Local-to-global learning for iterative training
of production SLU models on new features

Yulia Grishina and Daniil Sorokin
Amazon Alexa Al, Berlin, Germany
{yuliag,dsorokin}@amazon.com

Abstract

In production SLU systems, new training data
becomes available with time so that ML mod-
els need to be updated on a regular basis.
Specifically, releasing new features adds new
classes of data while the old data remains
constant. However, retraining the full model
each time from scratch is computationally ex-
pensive. To address this problem, we pro-
pose to consider production releases from the
curriculum learning perspective and to adapt
the local-to-global learning (LGL) schedule
(Cheng et al., 2019) for a neural model that
starts with fewer output classes and adds more
classes with each iteration.

We report experiments for the tasks of intent
classification and slot filling in the context of a
production voice-assistant. First, we apply the
original LGL schedule on our data and then
adapt LGL to the production setting where the
full data is not available at initial training it-
erations. We demonstrate that our method im-
proves model error rates by -7.3% and saves up
to 25% training time for individual iterations.

1 Introduction

In many real-world NLP systems with ML models,
new data becomes available with time and there is
a need to refresh the model (Diethe et al., 2018).
In some cases it is a passive flow, when new data
arrives due to the properties of the application (e.g.
daily search queries) or an active act of collecting
new data to be incorporated into the system (e.g.
a new feature). In this paper, we regard the use
case of an active extension of data to incorporate
a new customer-facing feature into a production
NLP model. We consider a Spoken Language Un-
derstanding (SLU) model that is used to interpret
user requests in a commercial task-oriented voice-
assistant. The model is a joint intent classification
(IC) and slot filling (SF) architecture that is used to

process utterances in a single domain.! We select
one data-rich domain for our experiments, Music,
and construct a scenario when an existing IC+SF
model is extended with a new user-facing feature
that comprises a set of intents and slots to be now
recognized by the model.

It is conventional to re-train the original ML
model on a combination of the old training data
and the additional data for the new feature, starting
from the same randomly initialized or pre-trained
architecture as the previous time. The practitioners
tend to use pre-trained models (language modeling
and transfer learning are widely used here) to im-
prove the generalization performance of the model.
It seems logical also to re-use the previous iteration
of the model trained on the old data in the previous
model release to warm-start the next iteration. This
could result in a reduced training time and a smaller
computational and environmental footprint of the
model updates in a scenario where new features
are added regularly. Yet, in practice it is usually
considered ‘safer’ to start training from scratch or
from the same general-purpose pre-trained model
every time, the main concern being that repeated
warm-starting would lead to overfitting and poorer
generalization (Ash and Adams, 2020).

Re-training the same model architecture on
nearly the same data with minimal changes, but
extending the output space with a new class is a
unique problem for industry applications. Many
previous works on continual learning have fo-
cused on learning from a continuous stream of
data (Biesialska et al., 2020) or on an incremen-
tal learning of new tasks (Kanwatchara et al., 2021)
and languages (Castellucci et al., 2021). Payan
et al. (2021) discuss a single-task continual learn-
ing setup and simulated a passive data extension

'Intent classification model determines the intent class the
query belongs to (e.g., PlayMusic) and slot filling is respon-
sible for identifying slot instances in the query (e.g., Song-
Name).

103

Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 103 - 111
July 10-15, 2022 ©2022 Association for Computational Linguistics

scenario where new examples are coming in for
all output classes on a public dataset. Similarly,
Ash and Adams (2020) evaluate a batch-learning
setup, where each model iteration is warm-started
from the previous step and the whole training data
is always available, while some new data is added
across all output classes in each batch. In our sce-
nario, we consider active data extension for new
features and we do not restrict the access to the
old training data. We rely on an offline training
paradigm, where each model release is trained on
the latest batch of data until convergence.

If each release adds data for new features with
the old data being constant, we can view a sequence
of model releases as a subclass of curriculum learn-
ing, a machine learning paradigm that aims to ar-
range training data into a meaningful order to im-
prove model training. In our scenario, the data is
arranged by feature. Cheng et al. (2019) describe a
local-to-global learning (LGL) schedule for a statis-
tical model that starts with fewer output classes and
adds more classes with each iteration. We build
upon their results in our work, but remove their
assumption that the whole data is available in the
first iteration.

In this paper, we repeatedly apply a warm-start
for training a set of subsequent IC+SF model re-
leases, each one being extended with a new set of
features. We define a single feature as a set of new
intents and slots to be recognized by the model
that are added to the output space. We focus on a
real-life production setting and report results on a
dataset sampled from a commercial German voice
assistant.Z As our main contribution, we show that
warm-start is an effective strategy to reduce training
time for later model releases and improve overall
model performance in a scenario when the added
training data pertains to new features only.

2 Related work

2.1 Spoken language understanding

Recent research in the field of SLU has made sig-
nificant advancements through the application of
deep learning (Mesnil et al., 2013) and the joint
modeling of IC and SF (Zhang and Wang, 2016;
Chen et al., 2019; Louvan and Magnini, 2020).
Semi-supervised learning and paraphrasing are fre-
quently applied to bootstrap new features, over-
come the class imbalance problem and improve

The data was de-identified prior to the experiment so that
any user identifiable information was removed.

the overall SLU performance (Cho et al., 2019;
Sokolov and Filimonov, 2020). These methods
often rely on the assumption that the number of
classes is static, while in a real production SLU
system, new classes are added on a regular basis,
affecting the target data distribution. In contrast,
in this work, we propose to focus on the learn-
ing schedule of a model that benefits directly from
the increasing number of classes and thus can be
adapted to the real-world scenario, where new fea-
tures are added to the system iteratively.

2.2 Local-to-global learning schedule

The main idea of local-to-global learning (LGL)
schedule used in this work is to gradually train a
neural network starting with a few output classes
and subsequently extending to more classes. It was
first introduced in the work of Cheng et al. (2019),
who applied it to a computer vision problem. LGL
does not require any additional annotated training
data, instead it utilises the entire training set in each
iteration, but only the data for the classes that are
being learned in this iteration is annotated. The
data for the rest of the classes is added masked
(unlabeled). In each LGL iteration, a set of new
classes is added and the model weights are trans-
ferred from the previous iteration (see Figure 1).

Cheng et al. (2019) compare the LGL schedule
to other curriculum learning and self-paced learn-
ing strategies. A typical curriculum learning ap-
proach relies on prior knowledge about the data
to define a training schedule, such as, for exam-
ple, the input length (Tay et al., 2019). Self-paced
learning alleviates the requirement for prior knowl-
edge by assigning a weight to each training sam-
ple based on model’s loss (Kumar et al., 2010).
Yet, it introduces additional model passes to com-
pute the per-sample loss during training and makes
self-paced learning approaches challenging to opti-
mize (Cheng et al., 2019). LGL defines a learning
schedule based on the target output classes, by fo-
cusing the early stages of training only on a subset
of classes. We propose to view feature expansion
in a production SLU system as a special case of
curriculum learning akin to LGL.

LGL can be also considered a form of a task
specific pre-training strategy or transfer learning.
Numerous transfer learning strategies were sug-
gested for NLP problems (Ruder et al., 2019) and
a complete overview is beyond the scope of our
work. In that view, the final stage of LGL train-

104

Pre-trained artifacts

Feature 1 data

Feature 1 data
Feature 2 data Feature 2 data

Feature 3 data

e

[]
Linp enb. 8 ot | 8 ot |
. model N ncoder | —> T
inimalnzarion
[oupi | v |
[inp a3 [inpu b
poces
—— ' ——
Q b model
1 2 3 evaluation
- - >
iterations

Figure 1: Local-to-Global model training set-up with 3 label batches (3 features) and hence 3 training iterations.

ing with complete annotations would correspond
to the usual fine-tuning step. The preceding stages
with a subset of classes are pre-finetuning steps,
where pre-training is done repeatedly on the same
task and with a reduced number of classes. The
task-adaptive pre-training approach (Gururangan
et al., 2020) uses a similar task to the target task
to pre-train the model with a task-specific objec-
tive. Pruksachatkun et al. (2020) combine language
model pre-training with task-specific pre-training
and fine-tuning on the target task to test 110 pre-
training task combinations. They conclude that it is
still hard to predict, which task would be the most
optimal for pre-training. From this perspective,
LGL does not have this problem, as it pre-trains on
the same task and the same dataset.

A sample LGL training set-up with 3 label
batches and 3 training iterations is illustrated in
Figure 1. In the first iteration the model is initial-
ized from a pre-trained LM and the first batch of
labels are unmasked in the training data, while the
rest of data is left masked. In the next iteration, the
embeddings and the encoder are initialized from
the embeddings and the encoder of the previous
iteration model. The second batch of labels is un-
masked. In the final iteration, the embeddings and
the encoder are initialized from the embeddings and
the encoder of the second iteration model, while
all three label batches are unmasked. After the last
iteration the final model is exported and applied on

the test set.’

In this work, we focus on applying LGL in a pro-
duction SLU setup, where new models are released
and new classes are added regularly. The exper-
imental setup of Cheng et al. (2019) focuses on
improving the final model performance on the full
dataset and includes full (partially-masked) train-
ing data at each iteration. We first apply LGL to
our internal data from a production SLU system.
Second, to simulate a real-life situation, we mod-
ify this setup and conduct experiments where the
data for new classes is not available at the early
model training iterations. In Figure 1, this would
correspond to not using the masked data batches.

3 Experimental setup

3.1 Dataset

We use a dataset sampled from a commercial Ger-
man SLU system. The data was de-identified prior
to the experiment (so that any user identifiable in-
formation was removed), and subsequently anno-
tated across domains, intents and slots. For our ex-
periment, we have selected Music domain, which
contains mutually exclusive classes (intents), such
as PlayRadio or FindSoundtrack. The evaluation
set comes from the same distribution and was anno-
tated in the same way. The distribution of relative
frequencies of intents is typically a heavily skewed
one; in the case of LGL, that can result in a large

3See Appendix A for an extended definition of LGL.

105

fraction of the annotated data being masked all at
once. However, the main motivation behind LGL
is that it is easier to learn fewer classes, while the
amount of training data per class may vary (Cheng
et al., 2019).

3.2 Model

We use an SLU architecture based on BERT for
all of our experiments. Architectures based on pre-
trained transformers have recently demonstrated
the strongest performance on SLU tasks (Chen
et al., 2019; Gaspers et al., 2020; Weld et al., 2021).
The model consists of a pre-trained BERT encoder
and an intent and slot decoders. The BERT en-
coder’s outputs at sentence and token level are used
as inputs for the intent and slot decoders, respec-
tively. The intent decoder is a feed-forward net-
work consisting of two dense layers and a softmax
layer on top. The slot decoder uses a CRF layer on
top of two dense layers to leverage the sequential
information of slot labels. During training the IC
and SL objectives are jointly optimized.

3.3 Maetrics

We report results with two common metrics used
in production SLU: intent classification error rate
(ICER) and semantic error rate (SEMER). Both
metrics are Recall-based, as they are computing
the error rate with respect to the ground-truth do-
main (annotated manually by language experts).
ICER is the ratio of incorrect intents to the total
number of utterances (and we will mainly rely on
this evaluation metric further for intent classifica-
tion):

(# incorrect intents)

ICER = . 1
(# total utterances) M

SEMER considers both intent classification and
slot classification together. SEMER allows us to
measure the effect of improved intent classification
on the overall joint model performance. It is com-
puted based on the number of insertions, deletions
and substitutions for slots and the intent in a recog-
nised utterance compared to a reference utterance:

(# slot errors + intent errors)

SEMER = (2)

(# reference slots + intents)

4 Results

First, we study the impact of an unmodified LGL
method on model training (4.1, 4.2), splitting our

100 Fer = =

i

60|
40 17
‘ Jorandom-10 D gr: adual 500 random 5

b

Figure 2: Masked data distribution per iteration (% of
the full dataset) for random and gradual orderings in
LGL for IC experiment. The last iteration (the 5th or
the 10th) contains always only unmasked data.

ordering, # of batches

Metric r,5) (g5 (@ 10)
SEMER -2.61 -198 -2.50
ICER -3.39 234 9.1

Table 1: Evaluation results for LGL applied to IC. The
relative difference is with respect to baseline model
that does not use any form of LGL or other curriculum
learning.

training data into several batches and masking parts
of the data as described in Section 2. The batches
are split per intent, with each batch containing sev-
eral classes. We train the model in several itera-
tions, gradually unmasking the data. Second, we
adapt LGL to SLU production scenario and con-
duct experiments where the data for new classes is
not available at the early model training iterations
(4.3). In all experiments, we compare the result
against a baseline, which is the same model trained
on all classes in a single iteration.

4.1 LGL for intent classification

In the first experiment, we apply LGL to intent clas-
sification, i.e. only masking intent labels. Specifi-
cally, we replace all intent labels in masked batches
by a placeholder (Otherlntent). We randomly
group classes in the dataset into 5 and 10 batches
for LGL training, so that each batch contains 5 to 6
intents (we include masked data statistics per batch
in Figure 2). To account for the unbalanced class
distribution in the dataset, we evaluate two strate-
gies for selecting the order of batches for LGL:

* Random order (r). We select the order ran-
domly, which results in 66% of the annotated
data being included in the first iteration.

* Gradual order (g). We select batches based
on the corresponding data size, starting with
the smallest one. In that scenario, the first 4

106

Metric

-6 SEMER | |
73 —e— ICER
(-

10

w
<

Number of batches

Figure 3: Evaluation results for LGL applied to NER
and IC tasks (relative difference). The relative differ-
ence is with respect to the baseline model that does not
use any form of LGL or other curriculum learning.

iterations include 33% of the annotated data,
while the largest classes are added in the last
iteration.

The results of the experiments on a real-life Mu-
sic dataset are presented in Table 1. We can see
that the experimental models trained using LGL
outperform the baseline across all metrics, which
confirms the results first obtianed in Cheng et al.
(2019). For the ICER metric, our best model (LGL
(r, 10)) improves the error rate by -9.11% compared
to the baseline. We conclude that the increasing
number of batches has a positive impact on the
LGL performance here, as the model trained on 10
batches outperforms the same model trained on 5
batches by 5.72%. The improvement in SEMER
is smaller, which is expected as we apply LGL to
intent classification only (i.e., the dataset was split
into batches based on intents only, and all slots
were left unmasked).

The selection strategy (r vs. g) has a substan-
tial impact on the model performance. The model
trained on a random selection of the training classes
performs better on both SEMER and ICER metrics
than the same model trained on the sets of classes
selected gradually (cf. (r, 5) vs. (g, 5) in Table 1).
Therefore, we only use the random ordering in the
other experiments.

We also experiment with LGL approach without
resetting the learning rate. In the current model, we
used learning rate scheduler to control the learning
rate using the specified steps, where the first step
reset the learning rate to O for each model iteration.
However, since the encoder is initialised from the
encoder of the previous model starting from the
second iteration, we experimented with keeping the
learning rate multiplier constant (0.1) for that and

100 F — - - -

80| o 7 7 1

60 |- 4 4

40 |77

00 , , ,
1 2 3 4

‘ e music-100music-2J0music-3 ‘

Figure 4: Data distribution per run and iteration (% of
the full dataset; the last iteration always contains 100%
of the data). Each run represents a different feature
grouping and order.

all subsequent iterations. The results with respect
to the (LGL (r, 5)) approach show only marginal
improvement (avg. -0.27 rel. improvement over
ICER and SEMER), therefore we conclude that
resetting the learning rate does not have significant
impact on the LGL training.

4.2 LGL for NER and IC

In this experiment, we apply masking to both intent
and slot labels, splitting the training dataset into
3, 5 and 10 batches to further study the impact
of the batch size*. In addition to intent masking
(described in 4.1), slot masking is done as follows:
madonnalArtistName -> madonnal OtherSlot.

The results for the Music domain are visual-
ized in Figure 3. As one can see, the best result
is achieved when selecting a middle number of
batches (between 3 and 5), while a very large num-
ber of batches (10) potentially overfits the model.
This result differs from the LGL result on IC only
(where using 10 batches is superior to using 5 on
ICER metric) potentially due to a much larger num-
ber of slots that are left masked.

4.3 Gradually adding new features

Having applied LGL to the task of IC and NER, we
showed that it is able to improve IC performance
by -9.1% relative ICER and -2.5% relative SEMER.
However, the downside of LGL for production SLU
setup is the increased number of training iterations,
which is associated with additional computational
cost. In addition, in a real-life scenario, the data
for new classes only becomes available with time.
Therefore, in the following experiments, we modify
the original LGL setup and conduct experiments
where the data for new classes is added gradually
within several iterations. Note that we select this
setup to account for a production scenario when a

*We do not include data statistics here for space reasons.

107

7,000 (- E\ —
,

6,500 |-

6,000 |-

5,500 |-

Training time (sec)

5,000 - —

—— Baseline \
-o- music-2 \
- ®- music-3 \
4,500 || —@— Avg. music with LGL o -
]] | |
1 2 3 4

Iterations

Figure 5: Average training time per LGL iteration com-
pared to the baseline (note that the baseline here is the
full model trained once on all available data in each it-
eration, which represents the upper bound).

model is trained in several iterations within a fixed
release cycle (e.g., a period of several weeks); for
simplicity, we assume that after each iteration the
model is fully retrained on all data to avoid any
model drift-related effects (which are out of scope
of this work). This would also correspond to a
100% data replay strategy in continuous learning
approaches (Payan et al., 2021).

We split the Music domain dataset into 4 batches
corresponding to model releases, each one con-
taining a new set of features (another reason for
that is best result observed using 3 to 5 batches,
cf. 4.2). With each iteration, a new batch of data
(comprising several new classes and representing
a new feature) is added to the model. We experi-
ment with different feature order when grouping
the data into batches (for instance, the first run
may contain features represented by PlaySong and
PlayAlbum intents grouped together for the first
iteration, PlayRadio for the second iteration, while
the second run could have PlayAlbum as the first
iteration, and PlaySong and PlayAlbum for the sec-
ond, etc.). We do not apply any masking in this
scenario and at every step only the data for the
currently supported features is used to train the
model. The data distribution per iteration and run
is presented in Figure 4.

The results after the final iteration are presented
in Table 2 relative to a baseline that was once
trained on full data. The experimental models
trained using modified LGL setup outperform the
baseline across SEMER and ICER in 2 out of 3
cases. In the last case, LGL outperforms the base-

Run # ICER SEMER
music-1 2.2 2.3
music-2 -3.2 -2.7
music-3 2.9 -7.3

Table 2: Evaluation results for modified LGL method
per run (each run represents a different feature group-
ing and order). The relative difference is with respect
to a baseline model that does not use any form of LGL
or other curriculum learning.

line on SEMER (-7.3%), while ICER slightly in-
creases (+2.9%). This could be explained by the
different number of classes added to the model —
in the last iteration, we add 9.2% of training data,
while for other orderings, a much smaller amount
is added in the last step.

Another benefit of the modified LGL method is
that it helps reduce training time when new fea-
tures are added on top. In Fig. 5, we compare
the training time for two runs and their average to
the baseline model (we use the model trained once
on all available data as upper bound; its training
time is the same for each iteration). We see that
the average training time for each of the iterations
is less than the training time of the full model, be-
cause we use less training data in the first iterations,
and initialise the model from the previous one in
subsequent iterations. For individual iterations, we
observe up to 25% training time reduction. Overall,
we conclude that gradually adding features with
warm-starting is beneficial for production SLU, as
it helps improve model accuracy and reduces the
overall training time spent per release cycle.

5 Conclusion

We applied LGL to the tasks of intent classification
and slot filling in the context of SLU and studied
the impact of LGL on intent classification error
rate and semantic error rate. We conducted the ex-
periments using different class selection strategies
and showed that LGL improves intent classifica-
tion performance for SLU by -9.1% relative ICER,
without requiring any new training data or modified
model architecture. In addition, we adapted origi-
nal LGL setup to SLU production scenario when
new features are gradually added within fixed re-
lease cycle, and showed that it is able to improve
model accuracy by up to -7.3% relative SEMER
while reducing average training time by up to 25%
for individual iterations.

As future work, we would like to further explore

108

LGL application to feature expansion problem, ap-
ply it to other domains and investigate the impact
of batch size on the model performance. In addi-
tion, we would track the impact of LGL training on
model’s generalization performance and computa-
tional cost over time.

References

Jordan Ash and Ryan P Adams. 2020. On warm-
starting neural network training. Advances in Neu-
ral Information Processing Systems, 33.

Magdalena Biesialska, Katarzyna Biesialska, and
Marta R. Costa-jussa. 2020. Continual lifelong
learning in natural language processing: A survey.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 6523-6541,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Giuseppe Castellucci, Simone Filice, Danilo Croce,
and Roberto Basili. 2021. Learning to solve NLP
tasks in an incremental number of languages. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 837—
847, Online. Association for Computational Linguis-
tics.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. BERT
for Joint Intent Classification and Slot Filling. arXiv
preprint arXiv:1902.10909.

Hao Cheng, Dongze Lian, Bowen Deng, Shenghua
Gao, Tao Tan, and Yanlin Geng. 2019. Local to
global learning: Gradually adding classes for train-
ing deep neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4748—4756.

Eunah Cho, He Xie, and William M Campbell. 2019.
Paraphrase generation for semi-supervised learning
in nlu. In Proceedings of the Workshop on Meth-
ods for Optimizing and Evaluating Neural Language
Generation, pages 45-54.

Tom Diethe, Tom Borchert, Eno Thereska, Borja Balle,
and Neil D Lawrence. 2018. Continual learning in
practice. In Proceedings of the NeurIPS 2018 work-
shop on Continual Learning.

Judith Gaspers, Quynh Do, and Fabian Triefenbach.
2020. Data balancing for boosting performance
of low-frequency classes in spoken language under-
standing. In Interspeech 2020.

Suchin Gururangan, Ana Marasovié, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages
8342-8360, Online. Association for Computational
Linguistics.

Kasidis Kanwatchara, Thanapapas Horsuwan, Piyawat
Lertvittayakumjorn, Boonserm Kijsirikul, and Peer-
apon Vateekul. 2021. Rational LAMOL: A
rationale-based lifelong learning framework. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2942—
2953, Online. Association for Computational Lin-
guistics.

M. Kumar, Benjamin Packer, and Daphne Koller. 2010.
Self-paced learning for latent variable models. In
Advances in Neural Information Processing Systems,
volume 23. Curran Associates, Inc.

Samuel Louvan and Bernardo Magnini. 2020. Re-
cent neural methods on slot filling and intent clas-
sification for task-oriented dialogue systems: A sur-
vey. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 480—
496, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of Recurrent-Neural-
Network Architectures and Learning Methods for
Spoken Language Understanding. In Interspeech,
pages 3771-3775, Lyon, France.

Justin Payan, Yuval Merhav, He Xie, Satyapriya Kir-
ishna, Anil Ramakrishna, Mukund Sridhar, and
Rahul Gupta. 2021. Towards realistic single-task
continuous learning research for NER. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3773-3783, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R.
Bowman. 2020. Intermediate-task transfer learning
with pretrained language models: When and why
does it work? In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5231-5247, Online. Association for
Computational Linguistics.

Sebastian Ruder, Matthew E. Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Trans-
fer learning in natural language processing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Tutorials, pages 15-18,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Alex Sokolov and Denis Filimonov. 2020. Neural ma-
chine translation for paraphrase generation. arXiv
preprint arXiv:2006.14223.

109

https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2021.acl-short.106
https://doi.org/10.18653/v1/2021.acl-short.106
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2021.acl-long.229
https://doi.org/10.18653/v1/2021.acl-long.229
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2021.findings-emnlp.319
https://doi.org/10.18653/v1/2021.findings-emnlp.319
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/N19-5004

Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu,
Minh C. Phan, Xingdi Yuan, Jinfeng Rao, Siu Che-
ung Hui, and Aston Zhang. 2019. Simple and effec-
tive curriculum pointer-generator networks for read-
ing comprehension over long narratives. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4922—
4931, Florence, Italy. Association for Computational
Linguistics.

H. Weld, X. Huang, S. Long, J. Poon, and S. C. Han.
2021. A survey of joint intent detection and slot-
filling models in natural language understanding.

Xiaodong Zhang and Houfeng Wang. 2016. A Joint
Model of Intent Determination and Slot Filling for
Spoken Language Understanding. In Proceedings of
the Twenty-Fifth IJCAI, page 2993-2999, New York,
NY, USA.

A Local To Global Learning

The main idea of Local to Global Learning (LGL)
algorithm used in this work is to gradually train the
neural network starting with a few output classes
and subsequently extending to more classes. In the
following, we provide a more detiled oevrview of
the method following Cheng et al. (2019).

The model training is performed in several iter-
ations. The model for each iteration is initialized
from the previous one. During each iteration, the
entire training set is used, however, the classes that
are not learned during that specific iteration are
masked. Thus, the model is learned on a fraction
of classes from the complete output space of the
training set, while the whole dataset is still exposed.
As compared to traditional model learning, the loss
function is not minimized across all classes simul-
taneously, but is minimized iteratively, each time
learning a new set of classes in addition to the al-
ready known classes. At each step, a set of new
classes is added to the training setup by unmasking
them in the dataset and the model is trained until
convergence. Mathematically, it can be expressed
as (we refer to (Cheng et al., 2019) for details):

wlt = arg minL(w7 XSka ng; QU*k:fl)
w

s.t.a* = f(wa ng,l’YSE,l;wZ’_l)’
S =81 U {’L*},

where L is the loss function and w* are the
model weight produced by minimizing L. The
dataset contains pairs of samples and class anno-
tations G = {X,Y'}, where K = {1,2,..., K} is
a set of available output class labels. The classes
are grouped into IV batches of equal size and af-
ter each training iteration, one batch ¢x is added.
Sy, is the set of classes from K that is used in the
k-th step. Xg, ,Ys, is the data, which labels are
in .S, and S/?,l is the set of classes not in Si_1.
The selection strategy is represented by the func-
tion f, which defines how a new batch of classes is
selected from the untrained classes.

The set of classes at the current iterations Sy, is
unmasked in the dataset during the training, while
the yet unavailable classes Sg_l are masked with
a placeholder label, but the corresponding data in-
stances X s are kept in the training data. Hence,
the full data set GG is used for training at every
iteration. After the model is learned on the first
batch, its encoder is used to initialize the encoder

110

https://doi.org/10.18653/v1/P19-1486
https://doi.org/10.18653/v1/P19-1486
https://doi.org/10.18653/v1/P19-1486
http://arxiv.org/abs/2101.08091
http://arxiv.org/abs/2101.08091

for the next training step. Thereby, the final model
is learned iteratively through several training runs
with an increasing number of output classes. The
encoder part of the model is carried further with ev-
ery iteration and the output layers are re-initialized
each time to account for changing output space.

111

