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Abstract

Pre-trained language models (PLMs) have dra-
matically improved performance for many nat-
ural language processing (NLP) tasks in do-
mains such as finance and healthcare. However,
the application of PLMs in the domain of com-
merce, especially marketing and advertising,
remains less studied. In this work, we adapt pre-
training methods to the domain of commerce,
by proposing CULG, a large-scale commercial
universal language generation model which is
pre-trained on a corpus drawn from 10 markets
across 7 languages. We propose 4 commercial
generation tasks and a two-stage training strat-
egy for pre-training, and demonstrate that the
proposed strategy yields performance improve-
ments on three generation tasks as compared
to single-stage pre-training. Extensive experi-
ments show that our model outperforms other
models by a large margin on commercial gen-
eration tasks.

1 Introduction

Pre-trained language models (PLMs) have achieved
impressive success in many NLP tasks across nat-
ural language understanding (NLU) and natural
language generation (NLG) (Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019; Lewis et al.,
2020; Brown et al., 2020; Raffel et al., 2020; He
et al., 2020). These successes are usually achieved
by pre-training models on large corpora in a task-
independent way, and fine-tuning them on a spe-
cific downstream task. Researchers have also de-
veloped PLMs for specific domains or multiple
languages by conducting either pre-training from
scratch (Huang et al., 2019; Liu et al., 2020; Xue
et al., 2021) or a second phase of pre-training on the
basis of existing checkpoints (Howard and Ruder,
2018; Lee et al., 2020; Gururangan et al., 2020).
However, PLMs in the domain of commerce, espe-
cially for marketing and advertising, remain less
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studied. On the one hand, adapting PLMs to the
advertising domain is challenging because existing
pre-training methods usually use open-domain cor-
pora containing largely well-structured text such as
books (Zhu et al., 2015), news (Liu et al., 2019),
stories (Trinh and Le, 2018), or web text (Radford
et al., 2019a) to learn text representations. How-
ever, the input text for selecting advertisements is
primarily web search queries, which are usually
not complete, grammatical sentences. On the other
hand, there is no publicly-available PLM in the
commercial domain.

This paper introduces Commercial Universal
Language Generation model (CULG), which sup-
ports multi-lingual, multi-market, and multi-task
ad generation. CULG adopts a transformer-based
(Vaswani et al., 2017) encoder–decoder generative
framework similar to ProphetNet (Qi et al., 2020),
which uses an n-stream self-attention mechanism
and supports future n-gram prediction. To adapt to
diverse markets, we use the multi-lingual version
of ProphetNet — ProphetNet-X (Qi et al., 2021) as
our foundation model, and conduct a second phase
of pre-training using a self-constructed large-scale
commercial corpus.

CULG is trained auto-regressively on four
sequence-to-sequence (seq2seq) generation tasks,
including: (1) Generate Keywords with the Same
intent as the query (GKS); (2) Generate Keywords
that are Relevant to a query (GKR); (3) Generate an
Ad Title based on a query (GAT); and (4) Generate
an Ad Description based on a query (GAD). The
motivation of these tasks is to infer the user’s inten-
tion based on the query as well as perform product
matching and recommendation. All queries used in
this research are real-life search queries that have
been submitted to the Bing1 search engine, and
the ground truth targets are created according to
either the records of user’s click behaviour or labels
from hired human annotators. We collected more

1https://www.bing.com
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than ten million queries from 10 markets in 7 lan-
guages, and split them into three classes according
to data quality. Given the user query, the gold class
is ads that were deemed as relevant to the query
by human judges, the silver class is made up of
ads clicked on by users, and the bronze class is all
ads that been selected by search engine to show
to users. Splitting the data into different markets,
tasks, and quality classes provides us with flexi-
bility to compare the model’s performance under
different training setups.

Given that the collected data varies in quality, we
split both the pre-training and fine-tuning into two
stages, using low-quality data in the first stage and
high-quality in the second stage. To demonstrate
the effectiveness of this approach, we compare it
with alternative combinations of pre-training and
fine-tuning. We evaluate CULG on three commer-
cial generation tasks. Experimental results show
that splitting pre-training and fine-tuning into two
stages not only outperforms the widely-used single-
stage pre-train and fine-tune schema, but is also
better than other combinations of pre-training and
fine-tuning. We further compare CULG with ex-
isting pre-trained multi-lingual models (Liu et al.,
2020; Qi et al., 2021) and show that it surpasses
other models on commercial generation tasks. Fi-
nally, we conduct transfer learning experiments
on different markets, languages, and tasks by fine-
tuning CULG on a market, language, and task that
has not been seen during pre-training. The results
demonstrate that CLUG also generalizes well to
unseen markets, languages, and tasks.

2 Approach

2.1 Model Architecture

CULG adopts the architecture of ProphetNet,
an encoder–decoder language generation model
with n-stream self-attention mechanism and fu-
ture n-gram prediction. Instead of optimizing one-
step-ahead prediction as with most sequence-to-
sequence models, future n-gram prediction aims to
prevent overfitting on strong local correlations by
simultaneously predicting the next n tokens.

The ProphetNet encoder uses stacked trans-
former layers with multi-head self-attention, and
the decoder uses stacked multi-head multi-stream
self-attention layers to enable n-gram prediction.
Given the input sequence x = (x1, x2, ..., xL) and
output sequence y = (y1, y2, ..., yM ), Prophet-
Net implements future n-gram prediction by re-

Code Language Code Country

De German Au Australia
En English Ca Canada
Es Spanish Ch Switzerland
Fr French De Germany
It Italian Es Spain
Nl Dutch Fr France
Sv Swedish Gb United Kingdom

It Italy
Nl Netherlands
Se Sweden

Table 1: Languages and countries contained in our cor-
pus. Throughout this paper, we refer to languages and
country names with their ISO codes.

placing the auto-regressive predicting dependency
relationship p(yt|y<t, x) with p(yt:t+n−1|y<t, x).
In detail, it first obtains the encoded sequence
representation Henc from stacked encoder lay-
ers, where Henc = Encoder(x1, x2, ..., xL).
Then the decoder predicts n future tokens simul-
taneously as p(yt|y<t, x), ..., p(yt+n−1|y<t,x) =
Decoder(y<t, Henc), where n probabilities are
generated at each time step and the probability
p(yt+i|y<t, x) is generated by the i-th predicting
stream. The future n-gram prediction objective can
be formalized as:

L =−
n−1∑

j=0

αj ·
(

M−j∑

t=1

log pθ(yt+j |y<t, x)

)

=− α0 ·
(

M∑

t=1

log pθ(yt|y<t, x)

)

︸ ︷︷ ︸
language modeling loss

−
n−1∑

j=1

αj ·
(

M−j∑

t=1

log pθ(yt+j |y<t, x)

)

︸ ︷︷ ︸
future n-gram loss

(1)

The details of ProphetNet can be found in Qi et al.
(2020).

2.2 Data Collection
The corpus was collected from 10 markets across
7 languages (Table 1), where a “market” refers
to queries issued from a country in a specific
language (and is represented as Language–
Country in the remainder of the paper), and
the corresponding ads and product information.
For each market, three types of data were collected:

Impressed Given a user query, a collection of ads
is chosen from the full ads corpus by the Bing
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Market GKS GKR GAT/GAD Total
Bronze Silver Gold Bronze Silver Gold Bronze Silver Gold

De–Ch 1,129K 140K 2K 15,288K 812K 91K 3,033K 332K 67K 20,898K
De–De 8,847K 2,096K 97K 135,835K 14,000K 413K 18,625K 4,122K 1,711K 185,751K
En–Au 1,992K 383K 75K 25,768K 2,078K 356K 2,820K 580K 1,437K 35,494K
En–Ca 3,412K 586K 58K 24,324K 2,117K 410K 3,081K 640K 619K 35,251K
En–Gb 8,803K 1,741K 137K 89,385K 7,819K 480K 12,416K 2,520K 2,084K 125,389K
Es–Es 1,387K 255K 15K 73,747K 3,792K 103K 11,858K 1,084K 71K 92,317K
Fr–Fr 5,114K 1,259K 105K 102,538K 11,000K 392K 13,239K 2,891K 1,493K 138,035K
It–It 831K 148K 2K 49,352K 2,596K 72K 8,664K 879K 51K 62,600K

Nl–Nl 1,389K 301K 2K 55,619K 3,704K 93K 9,268K 1,177K 77K 71,633K
Sv–Se 409K 88K 2K 11,732K 982K 81K 2,888K 431K 88K 16,703K
Total 33,318K 7,002K 498K 583,593K 48,414K 2,496K 85,897K 14,661K 7,702K 783,585K

Table 2: Statistics of source–target pairs in the CULG corpus partitioned by task, quality, and market.

Figure 1: An illustration of a user query, ad title, ad
description, and bidded keyword.

search engine and shown to the user. This decision
process is aimed at maximizing the combined util-
ity of users, advertisers, and publishers by taking
the query–ad relevance, bidding, and marketplace
policy into account. We collect the pairs of im-
pressed ads and user queries in 2020 based on the
system log, and treat them as bronze quality data.
Figure 1 provides an example user query, ad title,
ad description, and bidded keyword.
Clicked Among those ads impressed to users, some
attract the attention of users and are clicked on for
more details. We collect all these clicked ads from
the impressed set, and treat them as silver quality
data.
Labeled We developed detailed guidelines to mea-
sure the relevance between queries and keywords,
queries and ads (including the ad title, ad descrip-
tion, and displayed URL). We hired and trained a
team of judges to measure the quality of keywords
and ads, sampling data from the “impressed” data
above based on our annotation budget. Those in-
stances that are labeled as “Good” are treated as
gold quality data.

Table 2 presents the statistics of the CULG cor-
pus. From the data quality perspective, we can see
the bronze impressed data is much larger than the

silver clicked data, which is in turn larger than the
gold labeled data for each market and task. From
the perspective of different tasks, the task of GKR
contains more data than GKS and GAT/GAD (see
below for task details).

2.3 Tasks

We propose four generation tasks for CULG pre-
training. Detailed task descriptions are given below,
and examples are provided in Table 3.

Query to keywords with exactly the same in-
tent (GKS): Given a user query, generate a list of
keywords that have exactly the same intent as the
source query. Such a situation usually occurs when
advertisers have a clear targeted audience, judging
from the search queries.

Query to keywords that are relevant (GKR):
Given a user query, generate a list of keywords
that is relevant to the query but don’t necessarily
have exactly the same intent. This happens when
advertisers want to reach to a broader slice of users
that may be interested in their product.

Query to ad title (GAT): Given a user query, gener-
ate an ad title that is relevant to the query. For many
electronic business platforms, there are lots of prod-
ucts without ready-made ad titles and descriptions.
This task tends to automatically generate titles that
attract users.

Query to ad description (GAD): Similar to GAT,
generate an ad description that is relevant to a given
query. This task helps sellers reduce their copy-
writing workload. However, as the real product
parameters are neither collected nor embedded in
the model, we do not evaluate CULG on this task.
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Task Source Target

GKS
sandstone sandstones
kempton park races kempton park racing
debenhams ladies clothing debenhams ladies fashions

GKR
print out boarding pass boarding pass holder
perth australia city transport visiting perth australia
wood effect gas fire gas fire repairer prices

GAT
expedia uk Up to 80% off uk hotels - lowest hotel prices guaranteed
liverpool liverpool flights - fly to liverpool
just eat official site - just eat

GAD
expedia uk compare prices on 1000+ sites. the best way to save on your uk hotel!
liverpool compare prices on liverpool flights with the edreams official website
just eat even more of your favourite restaurants are now on just eat, and just a tap away

Table 3: Examples of the four CULG tasks from the En-Gb market.

2.4 Two-stage Pre-training and Fine-tuning

The model parameters of CULG are initialized
from ProphetNet-X, which is pre-trained on the
100Gb wiki-100 corpus and 500Gb of Common-
Crawl2 data. As a state-of-the-art pre-trained NLG
model, its NLU and NLG capabilities (including
open-domain multi-lingual generation) are roughly
comparable to other encoder–decoder models such
as BART (Lewis et al., 2020), GPT-3 (Brown et al.,
2020), and T5 (Raffel et al., 2020).

To adapt it to the domain of commerce, we con-
duct a second phase of pre-training on our com-
mercial corpus. Given that data varies in terms of
quality and is large in size, we propose splitting the
pre-training into two stages and training on data of
increasing quality. The same strategy is applied to
model fine-tuning. In detail, the proposed stages
are as follows:
Pre-train stage I All data including bronze, sil-
ver, and gold data from all tasks are used to train
the model. As most of the data (> 90%) used in
this stage is unlabeled, this stage of training can
be considered as unsupervised (in terms of data
labeling).
Pre-train stage II The gold data from all tasks is
used to train the model. This can be considered to
be supervised training, given that all of the gold
data has been hand-labeled.
Fine-tune stage I The generative model is fine-
tuned on task-specific bronze, silver, and gold data
from multiple markets. This stage helps the model
to capture the general features of different lan-
guages and markets.
Fine-tune stage II The model is fine-tuned on task-
and market-specific labeled data to generate high-
quality representations, and capture high-level lan-

2https://commoncrawl.org/

Method Pre-train Fine-tune
Stage I Stage II Stage I Stage II

1 ✓
2 ✓ ✓
3 ✓ ✓ ✓
4 ✓ ✓ ✓ ✓

Table 4: Illustration of settings of different methods.

guage and market features.
For pre-training, we argue that the unsupervised

stage helps the model to learn general text repre-
sentations, while the supervised stage improves the
quality of the learned latent representations using a
small amount of high-quality data. For fine-tuning,
general-purpose features can be learned from multi-
market and -lingual data during stage I, and specific
features can be learned during stage II.

2.5 Training Methods

To validate the effectiveness of the proposed pre-
training and fine-tuning strategies, we create four
methods using different combinations of the pro-
posed stages in our experiments (Table 4). Method-
1 involves stage II fine-tuning only without CULG
pre-training, which means only a small amount of
market-specific labeled data is used to fine-tune
the model. This is the most commom mode of
fine-tuning after pre-training on publicly available
checkpoints. Method-2 adds stage I fine-tuning
before method-1, so that multi-lingual and multi-
market data is used to force the model to learn
general information across markets first. This is
the best that can be achieved on publicly avail-
able checkpoints. Note that both method-1 and
method-2 use task-specific data. Method-3 and
method-4 add pre-training stages before method-1
and method-2, respectively.
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Task Market Method 1 Method 2 Method 3 Method 4

BLEU-3, 4, AVG BLEU-3, 4, AVG BLEU-3, 4, AVG BLEU-3, 4, AVG

GKS

De–Ch 6.18 0.00 12.15 21.91 9.32 32.74 21.28 9.10 31.41 24.40 10.98 34.53
De–De 27.38 22.22 35.58 33.73 28.98 40.98 32.12 27.90 39.59 34.94 30.21 42.08
En–Au 34.26 25.83 42.94 40.01 32.19 47.81 38.97 30.89 46.81 41.27 33.62 48.92
En–Gb 32.28 24.17 40.83 37.83 30.46 45.82 36.28 28.48 44.36 38.67 31.03 46.55
Es–Es 31.88 24.53 39.78 50.65 45.60 55.28 46.99 43.12 51.90 52.36 47.20 56.70
Fr–Fr 32.26 25.07 40.69 44.85 38.30 51.73 42.12 35.63 49.13 45.76 39.61 52.56
It–It 13.17 7.79 19.72 34.80 19.28 43.04 31.85 20.11 40.23 34.08 18.98 41.92

Nl–Nl 6.55 0.00 12.42 23.66 12.84 33.93 24.15 14.22 34.83 24.97 15.02 34.74
Sv–Se 6.17 0.00 11.44 22.25 11.55 32.23 21.98 10.39 32.33 22.94 12.15 32.87

GKR

De–Ch 25.18 18.56 32.20 29.17 24.66 36.78 28.98 25.58 37.02 29.43 25.19 37.23
De–De 20.90 16.05 27.53 25.07 20.11 32.05 23.46 18.00 30.43 25.02 20.08 32.09
En–Au 21.32 15.13 28.74 24.24 17.85 31.87 24.08 17.21 31.58 24.96 18.44 32.56
En–Gb 16.99 12.45 23.95 20.38 15.98 27.55 19.51 14.39 26.66 20.84 16.09 27.97
Es–Es 23.17 19.28 28.89 27.02 22.11 33.45 26.07 21.18 32.42 27.51 22.83 33.87
Fr–Fr 20.20 14.19 26.90 23.41 17.00 30.40 22.85 16.11 29.92 24.08 17.53 31.13
It–It 26.38 23.82 31.15 31.36 29.00 37.04 30.39 29.19 36.14 31.84 29.54 37.62

Nl–Nl 9.13 2.43 20.85 12.36 4.30 24.66 12.21 4.33 24.37 13.23 4.88 25.54
Sv–Se 20.59 17.34 28.85 25.14 20.99 33.48 26.34 21.96 34.00 25.76 19.53 33.55

GAT

De–Ch 6.20 4.02 9.18 8.05 5.86 11.04 7.30 5.10 10.30 8.34 6.14 11.31
De–De 9.05 6.50 12.02 11.92 9.48 15.06 10.92 8.41 14.10 12.62 10.16 15.75
En–Au 6.50 4.11 10.03 9.80 7.22 13.35 8.78 6.20 12.35 10.06 7.50 13.62
En–Gb 5.06 3.06 8.13 7.73 5.86 10.58 6.14 4.27 9.02 8.46 6.51 11.39
Es–Es 9.69 6.84 13.64 13.12 10.24 16.95 11.95 8.99 15.91 13.85 10.95 17.67
Fr–Fr 2.96 1.30 5.62 3.45 1.63 6.41 3.31 1.50 6.23 3.62 1.76 6.58
It–It 24.90 21.24 28.12 26.70 23.03 30.05 25.89 22.09 29.37 26.91 23.24 30.25

NL–NL 5.18 3.29 8.29 8.66 6.60 11.84 7.28 5.15 10.58 9.07 6.94 12.24
Sv–Se 4.28 2.40 7.64 7.27 5.36 10.47 6.39 4.48 9.62 7.76 5.72 10.98

Table 5: Main results on GKS,GKR and GAT tasks. BLEU-3, BLEU-4, and BLEU-AVG are reported where
“BLEU-AVG” means the average score of BLEU-1, 2, 3 and 4.

3 Experiments and results

Experimental setup For each market dataset,
we split it into training, validation, and test set
in proportions 80%:10%:10%. The training set
is used for CULG pre-training and task-specific
fine-tuning.

For pre-training, we fetch the pretrained
ProphetNet-X as the basis of CULG, which con-
tains 12 layers in the encoder and decoder respec-
tively, with 1024d hidden size and 4096d feed for-
ward size. The future token prediction length is
set to 2, and the max sequence length of the input
and output is set to 512. We train the model on
all data (stage I) for 1 epoch, and on labeled data
only (stage II) for 5 epochs. For training, we use
the Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 10−6 and 10−5 and batch size of
1024. We use the sentencepiece tokenizer with the
XLM-R (Conneau et al., 2020) 250k vocabulary,
which support 100 languages.

CULG is pre-trained on 8×32Gb NVIDIA Tesla
V100 GPUs, at a total cost of around 1500 GPU
hours.

For fine-tuning, we use a constant learning rate
of 10−5 and dropout rate of 0.1 for all tasks. We
save checkpoints every 10000 steps, and choose
the checkpoint with the best performance on the
validation set.

3.1 Main results

Table 5 presents the main results on GKS, GKR,
and GAT. Several observations can be made. First,
method-2 consistently outperforms method-1, and
method-4 consistently outperforms method-3. We
suggest there are two reasons for this: (a) multi-
lingual and multi-market data helps the model to
learn general task features; and (b) during fine-
tuning, method-2 and method-4 use > 20 times the
amount of data of method-1 and method-3 respec-
tively, for most markets and tasks. Second, method-
3 beats method-1 for all tasks and markets, while
method-4 beats method-2 for most tasks and mar-
kets (with the exception of the GKS task in market
It–It). This demonstrates the effectiveness of the
pre-training. Third, method-1 and method-3 can be
treated as few-shot setups, as the amount of labeled
data is much less than the unlabeled data. We find
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Task M-1 M-2 M-3 M-4 mBART

GKS 35.58 40.98 39.59 42.08 33.97
GKR 27.53 32.05 30.43 32.09 24.29
GAT 12.02 15.06 14.10 15.75 13.00

Table 6: Performance comparison between CULG and
mBART on the De–De market, based on BLEU-AVG.
‘M-i” means method-i.

that method-3 outperforms method-1 by a large
margin, demonstrating that our pre-trained model
can greatly boost the performance in few-shot set-
tings. Finally, the overall performance on GAT is
worse than on GKS and GKR, which appears to be
because ad titles usually contain advertiser-specific
information, which is difficult to infer from a user
query.

3.2 Comparison to mBART

To compare CULG with models that have differ-
ent architectures and pre-training data, we choose
mBART (Liu et al., 2020), a state-of-the-art multi-
lingual encoder–decoder model. mBART is pre-
trained on a large-scale monolingual corpus con-
taining many languages, with a denosing objective
function. We download checkpoint mbart.cc25 and
fine-tune it on labeled task-specific data.

We compare CULG with mBART on the De–
De market (Table 6). We find that even method-
1 achieves better results than mBART on GKS
and GKR, and comparable results on GAT, which
demonstrates the superiority of our model versus
mBART. In addition, with ads data pre-training
or multi-lingual fine-tuning, each of method-2,
method-3 and method-4 exceed mBART by a
large margin, verifying the effectiveness of the pre-
training and fine-tuning strategies for commercial
tasks. For all tasks, method-4 achieves the best
performance.

3.3 Transferability

Next, we evaluate the transferability of CULG.
Specifically, we use data for a new market, new
language, and new task to fine-tune a CULG check-
point (method-3). For comparison, we choose the
publicly available ProphetNet-X checkpoint and
fine-tune it using the same data (method-1).

Market Transferability To test the transferabil-
ity of CULG model over markets, we exclude the
data from En–Ca during pre-training and use it for
fine-tuning. Table 7 shows the results on the three

Task M B-1 B-2 B-3 B-4 B-AVG

GKS M-1 57.59 39.13 28.04 21.60 36.59
M-3 60.76 43.94 33.20 26.67 41.14

GKR M-1 45.45 31.39 21.20 15.25 28.33
M-3 47.73 34.17 24.20 18.55 31.16

GAT M-1 11.14 6.61 4.81 3.84 6.60
M-3 15.74 10.12 7.75 6.43 10.01

Table 7: Evaluation of market transferability on the En–
Ca market. “M” and “B” represent method and BLEU,
respectively.

Method B-1 B-2 B-3 B-4 B-AVG

Method-1 14.37 8.06 4.80 2.99 7.56
Method-3 20.52 12.17 7.98 5.54 11.55

Table 8: Evaluation of language transferability on the
GAT task for the DA–DK market. “B” represents
BLEU.

Method B-1 B-2 B-3 B-4 B-AVG

Method-1 47.70 42.99 31.46 11.50 33.41
Method-3 50.49 45.17 33.58 13.24 35.62

Table 9: Evaluation of task transferability on the GBK
task for the De–De market. “B” represents BLEU.

different tasks. We observe a consistent and sub-
stantial improvement by CULG (method-3) versus
method-1, which suggests that our model performs
well over new markets (in a language that is cov-
ered in CULG pre-training).

Language Transferability Data in the En–Ca
market is potentially similar to that in En–Us, En–
Au, and En–Uk market because of sharing the same
language (and having many cultural similarities).
It is natural to ask whether our model can also be
applied to markets with a language that is unseen
in pre-training.

In this experiment, we use data from the Da–Dk
(Denmark) market to evaluate language transfer-
ability. Note that no Danish data is used during
CULG pre-training. At the time of writing this
paper, we did not have market data for GKS and
GKR, so we will focus exclusively on GAT in this
experiment. From the results in Table 8, we see
that CULG performs much better than ProphetNet-
X, suggesting that our model generalizes to new
languages that were not included in pre-training.

Task Transferability The generation model can
potentially be applied to many scenarios and down-
stream tasks. We propose four different tasks for
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CULG training but wider demand might be re-
quired as products evolve. To test whether CULG
can be generalized to a task it has not been trained
on, we propose another task, which is to Generate
the Bidding Keywords (GBK) for an advertiser
automatically given the ad description. Experimen-
tal results (Table 9) show that method-3 leads to
solid improvements on this task vs. method-1, even
though this task is not included in pre-training. This
demonstrates that CULG is able to leverage infor-
mation from other tasks for a new task, suggesting
greater scope for its applicability.

4 Related Work

Pre-training for Text Generation Pre-training has
been widely used in NLP tasks to learn language
representations (Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020; Clark et al., 2020; Yang
et al., 2019; Radford et al., 2019b). GPT (Rad-
ford et al., 2018) takes plain text as pre-training
data to predict the next token in a left-to-right fash-
ion. It performs well on story generation and cre-
ative writing. BART (Lewis et al., 2020) uses an
encoder–decoder structure to regenerate the origi-
nal text from a corrupted input using an arbitrary
noising function. The denoising training strategy
and encoder–decoder structure lead to impressive
results on generation tasks. MASS (Song et al.,
2019) pre-trains a seq2seq model by masking con-
tinuous spans and learn to recover them. T5 (Raffel
et al., 2020) investigates different pre-training ob-
jectives and model architectures, and pre-trains on
a large-scale corpus containing 750Gb of text data.
ProphetNet (Qi et al., 2020) introduces a novel self-
supervised objective named future n-gram predic-
tion, that explicitly encourages the model to plan
for future tokens and prevent overfitting on strong
local correlations. In this paper, we use the model
structure of ProphetNet, and the same n-gram ob-
jective function.
Multi-lingual Model in NLP Building multi-
lingual models is becoming more common across
NLP tasks. Support for multi-lingual text is either
implemented by aligning multi-lingual word em-
beddings in a universal space (Chen and Cardie,
2018; Lample et al., 2018) or by learning cross-
lingual models using a different corpus to exploit
shared representations across languages. Models
such as mBERT (and), mBART (Liu et al., 2020),
XLM-R (Conneau et al., 2020), mT5 (Xue et al.,
2021), and ProphetNet-X (Qi et al., 2021) are multi-

lingual variants of BERT, BART, RoBERTa, T5,
and ProphetNet, respectively.
Domain Adaptive Pre-training In this paper, we
adapt the pre-trained ProphetNet-X to a commer-
cial domain by continuing to pre-train. Similar
work has been done by researchers in other do-
mains. BioBERT (Lee et al., 2020) is obtained
by performing additional BERT pre-training on a
biomedical corpora, leading to improvements on a
variety of biomedical text mining tasks. Alsentzer
et al. (2019) continues pre-training BioBERT on
clinical data, and achieves performance gains on
three clinical NLP tasks. ULMFit (Howard and
Ruder, 2018) introduced task-specific fine-tuning,
with the core idea being to continue pre-training
language models on task/domain specific data.
Chakrabarty et al. (2019) used the approach of
ULMFit and continued training it on a Reddit cor-
pus, achieving state-of-the-art performance on four
claim detection datasets in doing so. Most re-
cently, Gururangan et al. (2020) continued train-
ing RoBERTa across 4 domains and 8 tasks, and
showed that both domain adaptive pre-training
and task adaptive pre-training lead to performance
gains.

5 Conclusion

In this paper, we propose CULG: a large-scale com-
mercial universal language generation model which
supports multi-lingual, multi-market, and multi-
task ad generation. As part of this, we propose 4 ad
generation tasks for CULG pre-training. We then
propose a two-stage pre-training and fine-tuning
strategy, and demonstrate the effectiveness of the
proposed strategy through extensive experiments.
We further compare CULG with other multi-lingual
generation models, and show the superiority of
CULG on commercial generation tasks. Finally, we
demonstrate the transferability of CULG in three
different settings.

6 Ethical Considerations

This work was conducted while the first author was
an intern at Microsoft Research Asia. All data was
sourced in strict adherence with the commercial
terms of service of the Bing search engine, and no
session history or personal data was used in this
research.
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