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Abstract

Large-scale conversational assistants such as
Cortana, Alexa, Google Assistant and Siri pro-
cess requests through a series of modules for
wake word detection, speech recognition, lan-
guage understanding and response generation.
An error in one of these modules can cascade
through the system. Given the large traffic
volumes in these assistants, it is infeasible to
manually analyze the data, identify requests
with processing errors and isolate the source
of error. We present a machine learning sys-
tem to address this challenge. First, we embed
the incoming request and context, such as sys-
tem response and subsequent turns, using pre-
trained transformer models. Then, we com-
bine these embeddings with encodings of ad-
ditional metadata features (such as confidence
scores from different modules in the online
system) using a "mixing-encoder" to output
the failure point predictions. Our system ob-
tains 92.2% of human performance on this task
while scaling to analyze the entire traffic in 8
different languages of a large-scale conversa-
tional assistant. We present detailed ablation
studies analyzing the impact of different mod-
eling choices.

1 Introduction

Conversational assistants have become increasingly
prevalent in every-day life. With them, users can
control appliances at home, get current weather in-
formation, or get help with recipes in the kitchen
through simple voice commands. A typical dialog
system processes user requests in multiple stages
(see Figure 1). First, a voice trigger (or wake word)
(Sigtia et al., 2018) model determines whether the
user is speaking to the assistant. Following the trig-
ger component, an Automatic Speech Recognition
(ASR) (He et al., 2019) module converts user audio
stream into a set of discrete text tokens. This text is
sent to the Natural Language Understanding (NLU)
component, which analyzes what the user request

means. The domain classifier (DC) categorizes the
user’s request into a set of pre-defined topics, the
intent classifier (IC) assigns an intent which rep-
resents what the user is trying to accomplish, and
the entity recognition and resolution component
(ERR) recognizes and resolves known entities in
the users request. The system generates the best
possible response (Result stage) using several sub-
systems that are specific to each dialog assistant
(e.g., dialog management, re-ranking, etc). Finally
the response is rendered into a human-like speech
using a Text-to-Speech (TTS) system.

Conversational AssistantUser

Wake word model

Natural Language
Understanding

Automatic Speech
Recognition Named Entity

Recognition & Resolution

Domain & Intent
Classification

Result Generator

Text-To-Speech

Figure 1: Component-level architecture of a typical
conversational assistant.

When such a system makes an error, the com-
plexity of the processing pipeline makes it ex-
tremely challenging to isolate the source of a defect.
An error in an upstream component (e.g. ASR) can
propagate through the system to the final response
to the user. In such cases it is likely that multiple
components starting from the first source of the er-
ror (referred to as "root" or "failure point" hereby)
produce erroneous outputs. However, it is critical
to identify this error to improve the overall system.
Given the large traffic volumes, manual analysis to
identify root causes for processing errors is infeasi-
ble.

In this work, we develop a machine learning
model that predicts which component of a conver-
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sational assistant caused the system to fail when
processing user requests, a Failure Point Isola-
tion (FPI) model. Our system helps to monitor
the performance of the system holistically and im-
prove the components of the dialog assistant that
result in defective user interactions. The FPI model
takes multiple inputs including the request text, sys-
tem response, and subsequent turns which together
help in capturing implicit feedback from the cus-
tomer. We leverage recent progress in pre-trained
Transformer-based language models to encode this
information. We then combine these with encod-
ings of metadata features such as confidence scores
from different components in the online system
using additional Transformer-based "mixing" lay-
ers to output the source of error or mark a request
as correctly processed. Our model is trained on
a small number of examples annotated with the
source of error and then applied on all traffic for
failure point isolation.

We present extensive experimental results to
characterize the performance of our model and the
impact of different modeling choices. Using only
encoding of the request text, we achieve an F1 score
of 24.2% for FPI on our test sets. This improves
to 40.3% by leveraging the full dialog context and
system response. We see a further improvement to
51.4% by including additional metadata features.
We also present ablation studies to characterize the
impact of different text encoders and architecture
choices for the mixing layer that further improve
F1 score to 53.3%. We show that this corresponds
to 92.2% of human performance on the FPI task
using a "golden" test set created by combining an-
notations from multiple highly-trained annotators.

2 Related Work

Several works have attempted evaluating dialog
systems using deterministic or machine learning-
based methods. The majority can be classified into
the following groups: word-overlap metrics, user
sentiment based approach, or component-specific
error attribution.

Word-overlap metrics models like BLUE (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004) are not
well-suited for evaluating real-world conversational
assistants. Liu et al. (2016) has demonstrated that
the word-overlap metrics do not correlate wit=[p
human judgement. As conversational assistants can
also perform real-world functions (e.g., turning on
lights), evaluation of such systems based on the tex-

tual response alone does not fully capture the set of
actions taken by the system. Finally, the determin-
istic metrics are not fine-grained enough to identify
which component of the system was responsible for
the defective interaction. Hence, word-overlap met-
rics have a limited ability to provide prescriptive
feedback to developers.

Schmitt et al. (2012) proposed evaluating dialog
systems based on the user perception and Inter-
action Quality (IQ). Here each dialog is assigned
a numerical score as evaluated by an annotator.
Schmitt and Ultes (2015); Bodigutla et al. (2020);
Gupta et al. (2021) developed models that used
features derived from the logs of the dialog sys-
tem to build predictive IQ models. Gupta et al.
(2021) demonstrated that transformer-based archi-
tectures without log-derived features can outper-
form previously-developed models. Lowe et al.
(2017) proposed a similar to IQ metric, ADEM,
and trained a predictive mode. Sinha et al. (2020)
developed a transformer-based model, MAUDE.
This model is trained using contrastive learning
and produces scores that correlates with human
judgment. The sentiment or quality-based metrics
allow for monitoring real-life dialog systems, how-
ever they do not provide actionable insight into the
performance of the system components.

Chada et al. (2021) and Sethi et al. (2021) have
built systems that attribute errors in the NLU com-
ponent of a conversational assistant. Chada et al.
(2021) focused on building transformer-based mod-
els that detect NLU intent and domain classifica-
tions errors. Sethi et al. (2021) detect NLU domain
and intent errors in the dialog system using confi-
dence scores produced by the NLU models. When
attributing NLU errors, they focus on root-causing
issues in the training data (e.g., low-resource intent,
mislabeling, etc). Though this feedback is action-
able, neither of these works attempt to root-cause
errors in other components of dialog systems.

These aforementioned approaches have limita-
tions when it comes to failure point isolation in
large-scale conversational assistants. Instead of fo-
cusing on a small portion of a dialog system, we
create an automated error attribution system that
can provide insights into the root causes of defec-
tive interactions at scale for all of the components
of a conversational assistant. Unlike approaches
that estimate user satisfaction and dialog quality
from the user’s perspective, our focus is on under-
standing whether the system delivered the response
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that it was designed to deliver and if not, why. In
case when the system was designed to perform the
action but failed to do so, our model provides clear
feedback that can help to improve system perfor-
mance in the future.

3 Methodology

In this section, we first describe our training and
test datasets, and discuss the challenges in con-
structing them (§ 3.1). Next, we describe the cre-
ation of our "golden" test dataset (§ 3.2). Then,
we describe the features that we use in our model
(§ 3.3). Finally, we present details of the network
architecture and model training used to output FPI
based on these input features (§ 3.4).

3.1 Training Dataset
To train the FPI model, we created a dataset con-
taining real-world data by extracting a mix of ran-
dom and targeted samples from a commercial large-
scale conversational assistant. Our dataset contains
approximately 11.5MM de-identified user requests
in 8 different languages. The training dataset was
split into train, validation, and dev using a 75/5/20
scheme such that user sessions do not overlap in
any split. All requests were manually annotated
using internal tools as correct or incorrect. Incor-
rect requests were further labeled with one of five
error types, corresponding to one of the stages of a
conversational assistants processing pipeline (see
Figure 1). These include:

1. False Wake (FW) errors that capture incor-
rect trigger system predictions

2. ASR errors that capture the incorrect tran-
scription of the user speech

3. NLU errors that contain domain classification
(DC) and intent classification errors (IC)

4. ERR errors that capture entity recognition and
resolution errors

5. Result errors made by the response genera-
tion component when the system took an in-
correct action even though all previous steps
succeeded

When there are several potential errors in a di-
alog, we only mark one of them as the root cause
of the system failure: the first failing stage in the
processing pipeline, ordered from Wake Word to
Result stages. Figure 2 shows some example turns
of what different errors can look like in the pro-
cessing pipeline. In the first turn, the ASR error

would be marked as a fatal error and the root cause
of the defective system response. In the second
turn, the ASR error would be marked as non-fatal
as subsequent components are able to recover from
the error and produce a correct system response.
In the last turn the system performed as designed,
however it could not fulfill user request.

3.2 "Golden" Test Dataset
Given the vast data volumes, failure point isolation
in a complex dialog system is a challenging task
even for humans. For example, ERR error analysis
requires inspecting entity data (such as music cata-
logs). Further, the definition of the failure point can
be ambiguous without subsequently rerunning and
correcting each component of a dialog system. As
a result, the error attribution labels can have poor
quality and consistency across different annotators.

To create a suitable test set for evaluating the
accuracy of our model, we leveraged a more sophis-
ticated "golden" annotation workflow. This more
labor- and time-intensive workflow does not rely on
a single annotator but on a combination of multiple
annotators, and an ensemble of machine learning
models to make the labeling decision. First, each
request gets labeled by the annotators and the en-
semble model in parallel. Whenever there is a dis-
agreement on the labels, the request is evaluated by
a highly trained annotator who makes the final de-
cision. We annotated approximately 58k sessions
through this workflow to create a "golden" test set
with higher annotation quality than our training set.
The "golden" dataset is not used for training out
model, however it is used to report F1 score of the
models we train in this work and compare model
performance to humans.

3.3 Feature Engineering
We train our FPI model on a multi-turn dataset,
which includes user request, system response
(TTS), and the interaction metadata. The interac-
tion metadata is parsed from the logs of the online
production system and includes the outputs of the
machine learning models executed at each stage
of the data processing pipeline and identifiers of
the systems that made the final prediction, in the
case of multiple models competing for response
generation.

We limit user dialog to previous, current, and
next user interactions. Using the context of the
user interaction, we are aiming to capture implicit
customer feedback that a production system might
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Open the garage door.

Agent

Sorry, I couldn't find a door with the name
"garbage".
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Dialog Metadata 

 ... 
ASR: Open the garbage door.       

NLU
ERR

...Turn 1

Session

 ... 
ASR: Open garage door.       

NLU
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...

 ... 
ASR
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...

Open the garage door.

Agent

Opening the garage door now.
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Turn 2

Make me a sandwich.

Sorry, I don't know how to do this.

User

Turn 3 Agent

Figure 2: Construction of FPI model features using pre-
vious, current and next turn to get features from the
whole dialog.

be lacking. Our feature set includes multiple cate-
gorical features (e.g., NLU intent predictions), nu-
merical features (e.g., confidence scores logged by
run-time models, or time difference between user
turns), and text data, in the form of user request
text and system response (TTS) collected from a
user session.

Due to a large number of features available in the
logs and the complexity of our end-to-end system,
we group the categorical and numerical features
into 5 major groups for ablation studies: Wake
Word (WW) features, ASR features, NLU features,
Result features. WW, ASR, and NLU features in-
clude the confidence scores produced by the compo-
nent models. Result features include the details of
which sub-system produced response and whether
requested action could be fulfilled by the system.
We tokenize the text data using the sentencepiece
tokenizer before inputting them to Transformer-
based encoders that we describe in the next section.

3.4 Model Architecture and Training

Executing our model on already processed user ses-
sions gives us two advantages. First, we gather a
holistic view into the execution of all asynchronous
components by constructing model features from
the system logs. Second, there are no latency
limitations, which means we can leverage large
transformer-based models (Vaswani et al., 2017).

The four main components of our model are: cat-
egorical feature embedding networks, a numerical
embedding network, a transformer-based language
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Figure 3: The architecture of the Failure Point Isola-
tion (FPI) model with multi-modal feature embedding
networks. M and N are counts of categorical and nu-
merical features respectively.

model, and mixing layers built on top of the em-
bedding networks to produce the final predictions.
We process all of the numerical features jointly
using a single embedding network (see Figure 3).
Each of the categorical features are embedded sep-
arately. The numerical and categorical features are
concatenated with the language model embeddings
and are passed to "mixing" layers. Textual features,
request text and system response, are processed
jointly by multi-lingual transformer-based models
(Wolf et al., 2020; Paszke et al., 2019). In order to
constrain model latency we use mT5 (Xue et al.,
2021) and XLM-R (Conneau et al., 2020) mod-
els in their smallest configuration with 170M and
270M parameters. The mixing layer consists of the
encoder layers and a final feedfoward block that
produces model predictions.

The FPI model is trained using a multi-stage
procedure. First, we fine-tune the language mod-
els alone on FPI labels without metadata features
(Stage 1). This step is necessary for domain-
specific adaptation of the models pre-trained on
generic datasets. Second, we fine-tune the meta-
data encoder jointly with textual features on the
FPI labels using our training dataset, but do not
update the language model during this stage (Stage
2 warm-up). Finally, we fine-tune the whole model
on the FPI dataset (Stage 2 fine-tuning). The details
of our training setup and computational budget are
reported in Appendix A.
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4 Results

In this section, we report the results of the exper-
iments with the FPI model. First, we investigate
the importance of system response and extended
context size (§ 4.1). Second, we illustrate impor-
tance of the features derived from logs (§ 4.2). We
demonstrate the effect of language model size in
(§ 4.3). We perform experiments with fine-tuning
language models on the task-specific dataset (§ 4.4)
and compare performance of the best performing
model to a standard annotator (§ 4.5). The models
reported in subsections § 4.1-4.3 were trained using
only stage 2 of the training procedure (§ 3.4) with
mean-pooling layers unless specified otherwise. F1
scores are reported from a single training run on
the "golden" dataset described in § 3.2.

4.1 Importance of using system response and
extended context

context TTS
F1 scores

FW ASR ERR NLU Result Correct Avg
current 7 7.8 21.6 1.1 3.1 7.2 87.8 21.4
current X 5.8 31.2 10.9 18.9 41.3 90.5 33.1

extended X 16.1 40.3 15.5 29.4 48.4 92.1 40.3

Table 1: F1 scores of models trained with different con-
text (current turn vs extended context) with request text
and TTS, as indicated by TTS column. "current" indi-
cates that the model was trained with the current turn,
"extended" indicates that the model was trained with
previous, current, and next turns.

Table 1 summarizes F1 results of the experiments
that quantify the effect of adding TTS and dia-
log context on model performance. Thus, adding
TTS to the user request improves macro average
F1 score from 21.4% to 33.1%. Further on, we
find that extending dialog context to previous and
next turn improves F1 score by another 7.2% abso-
lute to 40.3% . As indicated by consistent gains in
Result, ASR, and NLU classes, this set of experi-
ments confirms our hypothesis: extended context
captures implicit feedback (e.g., rephrasing) from
the customer.

4.2 Importance of features derived from the
logs of system components

Based on our experiments (Table 2), adding fea-
tures derived from the logs of the dialog assistant’s
online components improves ability to detect errors
in those components. For example, NLU, ASR,

features
component F1 scores

FW ASR ERR NLU Result Correct Avg
- 16.1 40.3 15.5 29.4 48.4 92.1 40.3

Result 16.7 42.5 22.9 28.9 48.7 91.7 41.9
NLU 14.4 45.2 22.7 33.7 50.1 92.9 43.2
ASR 17.8 49.4 23.8 30.8 46.4 93.1 43.5
WW 33.3 40.6 18.8 30.3 49.9 92.5 44.2
all 39.7 53.8 27.5 39.9 53.4 94.0 51.4

Table 2: F1 scores of the models trained with full dialog
(including TTS) on different sets of features (see § 3.3).

and WW F1 scores gain 4.3% , 10.1%, and 17.2%
absolute when respective feature sets are added
to the FPI model. Additionally, adding NLU fea-
tures leads to improving ASR and ERR scores, and
adding ASR features yields improvements in the
WW class.

The model trained with the full feature set (bot-
tom row of the Table 2) demonstrates the best
performance in this experiment set with a macro-
average F1 score of 51.4%. It benefits from the
implicit feedback provided by the dialog text and
features derived from logs of all of the system com-
ponents.

4.3 Performance with a larger language
models

features
component F1 scores

FW ASR ERR NLU Result Correct Avg
- 25.9 46.3 20.7 34.6 53.6 93.0 45.7

all 29.7 53.7 27.3 39.7 54.3 93.8 49.8

Table 3: Results of the feature ablation studies with
XLM-R model with 270M parameters.

Table 3 presents F1 scores of the FPI network
trained with the XLM-R language model (§ 3.4).
Based on the results of our experiments, using
bigger models improves F1 scores of the model
trained using dialog as the only features (first row
in Table 3) from 40.3% macro-average for a model
trained using mT5 to 45.7% for a model trained
with the XLM-R model. The advantage of using a
larger language models disappears when we lever-
age a full feature set. Thus, the XLM-R-based
FPI model demonstrates 49.8% macro-average
F1 score, which is comparable to the mT5-based
model trained with the same feature set (§ 4.2).
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4.4 Effect of fine-tuning language models on
task-specific data

layer
Pooling F1 scores

FW ASR ERR NLU Result Correct Avg
mean 38.8 52.6 27.2 38.5 52.7 93.8 50.1
max 40.9 55.1 30.4 42.5 57.8 94.1 53.5

Table 4: F1 scores of the FPI models trained with lan-
guage models fine-tuned on the task-specific data.

The results of training model with stage 1 (lan-
guage model fine-tuning) and stage 2 are reported
in the Table 4. In addition to using fine-tuned
language models, we have also varied the pool-
ing method in the "mixing layer" of our network
(see additional study in Appendix B). We observe
that the network trained with mean-pooling layer
did not gain improvements from multi-stage pro-
cess. However, the network trained with a max-
pooling layer demonstrates 53.5% macro average
F1 score, outperforming the model trained only
with the stage 2 (§ 4.2).

4.5 Label Quality Analysis

FW ASR ERR NLU Result Correct Avg
FFPI
1 40.9 55.1 30.4 42.5 57.8 94.1 53.5

FHuman
1 57.4 61.5 33.8 44.0 56.1 91.6 57.4

FFPI
1 / FHuman

1 , % 71.2 89.6 89.9 96.7 103.1 102.7 92.2

Table 5: F1 score comparison of the best FPI model
(FFPI

1 ) and standard annotator (FHuman
1 ).

In order to quantify human performance on FPI
task, we compared label produced by a single an-
notator (non-expert), to the final label corrected by
a highly trained annotator in our "golden" dataset
(see § 3.2). Our analysis shows (see Table 5) that
the task of isolating failure points is easier in the
following three categories: ASR (F1 score of 61.52
%), False Wake (F1 score of 57.4%) and Result (F1
score of 56%). Detecting NLU and ERR errors is
the most difficult task with 44% and 34% F1 scores
in those classes respectively. We use this analy-
sis to understand reasonable limits for our model
which is trained on labels from a single annotator
as opposed to the "golden" workflow.

The best FPI model, using the max pooling
layer and a fine-tuned language model, on aver-
age achieves 92.2% of non-expert human F1 score
on the FPI task (see Table 5). The weakest perfor-
mance is observed in False Wake detection with

71.2% of human F1. The model achieves approx-
imately 90% of human performance in ASR and
ERR classes, 96.7% in NLU, and outperform hu-
mans in detecting Result and Correct errors. We
believe that the model demonstrates strong perfor-
mance in Result and Correct classes, as result errors
could be captured by the dialog context, when re-
peating or restating user request often can lead to
the same or similar results for the same user.

5 Limitations

During our research we identified several limita-
tions in the FPI system. First, our training dataset
only allows a single failure point, however multi-
ple components of a dialog assistant can fail in a
real-world system. Hence, it would be useful to
extend FPI task for capturing all critical and non-
critical errors regardless of whether they resulted
in a defective user session. Second, our system
provides only a component-level failure point iso-
lation. Future systems could build on our work to
identify the sub-components of a dialog assistant
responsible for the failure. Next, it would be useful
to develop a framework which would allow joint
system-level error attribution and assessment of
interaction quality (IQ). Such an approach would
not only help developers understand system errors
but also cases which result in negative customer
interaction. We have not experimented with bigger
language models for our application, which might
demonstrate stronger performance than the models
used in this work.

6 Conclusion

We present an effective machine learning system
to detect and isolate failure points in a real-world
conversational assistant. Such assistants can have
a complex hierarchy of modules making error iso-
lation very challenging. By leveraging pre-trained
transformer models to process the request text and
contextual metadata features, our system obtains
92.2% of human performance. Given the large
volumes of traffic in real-world conversational as-
sistants, the manual process of obtaining human
annotations for error isolation is prohibitively time
consuming and expensive. While achieving human
parity, our system automates this process and scales
to a large volume of traffic. We conduct detailed
ablation studies of our system and illustrate the key
components that led to the highlighted gains.
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7 Ethical Considerations

The data used in this paper was collected in ac-
cordance with applicable policies, terms of use,
privacy notices, and customer privacy settings that
disclose to customers how their data may be used.
The annotators of the data were compensated for
their work consistent with applicable laws and reg-
ulations.

Acknowledgements

We would like to thank Mustafa Hameed, Adrien
Carre, Vivek Gupta, and Sarah Traylor for manag-
ing the program; Adam Berger, Krunal Sheth, Anh
Nguyen, Daniel Lawrence, and Emmanuel Gonza-
lez for software development support; Yan Wang
and Claude Paugh for data pipeline support; and
Xiao Gong and Matthew Tucker for early explo-
ration work.

References
Praveen Kumar Bodigutla, Aditya Tiwari, Spyros

Matsoukas, Josep Valls-Vargas, and Lazaros Poly-
menakos. 2020. Joint turn and dialogue level user
satisfaction estimation on multi-domain conversa-
tions. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3897–3909,
Online. Association for Computational Linguistics.

Rakesh Chada, Pradeep Natarajan, Darshan Fofadiya,
and Prathap Ramachandra. 2021. Error detection in
large-scale natural language understanding systems
using transformer models. In Findings of the Associ-
ation for Computational Linguistics: ACL-IJCNLP
2021, pages 498–503, Online. Association for Com-
putational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Willian Falcon and The PyTorch Lightning eam. 2020.
Pytorch lightning.

Saurabh Gupta, Xing Fan, Derek Liu, Benjamin Yao,
Yuan Ling, Kun Zhou, Tuan-Hung Pham, and Chen-
lei Guo. 2021. Robertaiq: An efficient framework
for automatic interactionquality estimation of dia-
logue systems. In KDD Workshop: Data-Efficient
Machine Learning, volume 2657. CEUR-WS.

Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar,
Ian McGraw, Raziel Alvarez, Ding Zhao, David
Rybach, Anjuli Kannan, Yonghui Wu, Ruoming
Pang, Qiao Liang, Deepti Bhatia, Yuan Shangguan,
Bo Li, Golan Pundak, Khe Chai Sim, Tom Bagby,
Shuo-yiin Chang, Kanishka Rao, and Alexander
Gruenstein. 2019. Streaming end-to-end speech
recognition for mobile devices. In ICASSP 2019
- 2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6381–6385.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics
for dialogue response generation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2122–2132, Austin,
Texas. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Ryan Lowe, Michael Noseworthy, Iulian Vlad Ser-
ban, Nicolas Angelard-Gontier, Yoshua Bengio, and
Joelle Pineau. 2017. Towards an automatic Tur-
ing test: Learning to evaluate dialogue responses.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1116–1126, Vancouver,
Canada. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,

147

https://doi.org/10.18653/v1/2020.findings-emnlp.347
https://doi.org/10.18653/v1/2020.findings-emnlp.347
https://doi.org/10.18653/v1/2020.findings-emnlp.347
https://doi.org/10.18653/v1/2021.findings-acl.44
https://doi.org/10.18653/v1/2021.findings-acl.44
https://doi.org/10.18653/v1/2021.findings-acl.44
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.1109/ICASSP.2019.8682336
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/P17-1103
https://doi.org/10.18653/v1/P17-1103
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Alexander Schmitt and Stefan Ultes. 2015. Interaction
quality: Assessing the quality of ongoing spoken dia-
log interaction by experts—and how it relates to user
satisfaction. Speech Communication, 74:12–36.

Alexander Schmitt, Stefan Ultes, and Wolfgang Minker.
2012. A parameterized and annotated spoken di-
alog corpus of the CMU let’s go bus information
system. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 3369–3373, Istanbul, Turkey. Eu-
ropean Language Resources Association (ELRA).

Pooja Sethi, Denis Savenkov, Forough Arabshahi, Jack
Goetz, Micaela Tolliver, Nicolas Scheffer, Ilknur
Kabul, Yue Liu, and Ahmed Aly. 2021. Autonlu:
Detecting, root-causing, and fixing nlu model errors.

Siddharth Sigtia, Rob Haynes, Hywel B. Richards, Erik
Marchi, and John Scott Bridle. 2018. Efficient voice
trigger detection for low resource hardware. In IN-
TERSPEECH.

Koustuv Sinha, Prasanna Parthasarathi, Jasmine Wang,
Ryan Lowe, William L. Hamilton, and Joelle Pineau.
2020. Learning an unreferenced metric for online
dialogue evaluation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000–60010. Curran Associates Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mt5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498. Association for Computational Lin-
guistics.

A Training Parameters

We use AdamW (Loshchilov and Hutter, 2019) op-
timizer with a fixed learning rate of 5× 10−5 and
batch size of 1024 examples. We train the model
for 30 epochs or until we reach early stopping cri-
terion, 5 epochs sequential epochs that do not im-
prove validation loss function. A single training
run takes up to 90 hours on NVIDIA V100 GPU.

Our training setup is leveraging PyTorch (Paszke
et al., 2019), HuggingFace (Wolf et al., 2020), and
PyTorch Lightning (Falcon and eam, 2020). Those
libraries were used according to their intended use
and distributed under BSD or Apache licenses.

B Experiments with the pooling layer

layer
Pooling F1 scores

FW ASR ERR NLU Result Correct Avg
token 26.7 44.2 3.2 19.9 11.9 91.2 32.8
max 37.5 52.4 21.6 38.5 54.5 93.8 49.7
mean 39.7 53.8 27.5 39.9 53.4 94.0 51.4

Table 6: Performance of FPI models trained with differ-
ent configurations of the pooling layer. "token" value in
the Pooling layer column represent first-token pooling
layer, "max" represent max-pooling layer, and "mean"
represents mean pooling configuration.

Our findings indicate that the structure of the
pooling layer makes a significant impact on the
model performance. The commonly used first-
token embedding (Devlin et al., 2019) performed
the worst with the macro average F1 score of 32.8%.
The mean and max pooling layers demonstrated
better performance with F1 score of 51.4% and
49.7% respectively. All of the subsequent experi-
ments were conducted with max and mean pooling
layers.

148

https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.1016/j.specom.2015.06.003
http://www.lrec-conf.org/proceedings/lrec2012/pdf/333_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/333_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/333_Paper.pdf
http://arxiv.org/abs/2110.06384
http://arxiv.org/abs/2110.06384
http://arxiv.org/abs/2005.00583
http://arxiv.org/abs/2005.00583
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41

