make comparisons reliable, we restrict to the set of
entities in English Wikipedia (total of 6.2M). We
build a training dataset from the 2021-02-01 dump
of Wikipedia and Wikidata and use hyperlinks as
entity labels. To increase entity label coverage,
we add weak labels to mentions of the article en-
tity (Orr et al., 2021; Broscheit, 2019; Cao et al.,
2020).10 The dataset consists of approximately
100M mention-entity pairs. We use entity labels to
generate entity type labels, as in Onoe and Durrett
(2020). In addition, we follow Févry et al. (2020)
by adding mention labels to unlinked mentions us-
ing a named entity recogniser to provide additional
mention detection signal.

Model details We divide the documents into
chunks of 300 tokens and subsample 40 mentions
per chunk during pretraining. The model is trained
for 2 epochs on Wikipedia and the transformers are
initialised with RoBERTa (Liu et al., 2019) base
weights. The description transformer has 2 layers.
BERT-style masking (Devlin et al., 2019) is applied
to mentions during pretraining. During fine-tuning
and evaluation, we increase the sequence length to
512 and set the maximum candidate entities to 30.

5 Results

5.1 Entity disambiguation

Non-zero-shot ED We report InKB micro-F1
(with and without fine-tuning on AIDA) and com-
pare it with SOTA ED models in Table 1. Our
model performs strongly across all datasets, sur-
passing the previous average F1 across the 6

10We add weak labels by using simple heuristics such as
matching mentions to the page’s title.

datasets by 0.7 F1 points. We observe the model
achieves SOTA performance on 4 out of the 6
datasets without fine-tuning, suggesting it is able
to learn patterns from Wikipedia that transfer well
to other domains. Nonetheless, fine-tuning on the
AIDA-CoNLL dataset leads to a substantial im-
provement (+6.4 F1 points) which can be attributed
to the model learning peculiarities of the dataset
(e.g. cricket score tables).

The ablations in Table 1 show entity types and
entity descriptions are complementary (+2.0 F1
points when combined). This is explained by in-
creased robustness to partially missing entity in-
formation (e.g. KB entities without descriptions)
and different knowledge being expressed. Entity
priors are useful but contribute less than other com-
ponents of our combined score (Section 3.8). With-
out priors, F1 falls by 5.0 points on AQUAINT
and increases by 1.2 points on ACE2004, which
is expected as AQUAINT contains a high propor-
tion of popular entities, and ACE2004 more rare
entities. Pretraining has the largest impact on ED
performance, particularly on datasets such as WIKI
(+12.0 F1) derived from encyclopedia text.

Method AIDA

Onoe and Durrett (2020) 85.9
Raiman and Raiman (2018) 94.9
Orr et al. (2021) 96.8

ReFinED (Wikipedia) 89.1
ReFinED (fine-tuned) 97.1

Table 2: ED accuracy on AIDA-CoNLL using
PPRForNED candidates.

Table 2 shows accuracy on the AIDA-CoNLL
dataset when we use PPRforNED candidates. Re-
FinED outperforms purely entity typing approaches
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Method AIDA MSNBC* DER* K50* R128* R500* OKE15* OKE16* Avg.

Hoffart et al. (2011) 72.8 65.1 32.6 55.4 46.4 42.4 63.1 0.0 47.2
Kolitsas et al. (2018) 82.4 72.4 34.1 35.2 50.3 38.2 61.9 52.7 53.4
van Hulst et al. (2020) 80.5 72.4 41.1 50.7 49.9 35.0 63.1 58.3 56.4
Cao et al. (2020) 83.7 73.7 54.1 60.7 46.7 40.3 56.0 50.0 58.2

ReFinED (Wikipedia) 77.8 70.0 49.0 65.9 52.6 40.1 65.0 59.5 60.0
ReFinED (fine-tuned) 84.0 71.8 50.7 64.7 58.1 42.0 64.4 59.1 61.9

Table 3: EL InKB micro F1 scores on in-domain and out-of-domain test sets reported by Gerbil. The best value in
bold and second best is underlined. *Out-of-domain datasets.

(Raiman and Raiman, 2018; Onoe and Durrett,
2020) by a margin of +2.2% accuracy, due to the
addition of entity descriptions.

Zero-shot ED In Table 4, we report ED accuracy
on the WikiLinksNED Unseen Mentions test set
for seen and unseen entities. Our model outper-
forms the baseline by 3.0 F1, with, surprisingly,
6.6% higher accuracy for unseen than for seen en-
tities. We find this is partly due to higher top 30
candidate recall for the unseen entity subset (95.0%
compared to 91.1% for the seen entity subset) and
also because our mention masking strategy reduces
the reliance of entities appearing in the training
data with similar surface forms. Moreover, Re-
FinED uses entity types and descriptions to link
entities instead of relying on entity memorisation,
which means the number of training examples for
a given entity will not necessarily correlate with
performance. The number of similar entities in the
training dataset and the ambiguity of the test ex-
amples (Provatorova et al., 2021) will likely have
more significant influence on performance.

Method Seen Unseen Total

Cao et al. (2020) 64.3 63.2 63.5

ReFinED 61.6 68.2 66.5

Table 4: ED accuracy on WikiLinksNED Unseen Men-
tions test.

5.2 Entity linking

EL results are shown in Table 3. ReFinED outper-
forms other models on all but 3 datasets, often by
a considerable F1 point margin (e.g. 7.8 on N3-
Reuters-128 and 4.0 on KORE50) and improves
the average across all 8 datasets by 3.7 F1 points.
EL improves as ED and mention detection can gen-
eralise to different datasets due to the model being
pretrained on Wikipedia hyperlinks as opposed to

only AIDA-CoNLL. We also report results on the
ISTEX and WebQSP datasets in Appendix C.

5.3 Inference speed

Table 5 shows the time taken to run inference on the
AIDA-CoNLL test dataset, alongside the average
ED performance. ReFinED is 6 times faster than
the BLINK (Wu et al., 2020) bi-encoder, which also
has an average F1 which is 9 points lower. Com-
pared to the higher accuracy systems, ReFinED is
60 times faster than the BLINK cross-encoder, and
140 times faster than the autoregressive approach
of Cao et al. (2020). This is because ReFinED uses
a single forward pass to jointly encode all mentions
and candidate KB entities in the document (512
token chunk), and hence requires ≈ 231 forward
passes for the full dataset. The bi-encoder model
requires ≈ 4464 forward passes as mentions are en-
coded individually, and the cross-encoder baseline
requires ≈ 90k forward passes as each mention is
encoded with each candidate. The autoregressive
approach suffers from high computational cost due
to the deep decoder, which generates a single token
at a time. Also, all baselines require a separate
model for MD whereas ReFinED performs end-
to-end EL using a single model, which improves
efficiency and simplifies model deployment.

Method Time taken (s) Avg. ED F1

Cao et al. (2020) 2100 88.7
Wu et al. (2020) bi-encoder 93 80.4
Wu et al. (2020) cross-encoder 917 87.2
Orr et al. (2021) 438 77.6

ReFinED 15 89.4

Table 5: Time taken in seconds for EL inference on
AIDA-CoNLL test dataset.

6 Deployment Details
We have successfully deployed the ReFinED EL
model in a real-world application, the aim of which
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is to populate a KB by extracting facts from un-
structured text found on web pages with high pre-
cision. The application requires running ReFinED
on a billion web pages (in which we link 25 billion
mentions) multiple times per year. The scale of
this deployment highlighted a number of learning
points.

Firstly, the entity linking model must be com-
putationally efficient. The inference speed of Re-
FinED allows the processing of the billion web
pages in 27k machine hours (2 days using 500 in-
stances), on machines with a single T4 GPU. Given
availability of cloud compute, the cost of process-
ing the same documents with the models evaluated
in Section 5.3 would scale approximately linearly
with their inference speeds. That is, the BLINK
bi-encoder would require 3000 instances for 2 days,
or 500 instances for 12 days, implying a roughly
6-fold increase in cost.

Secondly, the scale of the number of pages also
brings with it diversity of domains, meaning the
model benefits from linking to a large catalogue
of entities (over 90 million) - including zero-shot
entities.

Thirdly, we observed that deploying an end-to-
end self-contained EL model is easier to horizon-
tally scale and has a lower operational cost than
deploying multiple systems for each subcomponent
(such as candidate generation).

Finally, in real-world data, unlike in ED datasets,
there are a large number of cases where the correct
entity does not exist in the KB. This meant that
we had to train the model on examples where the
correct entity was not in the candidate list to reduce
overprediction.

7 Conclusion

We propose a scalable end-to-end EL model which
uses entity types and entity descriptions to per-
form linking. Our model achieves SOTA results
for both ED (+0.7 F1 points on average across 6
datasets) and EL (+3.7 F1 points on average across
8 datasets) while being 60 times faster than com-
paratively accurate baselines. We demonstrate our
approach scales well to a KB (Wikidata) 15 times
larger than Wikipedia while maintaining compet-
itive performance. The combination of accuracy,
speed and scale means the system is capable of
being deployed to extract entities from web-scale
datasets with higher accuracy and an order of mag-
nitude lower cost than existing approaches.
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A Entity Type Selection

Our entity types are formed from Wikidata relation-
object pairs and relation-object pairs inferred from
the Wikidata subclass hierarchy (for example, (in-
stance of, organisation) can be inferred from (in-
stance of, business)). We only consider types with
the following relations: instance of, occupation,
country, sport. We select types by iteratively adding
types that separate (assuming an oracle type classi-
fier) the gold entity from negative candidates for the
most examples in our Wikipedia training dataset.

Type information stored in KBs often varies in
granularity between entities (e.g. some capital city
entities have the type capital city and others only
city), adversely affecting training signal. To miti-
gate this, we use the class hierarchy to add parent
types to entities. This injects class hierarchy infor-
mation into the model, enabling type granularity to
depend on context.

B Training Details

We use the Hugging Face implementation of
RoBERTa (Wolf et al., 2019) and optimise our
model using Adam (Kingma and Ba, 2015) with a
linear learning rate schedule. We ignore the loss
from mentions where the gold entity is not in the
candidate set. The named-entity recogniser, used
to preprocess our Wikipedia training dataset, is a
RoBERTa token classification model trained on the
AIDA-CoNLL dataset mention boundaries. We
add weak entity labels for mentions that match the
page’s title (or surname for Wikipedia pages about
people). We present our main hyperparameters in
Table 6. Due to the high computational cost of
training the model, we did not conduct an exten-
sive hyperparameter search. Training on Wikipedia
took approximately 48 hours on a single machine
with 4 V100 GPUs. The model has approximately
154M parameters (123 million in the roberta-base
architecture, and 31M for the additional description
encoder and output layers).

C Additional results

Wikidata ED experimental setup To measure
ED performance on non-Wikipedia entities, we ex-
pand our entity set to Wikidata (which has over
90M entities) and evaluate our model on the IS-
TEX test dataset (Delpeuch, 2020). We add labels
and aliases from Wikidata for candidate generation
and remove entity priors from our entity scoring
(Section 3.8).

Hyperparameter Value

learning rate 3e-5
batch size 64
max sequence length 300
dropout 0.05
description embeddings dim. 300
# training steps 1M
# candidates 30
# entity types 1400
mention transformer init. roberta-base
# mention encoder layers 12
description transformer init. roberta-base
# description encoder layers 2
# description tokens 32
λ1, λ2, λ3, λ4 (0.01, 1, 0.01, 1)
mention mask prob. 0.7

Table 6: Our model hyperparameters

Wikidata ED results We evaluate ED perfor-
mance on the ISTEX dataset (which targets Wiki-
data). Our model outperforms Delpeuch (2020)
(92.1 vs 87.0 micro F1) which uses hand-crafted
features specifically designed for linking Wikidata
entities. This shows that our approach scales to
Wikidata and generalises well when there is in-
creased mention ambiguity. Our model performs
0.5 F1 points below the SOTA Mulang’ et al. (2020)
(92.6 vs 92.1 micro F1) which is likely due to dif-
fering candidate entity generation methods.

Entity Linking performance on questions We
report results on the WebQSP dataset in Table 7,
which shows EL performance on questions. Our
model has similar performance to ELQ, which is
SOTA on WebQSP and is optimised for questions.
Our model is faster than all baselines which can
be attributed to using an end-to-end EL model, re-
stricting ED predictions to the predicted mentions
only, and using a smaller model (compared to ELQ
which uses BERT-large (Devlin et al., 2019)).

Method WebQSP #Q/s

TAGME (Ferragina and Scaiella, 2012) 36.1 2.39
BLINK (Wu et al., 2020) (Wikipedia) 80.8 0.80
ELQ (Li et al., 2020) (Wikipedia) 83.9 1.56
ELQ (Li et al., 2020) (fine-tuned) 89.0 1.56

ReFinED (Wikipedia) 84.1 2.78
ReFinED (fine-tuned) 89.1 2.78

Table 7: Entity linking weak matching InKB micro F1
scores on WebQSP EL dataset (Li et al., 2020). #Q/s is
number of questions per second for a single CPU.
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D Dataset statistics
We present the topic, number of documents and
number of mentions for each dataset used for eval-
uation. The datasets used cover a variety of sources
including wikipedia text, news articles, web text
and tweets. Note that the performance of the model
outside these domains may be significantly differ-
ent.

Note also that all datasets used are for English
only, allowing comparison to previous work. Our
method is extendable to any language for which
there is an language-specific version of Wikipedia
on which the model could be trained. However, we
cannot guarantee the accuracy of the model across
these languages without further experimentation.

Topic Num docs Num Mentions
AIDA news 231 4464
MSNBC news 20 656
AQUAINT news 50 743
ACE2004 news 57 259
CWEB web 320 11154
WIKI Wikipedia 320 6821
WikilinksNED web 10000 10000

Table 8: Dataset statistics for entity disambiguation
datasets

Topic Num docs Num Mentions
AIDA news 231 4464
MSNBC news 20 656
DER tweets 182 242
K50 mixed 50 145
R128 news 128 638
R500 news 500 530
OKE15 Wikipedia 199 1017
OKE16 Wikipedia 254 1402

Table 9: Dataset statistics for entity linking datasets
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