
NAACL 2022

The 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language

Technologies

Proceedings of the Demonstrations Session

July 10-15, 2022

The NAACL organizers gratefully acknowledge the support from the following
sponsors.

Diamond

Platinum

Gold

G-Research is Europe's leading quantitative finance research firm.

We hire the brightest minds in the world to tackle some of the biggest
questions in finance.

View our ML, NLP and Quantitative Research vacancies today.

CREATE TODAY.
PREDICT TOMORROW.

IMAGINE DISCOVERING SOMETHING UNDISCOVERED.

gresearch.co.uk

ii

6

Logotype: Modernizing a classic

Primary logo
Our logo is made up of two
elements: the window shape
and the type. These should
not be altered or recreated.
Send requests for the .eps
artwork to email@tiaa.org.

6

Silver

Magic Data provides high quality training datasets for
ML and customized AI training data labelilng services
to enterprises and academic institutions engaged in
artificial intelligence R&D and application research to
natural language processing (NLP), voice recognition
(ASR), speech synthesis (TTS), and computer vision (CV).

We provide data total solutions which cover automo-
bile, finance, social networks, smart home automation,
and end-user device, involving smart customer service,
virtual assistant, machine translation, and many other
AI scenarios.

business@magicdatatech.com

www.magicdatatech.com

Contact Us

Bronze

D&I Champions

D&I Contributors

G-Research is Europe's leading quantitative finance research firm.

We hire the brightest minds in the world to tackle some of the biggest
questions in finance.

View our ML, NLP and Quantitative Research vacancies today.

CREATE TODAY.
PREDICT TOMORROW.

IMAGINE DISCOVERING SOMETHING UNDISCOVERED.

gresearch.co.uk

iii

D&I Allies

iv

©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-74-2

v

Introduction

Welcome to the proceedings of the system demonstration track of NAACL-HLT 2022 on Jul 10–15.
NAACL-HLT 2022 will be a hybrid conference.

The system demonstration track invites submissions ranging from early prototypes to mature production-
ready systems. This year we received 35 submissions, of which 14 were selected for inclusion in the pro-
gram (acceptance rate 40%) after being reviewed by at least three members of the program committee.

This is the second year NAACL-HLT incorporated ethical considerations in the review process. In the
standard review stage, members of the program committee are given the option to flag a paper as needing
separate ethics reviews. Papers flagged as needing separate ethics reviews by at least one member from
the program committee are subsequently reviewed by two members from the NAACL-HLT 2022 ethics
committee. This year, compared to last year, had none that raised an ethics flag.

This year was the first year that the demo track at NAACL-HLT had different types of reproducibility
badge(s). There were 6 papers that decided to participate and all of them successfully earned at least one
badge.

We would like to thank the members of the program committee for their timely help in reviewing the
submissions. We also thank the many authors who submitted their work to the demonstration track. The
demonstration papers will be presented through pre-recorded talks and one live online Q&A session.

Best,
Qiang Ning, Hannaneh Hajishirzi and Avi Sil NAACL-HLT 2022 Demonstration Track Chairs

vi

Program Committee

Demonstration Chairs

Qiang Ning, Amazon
Hannaneh Hajishirzi
Avi Sil, IBM Research

Program Committee

Akari Asai, University of Washington
Ameet Deshpande, Princeton University
David Wadden, Department of Computer Science, University of Washington
Jaydeep Sen, International Business Machines
Tiancheng Zhao, Carnegie Mellon University
Ahmed Abdelali, Hamad Bin Khalifa University
Aldrian Obaja Muis, Carnegie Mellon University
Ales Horak, Masaryk University
Alexandros Papangelis, Amazon
Ali Hürriyetoğlu, Koc University
Aljoscha Burchardt, German Research Center for AI
Alok Debnath, Trinity College, Dublin
Andrea Varga, Theta Lake Ltd
Chengzhi Zhang, Nanjing University of Science and Technology
Carl Edwards, Allen Institute for Artificial Intelligence
Changhan Wang, Meta AI
Chenchen Ding, National Institute of Information and Communications Technology (NICT)
Chenkai Sun, University of Illinois, Urbana Champaign
Chi Han, University of Illinois, Urbana Champaign
Chien-Sheng Wu, Salesforce AI
Christos Christodoulopoulos, Amazon
Chung-Chi Chen, National Tsing Hua University
Constantine Lignos, Brandeis University
Daniel F Campos, University of Illinois, Urbana Champaign
Daniel Hershcovich, University of Copenhagen
Daniel Cer, Google
Danilo Croce, University of Roma Tor Vergata
David Wadden, Department of Computer Science, University of Washington
Denis Newman-Griffis, University of Sheffield
Dian Yu, Google
Diane Napolitano, The Associated Press
Diego Antognini, International Business Machines
Dimitris Galanis, Institute for Language and Speech Processing
Djamé Seddah, Inria Paris
Dong-Ho Lee, University of Southern California
Eleftherios Avramidis, German Research Center for AI
Erion Çano, University of Vienna
Eugene Kharitonov, Meta
Federico Fancellu, Samsung AI Toronto
Feifei Pan, Rensselaer Polytechnic Institute

vii

Guangyou Zhou, Institute of Automation, Chinese Academy of Sciences
Guanyi Chen, Utrecht University
Gábor Berend, University of Szeged
Hamada M Zahera, Paderborn University
Hamdy Mubarak, Qatar Computing Research Institute
Harshit Kumar, International Business Machines
Hen-Hsen Huang, Institute of Information Science, Academia Sinica
Hongshen Chen, JD.com
Imed Zitouni, Google
James Fan, University of Texas, Austin
Jeff Jacobs, Columbia University
Jhih-Jie , National Tsing Hua University
Jian SUN, Alibaba Group, DAMO Academy
Jiarun Cao, University of Manchester
Jingjing Wang, Soochow University
John Heyer, Massachusetts Institute of Technology
John Sie Yuen Lee, City University of Hong Kong
Joo-Kyung Kim, Amazon Alexa AI
Khalid Al Khatib, University of Groningen
Lei Shu, Google
Leonhard Hennig, German Research Center for AI
Liang-Chih Yu, Yuan Ze University
Mamoru Komachi, Tokyo Metropolitan University, Japan
Manling Li, University of Illinois, Urbana Champaign
Margot Mieskes, University of Applied Sciences Darmstadt
Marina Danilevsky, International Business Machines
Marina Litvak, Ben-Gurion University of the Negev
Mark Last, Ben-Gurion University of the Negev
Michael Desmond, International Business Machines
Michal Shmueli-Scheuer, University of California, Irvine
Miguel A. Alonso, Universidade da Coruña
Miruna Clinciu, Heriot-Watt University
Mohaddeseh Bastan, State University of New York at Stony Brook
Mozhdeh Gheini, USC/ISI
Natalia Vanetik, SCE
Nikola Ljubešić, Jožef Stefan Institute
Omri Abend, Hebrew University of Jerusalem, Technion
Oren Pereg, Intel
Pablo Ruiz, Université de Strasbourg
Paulo Fernandes, Roberts Wesleyan College
Pengfei Yu, University of Illinois at Urbana-Champaign
Philipp Koehn, Meta
Philippe Laban, SalesForce.com
Philippe Muller, IRIT, University of Toulouse
Pierre Nugues, Lund University
Prokopis Prokopidis, Institute for Language and Speech Processing, Athena Research Center
Qi Zeng, University of Illinois, Urbana Champaign
Qi Zhang, Fudan University
Qian Liu, Beihang University
Qingyun Wang, University of Illinois, Urbana Champaign
Rafael Anchiêta, Federal Institute of Piauí

viii

Rahul Aralikatte, University of Copenhagen
Ridong Jiang, National University of Singapore
Rodrigo Agerri, University of the Basque Country
Roee Aharoni, Google
Rui Wang, Vipshop (China) Co., Ltd.
Saarthak Khanna, Amazon
Saurav Sahay, Intel
Sebastin Santy, University of Washington
Seid Muhie Yimam, Universität Hamburg
Sha Li, University of Illinois, Urbana Champaign
Shaobo Cui, EPFL - EPF Lausanne
Stella Markantonatou, ATHENA RIC
Sudeep Gandhe, Google
Sudipta Kar, Amazon
Sumit Bhatia, Adobe Systems
Sven Schmeier, German Research Center for AI
Thierry Declerck, German Research Center for AI
Tsuyoshi Okita, Kyushu Institute of Technology
Tuan Lai, University of Illinois, Urbana Champaign
Wenlin Yao, Tencent AI Lab
Wolfgang Maier, Mercedes Benz Research & Development
Xianchao Wu, NVIDIA
Xianpei Han, Institute of Software, CAS
Xiaodan Hu, University of Illinois, Urbana-Champaign
Xintong Li, Baidu
Xuan Wang, University of Illinois, Urbana Champaign
Xutan Peng, University of Sheffield
Yada Pruksachatkun, New York University Center for Data Science
Yanran Li, The Hong Kong Polytechnic University
Yixin Cao, Singapore Management University
Youngsoo Jang, Korea Advanced Institute of Science and Technology
Yujiu Yang, Graduate School at Shenzhen,Tsinghua University
Yun He, Texas A&M University
Yuntian Deng, Harvard University
Yusuke Miyao, The University of Tokyo
Yusuke Oda, LegalForce
Zeljko Agic, Unity Technologies
Zeynep Akkalyoncu, University of Waterloo
Zhen Xu, PCG Tencent
Zhenhailong Wang, University of Illinois at Urbana-Champaign
Zhongqing Wang, Soochow University, China
Zhuoxuan Jiang, Tencent Inc.
Zixuan Zhang, University of Illinois at Urbana-Champaign
Carl Strathearn, Napier University

ix

Table of Contents

textless-lib: a Library for Textless Spoken Language Processing
Eugene Kharitonov, Jade Copet, Kushal Lakhotia, Tu Anh Nguyen, Paden Tomasello, Ann Lee,

Ali Elkahky, Wei-Ning Hsu, Abdelrahman Mohamed, Emmanuel Dupoux and Yossi Adi 1

Web-based Annotation Interface for Derivational Morphology
Lukáš Kyjánek . 10

TurkishDelightNLP: A Neural Turkish NLP Toolkit
Huseyin Alecakir, Necva Bölücü and Burcu Can . 17

ZS4IE: A toolkit for Zero-Shot Information Extraction with simple Verbalizations
Oscar Sainz, Haoling Qiu, Oier Lopez De Lacalle, Eneko Agirre and Bonan Min 27

Flowstorm: Open-Source Platform with Hybrid Dialogue Architecture
Jan Pichl, Petr Marek, Jakub Konrád, Petr Lorenc, Ondrej Kobza, Tomáš Zajíček and Jan Šedivý

39

Contrastive Explanations of Text Classifiers as a Service
Lorenzo Malandri, Fabio Mercorio, Mario Mezzanzanica, Navid Nobani and Andrea Seveso. .46

RESIN-11: Schema-guided Event Prediction for 11 Newsworthy Scenarios
Xinya Du, Zixuan Zhang, Sha Li, Pengfei Yu, Hongwei Wang, Tuan Lai, Xudong Lin, Ziqi Wang,

Iris Liu, Ben Zhou, Haoyang Wen, Manling Li, Darryl Hannan, Jie Lei, Hyounghun Kim, Rotem Dror,
Haoyu Wang, Michael Regan, Qi Zeng, Qing Lyu, Charles Yu, Carl Edwards, Xiaomeng Jin, Yizhu
Jiao, Ghazaleh Kazeminejad, Zhenhailong Wang, Chris Callison-Burch, Mohit Bansal, Carl Vondrick,
Jiawei Han, Dan Roth, Shih-Fu Chang, Martha Palmer and Heng Ji . 54

A Human-machine Interface for Few-shot Rule Synthesis for Information Extraction
Robert Vacareanu, George C.G. Barbosa, Enrique Noriega-Atala, Gus Hahn-Powell, Rebecca

Sharp, Marco A. Valenzuela-Escárcega and Mihai Surdeanu . 64

SETSum: Summarization and Visualization of Student Evaluations of Teaching
Yinuo Hu, Shiyue Zhang, Viji Sathy, Abigail Panter and Mohit Bansal . 71

Towards Open-Domain Topic Classification
Hantian Ding, Jinrui Yang, Yuqian Deng, Hongming Zhang and Dan Roth 90

SentSpace: Large-Scale Benchmarking and Evaluation of Text using Cognitively Motivated Lexical,
Syntactic, and Semantic Features

Greta Tuckute, Aalok Sathe, Mingye Wang, Harley Yoder, Cory Shain and Evelina Fedorenko 99

PaddleSpeech: An Easy-to-Use All-in-One Speech Toolkit
Hui Zhang, Tian Yuan, Junkun Chen, Xintong Li, Renjie Zheng, Yuxin Huang, Xiaojie Chen,

Enlei Gong, Zeyu Chen, Xiaoguang Hu, Dianhai Yu, Yanjun Ma and Liang Huang 114

DadmaTools: Natural Language Processing Toolkit for Persian Language
Romina Etezadi, Mohammad Karrabi, Najmeh Zare, Mohamad Bagher Sajadi and Mohammad

Taher Pilehvar . 124

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction
Minh Van Nguyen, Nghia Trung Ngo, Bonan Min and Thien Huu Nguyen 131

x

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 1 - 9
July 10-15, 2022 ©2022 Association for Computational Linguistics

textless-lib: a Library for
Textless Spoken Language Processing

Eugene Kharitonov⋆, Jade Copet⋆, Kushal Lakhotia▲, Tu Anh Nguyen⋆, Paden Tomasello⋆

Ann Lee⋆, Ali Elkahky⋆, Wei-Ning Hsu⋆, Abdelrahman Mohamed⋆, Emmanuel Dupoux⋆†, Yossi Adi⋆
⋆ Meta AI Research, † EHESS

▲ Outreach
{kharitonov, jadecopet, adiyoss}@fb.com

Abstract

Textless spoken language processing research
aims to extend the applicability of standard
NLP toolset onto spoken language and lan-
guages with few or no textual resources. In
this paper, we introduce textless-lib, a
PyTorch-based library aimed to facilitate re-
search in this research area. We describe the
building blocks that the library provides and
demonstrate its usability by discuss three dif-
ferent use-case examples: (i) speaker prob-
ing, (ii) speech resynthesis and compression,
and (iii) speech continuation. We believe
that textless-lib substantially simpli-
fies research the textless setting and will be
handful not only for speech researchers but
also for the NLP community at large. The
code, documentation, and pre-trained models
are available at https://github.com/
facebookresearch/textlesslib/.

1 Introduction
Textless spoken language modeling (Lakhotia et al.,
2021) consists in jointly learning the acoustic and
linguistic characteristics of a natural language from
raw audio samples without access to textual su-
pervision (e.g. lexicon or transcriptions). This
area of research has been made possible by con-
verging progress in self-supervised speech repre-
sentation learning (Schneider et al., 2019; Baevski
et al., 2020; Oord et al., 2018; Hsu et al., 2021;
Chorowski et al., 2021; Chen et al., 2021; Chung
et al., 2021; Wang et al., 2021; Ao et al., 2021), lan-
guage modeling (Peters et al., 2018; Devlin et al.,
2019; Liu et al., 2019; Brown et al., 2020; Lewis
et al., 2020), and speech synthesis (Ren et al., 2019;
Kumar et al., 2019; Yamamoto et al., 2020; Ren
et al., 2020; Kong et al., 2020; Morrison et al.,
2021).

Lakhotia et al. (2021) presented a Generative
Spoken Language Modeling (GSLM) pipeline
trained from raw audio, consisting in a speech en-

Figure 1: A visual description for textless modeling of
spoken language. One can perform language modeling
for speech continuations (Lakhotia et al., 2021) or a
direct speech resynthesis (Polyak et al., 2021).

coder (converting speech to discrete units), a lan-
guage model (based on units) and a decoder (con-
verting units back to speech). These components
enabled the generation of new speech by sampling
units from the language model. Polyak et al. (2021)
proposed an improved encoder/decoder working
from disentangled quantized content and F0 units
and showed how such a system could be used
for efficient audio compression. Kharitonov et al.
(2021a) proposed a modified language model sys-
tem capable of jointly modelling content units and
F0 yielding expressive generations. Lastly, Kreuk
et al. (2021) demonstrated that the language model
can be replaced by a sequence to sequence model
achieving the first high quality speech emotion con-
version system (including laughter and yawning).

The textless approach has several advantages.
First, it would be beneficial for the majority of the
world’s languages that do not have large textual re-
sources or even a widely used standardized orthog-
raphy (Swiss German, dialectal Arabic, Igbo, etc.).
Despite being used by millions of people, these lan-
guages have little chance of being served by current

1

text-based technology. Moreover, “high-resource”
languages can benefit from such modeling where
the oral and written forms are mismatched in terms
of lexicon and syntax. Second, directly model-
ing spoken language from raw audio allows us to
go beyond lexical content and also model linguis-
tically relevant signals such as prosodic features,
intonation, non-verbal vocalizations (e.g., laughter,
yawning, etc.), speaker identity, etc. All of these
are virtually absent in text.

Although great progress has been made in mod-
eling spoken language, it still requires domain ex-
pertise and involves a complicated setting. For
instance, the official implementation of the GSLM
pipeline (Lakhotia et al., 2021) consists of roughly
four different launching scripts with a few dozens
of checkpoints. Similarly, running the official im-
plementation of Polyak et al. (2021), requires using
four scripts from two different repositories.

We present textless-lib, a PyTorch library
for textless spoken language processing. It makes
processing, encoding, modeling, and generating of
speech as simple as possible. With a few lines of
code, one can perform speech continuation, audio-
book compression, representation analysis by prob-
ing, speech-to-speech translation, etc. We pro-
vide all the necessary building blocks, example
pipelines, and example tasks. We believe such a
simple to use API will encourage both speech and
NLP communities to deepen and extend the re-
search work on modeling spoken language without
text and unlock potential future research directions.

2 Background
Below we provide an overview of the common
textless spoken language modeling pipeline. In a
nutshell, such pipeline is usually comprised of: i)
Speech-to-Units (S2U) encoders that automatically
discover discrete representations or units which
can be used to encode speech into "pseudo-text"; ii)
Units-to-Units (U2U) models that are used for units
modeling. This can take a form as Unit-Language-
Model (uLM) for speech continuation (Lakhotia
et al., 2021; Kharitonov et al., 2021a), sequence-
to-sequence models for speech emotion conver-
sion (Kreuk et al., 2021) or translation tasks (Lee
et al., 2021a,b); iii) Units-to-Speech (U2S) models
to reconstruct back the speech signals.

Alternatively, one could drop the U2U com-
ponent and perform a direct speech resynthe-
sis (Polyak et al., 2021). This can be used for
speech compression, voice conversion, or develop-

Type Model Dataset

Encoders
HuBERT LS-960
CPC LL-6k

Quantizers k-means

LS-960 w. 50 units
LS-960 w. 100 units
LS-960 w. 200 units
LS-960 w. 500 units

F0 extract. YAAPT -

Decoders
Tacotron2 LJ Speech
WaveGlow LJ Speech

Table 1: Summary of the pre-trained models provided
in textless-lib. We denote LibriSpeech and Libri-
Light as LS-960 and LL-6k accordingly. All quantizers
were trained on “dev-clean” partition of LibriSpeech.

ing a better understanding of the learned represen-
tation using probing methods. See Figure 1 for a vi-
sual description of the full system. We provide a de-
tailed description for each of the above-mentioned
components in the following subsections.

2.1 Speech to Units
Consider the domain of audio samples as X ⊂ R.
The representation for an audio waveform is there-
fore a sequence of samples x = (x1, . . . , xT),
where each xi ∈ X for all 1 ≤ t ≤ T . We
denote the S2U encoder as, E(x) = z, where
z = (z1, . . . ,zL) is a spectral representation
of x sampled at a lower frequency, each zi for
1 ≤ i ≤ L is a d-dimensional vector, and L < T .

Next, as the representations obtained by E
are continuous, an additional quantization step
is needed. We define a quantization function Q,
which gets as input dense representations and out-
puts a sequence of discrete tokens correspond-
ing to the inputs’ quantized version. Formally,
Q(z) = zq, where zq = (z1q , . . . , z

L
q) such that

ziq ∈ {1, . . . ,K} and K is the size of the vocabu-
lary. After quantization one can either operate on
the original discrete sequences (duped) or collapse
repeated units (e.g., 0, 0, 1, 1, 2 → 0, 1, 2), we re-
fer to such sequences as “deduped”. Working with
the deduped sequences simplifies modeling long
sequences, however, the tempo information is lost.

2.2 Units to Speech
Converting a sequence of units to audio is akin
to the Text-to-Speech (TTS) problem, where we
consider the discrete units as “pseudo-text”. This
can be solved by adopting a standard TTS architec-
ture. For instance, Lakhotia et al. (2021) trained
a Tacotron2 model (Shen et al., 2018) to perform
units to mel-spectrogram conversion followed by

2

Figure 2: We represent speech as three aligned, synchronised streams: discrete pseudo-units, duration, and pitch.

a WaveGlow (Prenger et al., 2019) neural vocoder
for time-domain reconstruction.

Formally, to reconstruct a time-domain speech
signal from a sequence of discrete units, zq we
define the composition as, V (G(zq)) = x̂, where
G is a mel-spectrogram estimation module (e.g.,
Tacotron2), and V is a phase vocoder module re-
sponsible for time-domain synthesis (e.g., Wave-
Glow). The input sequence zq can be either the
original sequence or its deduped version.

Interestingly, one can simplify the synthesis pro-
cess when working with the duped unit sequences.
As we have a direct mapping between the duped
discrete unit sequence to the time domain signal
(e.g., each unit corresponds to a 20ms window)
one can remove G, and directly feed zq to V .
This was successfully done in (Polyak et al., 2021)
for speech resynthesis using the HiFi-GAN neural
vocoder (Kong et al., 2020). Alternatively, as sug-
gested by (Kreuk et al., 2021; Lee et al., 2021b)
one can train a unit duration prediction model and
use the predicted durations to inflate the sequence
and feed the discrete sequence directly to V .

2.3 Unit to Units
Equipped with the models to encode spoken lan-
guage into discrete unit sequences and convert them
back to speech samples, one can conveniently use
common NLP architectures to model spoken lan-
guage. Consider M to be a sequence modeling
function that gets as input a discrete unit sequence
zq and outputs another discrete units sequence, de-
noted as ẑq. Generally, ẑq can represent different
generations, depending on the modeling task. For
instance, Lakhotia et al. (2021) and Kharitonov
et al. (2021a) setM to be a Transformer and trained
a generative spoken language model. Similarly,
Kreuk et al. (2021) set M to be a sequence-to-
sequence model, hence can cast the emotion con-
version problem as a translation task.1

1Examples are provided at speechbot.github.io/.

3 Library Overview
In this section, we present the textless-lib
library, intending to simplify future research on
textless spoken language modeling. Additionally,
the proposed package will remove the main bar-
rier of processing and synthesizing speech, which
requires domain expertise, for other language re-
searchers (e.g., NLP researchers) who are inter-
ested in modeling spoken language, analyzing the
learned representations, etc.

To support the above, it is essential to provide
the main building blocks described in Section 2,
together with pre-trained models, with minimal
coupling between them (a list of the supported pre-
trained models can be seen on Table 1). This will
allow researchers to flexibly use the provided pre-
trained building blocks or develop new building
blocks and use them anywhere in their pipeline.
We decided to exclude both U2U models as well
as evaluation metrics from the core functionality
of the library as we believe these models should
be an example usage. There are plenty of ways
to evaluate the overall pipeline (Lakhotia et al.,
2021; Dunbar et al., 2019, 2020; Nguyen et al.,
2020) and different ways to model the “pseudo-text”
units (Shi et al., 2021; Kharitonov et al., 2021a;
Polyak et al., 2021; Kreuk et al., 2021; Lee et al.,
2021a), hence including them as an integral part of
the library will make it overcomplicated.

3.1 Interfaces
The pipeline presented in Figure 1 hints a straight-
forward way to decouple elements of the library
into two principal blocks: (i) encoding speech;
and (ii) decoding speech, with the only inter-
dependence being the format of the data in-between
(e.g., vocabulary size). Such interfaces enable in-
teresting mix-and-match combinations as well as
conducting research on each component indepen-
dently. We firstly present those two interfaces, then
we discuss helpers for dataloading.

3

Figure 3: textless-lib provides an “encoded”
view for standard datasets, such as LibriSpeech.

Encoders and Vocoders. We denote the encoders
as SpeechEncoder. These modules encompass
all steps required to represent raw audio as discrete
unit sequences (i.e., pseudo-text units and, option-
ally duration and pitch streams).
SpeechEncoder obtains a dense vector repre-

sentation from a given self-supervised model, dis-
cretizes the dense representation into units, extracts
pitch, aligns it with the unit streams, and poten-
tially, applies run-length encoding with per-frame
pitch averaging. See Fig. 2 for a visual description.

For each sub-model, a user might choose to
use a pre-trained model or provide a custom
torch.nn.Module module instead. An exam-
ple of the former is demonstrated in lines 7-12 in
Figure 3, in which a HuBERT model and a corre-
sponding k-means codebook with a pre-defined K
(i.e., vocabulary size) are automatically retrieved.

Conversely, vocoders take as input a discretized
sequence and convert it back to the audio domain.
As with SpeechEncoder, we can retrieve a pre-
trained model by setting the expected input specifi-
cation (model, quantizer, and the size of the code-
book), see Figure 4 lines 17-21.
Datasets, Dataloaders, and Preprocessing.
Apart from encoders and vocoders, in the
textless-lib we provide several components
aimed to simplify frequent data loading use-cases.
First, we provide a set of standard datasets (e.g.,
LibriSpeech) wrapped to produce quantized repre-
sentations (see Fig. 3 lines 14-15). Those datasets
are implemented via a QuantizeDataset
wrapper which can be used to wrap any map-style
PyTorch dataset, containing raw waveform data.

Figure 4: Fully functioning code for discrete audio
resynthesis. An audio file is loaded, coverted into a
sequence of pseudo-units and transformed back into
audio with Tacotron2. The model setup code will down-
load required checkpoints and cache them locally.

The QuantizeDataset runs an instance of a
dense representation model, which can be compu-
tationally heavy (e.g., the HuBERT-base model has
7 convolutional layers and 12 Transformer layers).
Unfortunately, such heavy preprocessing can starve
the training loop. Hence, we provide two possible
solutions: (i) as part of the textless-lib we
provide a way to spread QuantizeDataset and
DataLoader preprocessing workers (each with
its copy of a dense model) across multiple GPUs,
hence potentially balancing training and prepro-
cessing across different devices; (ii) in cases where
on-the-fly preprocessing is not required (e.g., there
is no randomized data augmentation (Kharitonov
et al., 2021b)), an alternative is to preprocess the en-
tire dataset in advance. textless-lib provides
a tool for preprocessing arbitrary sets of audio files
into a stream of pseudo-unit tokens and, optionally,
streams of per-frame tempo and F0 values, aligned
to the token stream. The tool uses multi-GPU and
multi-node parallelism to speed up the process.

4

Model Quantized? Vocab. size Accuracy

HuBERT - - 0.99
HuBERT ✓ 50 0.11
HuBERT ✓ 100 0.19
HuBERT ✓ 200 0.29
HuBERT ✓ 500 0.48

CPC - - 0.99
CPC ✓ 50 0.19
CPC ✓ 100 0.32
CPC ✓ 200 0.34
CPC ✓ 500 0.40

Table 2: Speaker probing. Test accuracy on predicting
speaker based on HuBERT & CPC representations.

3.2 Pre-trained Models
As part of textless-lib we provide several
pre-trained models that proved to work best in prior
work (Lakhotia et al., 2021; Polyak et al., 2021).
In future, we will maintain the list of the models to
be aligned with state-of-the-art.
Dense representations. We support two dense
representation models: (i) HuBERT base-960h
model (Hsu et al., 2021) trained on LibriSpeech
960h dataset, with a framerate of 50 Hz; (ii)
Contrastive Predictive Coding (CPC) model (Riv-
ière and Dupoux, 2020; Oord et al., 2018) trained
on the 6K hours subset from LibriLight (Kahn et al.,
2020) with a framerate of 100 Hz. Both models
provided the best overall performance according
to (Lakhotia et al., 2021; Polyak et al., 2021).
Pitch extraction. Following Polyak et al. (2021)
we support F0 extraction using the YAAPT pitch
extraction algorithm (Kasi and Zahorian, 2002).
We plan to include other F0 extraction models,
e.g. CREPE (Kim et al., 2018).
Quantizers. With the textless-lib we pro-
vide several pre-trained quantization functions for
both HuBERT and CPC dense models using a vo-
cabulary sizes K ∈ {50, 100, 200, 500}. For the
quantization function, we trained a k-means algo-
rithm using the “dev-clean” part in the LibriSpeech
dataset (Panayotov et al., 2015).
Pitch normalization. Following Kharitonov et al.
(2021a), we applied per-speaker pitch normaliza-
tion to reduce inter-speaker variability. For single
speaker datasets, we do not perform F0 normal-
ization and the span of pitch values is preserved.
Under the textless-lib we provide two pitch-
normalization methods: per-speaker and prefix-
based. In the per-speaker normalization, we assume
the mean F0 value per speaker is known in advance.
While in the prefix-based normalization method a

Model Vocab. size Bitrate, bit/s WER

Topline - 512 ·103 2.2

HuBERT 50 125.5 24.2
HuBERT 100 167.4 13.5
HuBERT 200 210.6 7.9

Table 3: Bitrate/ASR WER trade-off. Topline corre-
sponds to the original data encoded with 32-bit PCM.

part of the audio is used to calculate the mean pitch.
Those two options provide useful trade-offs. In the
first case, we need to have a closed set of speakers
but have a better precision while in the second we
sacrifice quality but gain flexibility.
Vocoder. In the initial release of the library, we
provide Tacotron2 as a mel-spectrogram estimation
module (i.e., the G function) followed by Wave-
Glow (Prenger et al., 2019) neural vocoder (i.e.,
the V function) as used by Lakhotia et al. (2021).2

These operate on deduplicated pseudo-unit streams
with vocabulary sizes of 50, 100, and 200. In a
follow-up release, we aim to include HiFi-GAN-
based vocoders similarly to Polyak et al. (2021);
Kharitonov et al. (2021a). We found those to gener-
ate better audio quality with higher computational
performance. However, as described in Section 2,
the main drawback of droppingG and directly feed-
ing the discrete units to V is the need for a unit
duration prediction model. We plan to include such
models as well in the next release.

4 Examples
Alongside the core functionality of the library, we
provide a set of illustrative examples. The goal
of these examples is two-fold: (a) to illustrate the
usage of particular components of the library, and
(b) to serve as a starter code for a particular type of
application. For instance, a probing example (Sec-
tion 4.1) can be adapted for better studying used
representations, while discrete resynthesis (Sec-
tion 4.2) could provide a starter code for an appli-
cation operating on units (e.g., language modeling
or a high-compression speech codec).

4.1 Speaker Probing
A vibrant area of research studies properties of
“universal” pre-trained representations, such as
GLoVE (Pennington et al., 2014) and BERT (De-
vlin et al., 2018). Examples span from probing for
linguistic properties (Adi et al., 2017b; Ettinger

2WaveGlow is used as a part of TacotronVocoder.
Both Tacotron2 and WaveGlow were trained on LJ speech (Ito
and Johnson, 2017).

5

HE PASSES ABRUPTLY FROM PERSONS OF ABRUPT ACID FROM WHICH HE PROCEEDS ARIGHT BY ...
HE PASSES ABRUPTLY FROM PERSONS AND CHARCOAL EACH ONE OF THE CHARCOAL ...
HE PASSES ABRUPTLY FROM PERSONS FEET AND TRAY TO A CONTENTION OF ASSOCIATION THAT ...

Table 4: Three continuations of the same prompt (in pink), generated by the speech continuation example under
different random seeds. Sampled from a language model trained trained on HuBERT-100 units.

et al., 2016; Adi et al., 2017a; Conneau et al.,
2018; Hewitt and Manning, 2019) to discovering bi-
ases (Bolukbasi et al., 2016; Caliskan et al., 2017).

In contrast, widely used pre-trained representa-
tions produced by HuBERT (Hsu et al., 2021) and
wav2vec 2.0 (Baevski et al., 2020) are relatively
understudied. Few existing works include (van
Niekerk et al., 2021; Higy et al., 2021).

We believe our library can provide a convenient
tool for research in this area. Hence, as the first ex-
ample, we include a probing experiment similar to
the one proposed in (van Niekerk et al., 2021; Adi
et al., 2019). We study whether the extracted rep-
resentations contain speaker-specific information.
In this example, we experiment with quantized
and continuous representations provided by CPC
and HuBERT. We randomly split LibriSpeech dev-
clean utterances into train/test (90%/10%) sets3

and train a two-layer Transformer for 5 epochs to
predict a speaker’s anonymized identifier, based
on an utterance they produced. From the results
reported in Table 2 we see that the continuous rep-
resentations allow identifying speaker on hold-out
utterances. In contrast, the quantization adds some
speaker-invariance, justifying its use.

4.2 Speech Resynthesis

The next example is the discrete speech resynthe-
sis, i.e., the speech audio→ deduplicated units→
speech audio pipeline. Fig. 4 illustrates how simple
its implementation is with textless-lib.

The discrete resynthesis operation can be seen
as a lossy compression of the speech. Indeed, if a
sequence of n units (from a vocabulary U) encodes
a speech segment of length l, we straightforwardly
obtain a lossy codec with bitrate n

l ⌈log2 |U|⌉ bits
per second. Further, the token stream itself can
be compressed using entropy encoding and, as-
suming a unigram token model, the compression
rate becomes: −n

l ·
∑

u∈U P(u) log2 P(u). In Ta-
ble 3 we report compression rate/word error rate
(WER) trade-off achievable with the HuBERT-
derived unit systems, as a function of the vocabu-
lary size. WER is calculated using the wav2vec 2.0-

3We have to create a new split as the standard one has
disjoint sets of speakers, making this experiment impossible.

based Automatic Speech Recognition (ASR) w.r.t.
and uses the ground-truth transcripts. To calculate
the compression rate, the unigram token distribu-
tion was fitted on the transcript of LibriLight 6K
dataset (Rivière and Dupoux, 2020). From Table 3
we observe that discretized HuBERT representa-
tions have a strong potential for extreme speech
compression (Polyak et al., 2021).4 Our provided
implementation reports the bitrate.

4.3 Speech Continuation

Finally, we include a textless-lib re-
implementation of the full GSLM speech continua-
tion pipeline (Lakhotia et al., 2021), as depicted in
Figure 1. Table 4 presents ASR transcripts of three
different continuations of the same prompt, gener-
ated using different random seeds. We use a LARGE

wav2vec 2.0 model, trained on LibriSpeech-960h
with CTC loss. Its decoder uses the standard
KenLM 4-gram language model.

5 Discussion and Future Work

We introduced textless-lib, a Pytorch library
aimed to advance research in textless modeling
of spoken language, by simplifying textless pro-
cessing and synthesizing spoken language. We de-
scribed the main building blocks used to preprocess,
quantize, and synthesize speech. To demonstrate
the usability of the library, we provided three usage
examples related to (i) representation probing, (ii)
speech compression, and (iii) speech continuation.
The proposed library greatly simplifies research
in the textless spoken language processing, hence
we believe it will be a handful not only for speech
researchers but to the entire NLP community.

As a future work for textless-lib we envi-
sion improving performance of the existing build-
ing blocks, adding new example tasks (e.g., trans-
lation (Lee et al., 2021b) or dialog (Nguyen et al.,
2022)), extending the set of provided pre-trained
models, and introducing the possibility of training
the different components.

4In contrast to our setup, Polyak et al. (2021) worked with
non-deduplicated streams, hence obtained different bitrates.

6

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,

and Yoav Goldberg. 2017a. Analysis of sentence
embedding models using prediction tasks in natural
language processing. IBM Journal of Research and
Development, 61(4/5):3–1.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,
and Yoav Goldberg. 2017b. Fine-grained analysis
of sentence embeddings using auxiliary prediction
tasks.

Yossi Adi, Neil Zeghidour, Ronan Collobert, Nicolas
Usunier, Vitaliy Liptchinsky, and Gabriel Synnaeve.
2019. To reverse the gradient or not: An empiri-
cal comparison of adversarial and multi-task learn-
ing in speech recognition. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3742–3746.
IEEE.

Junyi Ao, Rui Wang, Long Zhou, Shujie Liu, Shuo
Ren, Yu Wu, Tom Ko, Qing Li, Yu Zhang, Zhihua
Wei, et al. 2021. Speecht5: Unified-modal encoder-
decoder pre-training for spoken language processing.
arXiv preprint arXiv:2110.07205.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
arXiv preprint arXiv:2006.11477.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016. Man
is to computer programmer as woman is to home-
maker? debiasing word embeddings. Advances
in neural information processing systems, 29:4349–
4357.

Tom B. Brown et al. 2020. Language models are few-
shot learners. In Proc. of NeurIPS.

Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan.
2017. Semantics derived automatically from lan-
guage corpora contain human-like biases. Science,
356(6334):183–186.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, et al. 2021.
Wavlm: Large-scale self-supervised pre-training
for full stack speech processing. arXiv preprint
arXiv:2110.13900.

Jan Chorowski, Grzegorz Ciesielski, Jarosław
Dzikowski, Adrian Lancucki, Ricard Marxer,
Mateusz Opala, Piotr Pusz, Paweł Rychlikowski, and
Michał Stypułkowski. 2021. Aligned contrastive
predictive coding. arXiv preprint arXiv:2104.11946.

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng
Chiu, James Qin, Ruoming Pang, and Yonghui
Wu. 2021. W2v-bert: Combining contrastive
learning and masked language modeling for self-
supervised speech pre-training. arXiv preprint
arXiv:2108.06209.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single vector: Probing sentence
embeddings for linguistic properties. arXiv preprint
arXiv:1805.01070.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin et al. 2019. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proc. of NAACL.

Ewan Dunbar, Robin Algayres, Julien Karadayi, Math-
ieu Bernard, Juan Benjumea, Xuan-Nga Cao, Lucie
Miskic, Charlotte Dugrain, Lucas Ondel, Alan W.
Black, Laurent Besacier, Sakriani Sakti, and Em-
manuel Dupoux. 2019. The Zero Resource Speech
Challenge 2019: TTS without T. In Proc. INTER-
SPEECH, pages 1088–1092.

Ewan Dunbar, Julien Karadayi, Mathieu Bernard, Xuan-
Nga Cao, Robin Algayres, Lucas Ondel, Laurent
Besacier, Sakriani Sakti, and Emmanuel Dupoux.
2020. The Zero Resource Speech Challenge 2020:
Discovering discrete subword and word units. In
Proc. INTERSPEECH, pages 4831–4835.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik.
2016. Probing for semantic evidence of composition
by means of simple classification tasks. In Proceed-
ings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 134–139.

John Hewitt and Christopher D Manning. 2019. A struc-
tural probe for finding syntax in word representations.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4129–4138.

Bertrand Higy, Lieke Gelderloos, Afra Alishahi, and
Grzegorz Chrupała. 2021. Discrete representations
in neural models of spoken language. arXiv preprint
arXiv:2105.05582.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. arXiv preprint arXiv:2106.07447.

Keith Ito and Linda Johnson. 2017. The lj
speech dataset. https://keithito.com/
LJ-Speech-Dataset/.

J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu,
P. E. Mazaré, J. Karadayi, V. Liptchinsky, R. Col-
lobert, C. Fuegen, T. Likhomanenko, G. Synnaeve,
A. Joulin, A. Mohamed, and E. Dupoux. 2020. Libri-
light: A benchmark for ASR with limited or no super-
vision. In IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
7669–7673.

7

Kavita Kasi and Stephen A Zahorian. 2002. Yet another
algorithm for pitch tracking. In 2002 ieee interna-
tional conference on acoustics, speech, and signal
processing, volume 1, pages I–361. IEEE.

Eugene Kharitonov, Ann Lee, Adam Polyak, Yossi Adi,
Jade Copet, Kushal Lakhotia, Tu-Anh Nguyen, Mor-
gane Rivière, Abdelrahman Mohamed, Emmanuel
Dupoux, et al. 2021a. Text-free prosody-aware gen-
erative spoken language modeling. arXiv preprint
arXiv:2109.03264.

Eugene Kharitonov, Morgane Rivière, Gabriel Syn-
naeve, Lior Wolf, Pierre-Emmanuel Mazaré, Matthijs
Douze, and Emmanuel Dupoux. 2021b. Data aug-
menting contrastive learning of speech representa-
tions in the time domain. In 2021 IEEE Spoken Lan-
guage Technology Workshop (SLT), pages 215–222.
IEEE.

Jong Wook Kim, Justin Salamon, Peter Li, and
Juan Pablo Bello. 2018. Crepe: A convolutional
representation for pitch estimation. In ICASSP.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.
HiFi-GAN: Generative adversarial networks for effi-
cient and high fidelity speech synthesis. In Proc. of
NeurIPS.

Felix Kreuk, Adam Polyak, Jade Copet, Eugene
Kharitonov, Tu-Anh Nguyen, Morgane Rivière, Wei-
Ning Hsu, Abdelrahman Mohamed, Emmanuel
Dupoux, and Yossi Adi. 2021. Textless speech emo-
tion conversion using decomposed and discrete rep-
resentations. arXiv preprint arXiv:2111.07402.

Kundan Kumar, Rithesh Kumar, Thibault de Boissiere,
Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre
de Brébisson, Yoshua Bengio, and Aaron Courville.
2019. Melgan: Generative adversarial networks
for conditional waveform synthesis. arXiv preprint
arXiv:1910.06711.

Kushal Lakhotia, Evgeny Kharitonov, Wei-Ning Hsu,
Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh
Nguyen, Jade Copet, Alexei Baevski, Adelrahman
Mohamed, et al. 2021. Generative spoken lan-
guage modeling from raw audio. arXiv preprint
arXiv:2102.01192.

Ann Lee, Peng-Jen Chen, Changhan Wang, Jiatao Gu,
Xutai Ma, Adam Polyak, Yossi Adi, Qing He, Yun
Tang, Juan Pino, and Wei-Ning Hsu. 2021a. Di-
rect speech-to-speech translation with discrete units.
arXiv preprint arXiv:2107.05604.

Ann Lee, Hongyu Gong, Paul-Ambroise Duquenne,
Holger Schwenk, Peng-Jen Chen, Changhan Wang,
Sravya Popuri, Juan Pino, Jiatao Gu, and Wei-Ning
Hsu. 2021b. Textless speech-to-speech translation
on real data. arXiv preprint arXiv:2112.08352.

Mike Lewis et al. 2020. BART: Denoising sequence-
to-sequence pre-training for natural language gener-
ation, translation, and comprehension. In Proc. of
ACL.

Yinhan Liu et al. 2019. RoBERTa: A robustly opti-
mized BERT pretraining approach. arXiv preprint
arXiv:1907.11692.

Max Morrison, Rithesh Kumar, Kundan Kumar,
Prem Seetharaman, Aaron Courville, and Yoshua
Bengio. 2021. Chunked autoregressive gan for
conditional waveform synthesis. arXiv preprint
arXiv:2110.10139.

Tu Anh Nguyen, Maureen de Seyssel, Patricia
Rozé, Morgane Rivière, Evgeny Kharitonov, Alexei
Baevski, Ewan Dunbar, and Emmanuel Dupoux.
2020. The Zero Resource Speech Benchmark 2021:
Metrics and baselines for unsupervised spoken lan-
guage modeling. In Advances in Neural Informa-
tion Processing Systems (NeurIPS) – Self-Supervised
Learning for Speech and Audio Processing Work-
shop.

Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi
Adi, Wei-Ning Hsu, Ali Elkahky, Paden Tomasello,
Robin Algayres, Benoit Sagot, Abdelrahman Mo-
hamed, and Dupoux Emmanuel. 2022. Generative
spoken dialogue language modeling. arXiv preprint
arXiv:2203.16502.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206–5210.
IEEE.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Matthew Peters et al. 2018. Deep contextualized word
representations. In Proc. of NAACL.

Adam Polyak, Yossi Adi, Jade Copet, Eugene
Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Ab-
delrahman Mohamed, and Emmanuel Dupoux.
2021. Speech resynthesis from discrete disentan-
gled self-supervised representations. arXiv preprint
arXiv:2104.00355.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. 2019.
Waveglow: A flow-based generative network for
speech synthesis. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3617–3621. IEEE.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2020. Fastspeech
2: Fast and high-quality end-to-end text to speech.
arXiv preprint arXiv:2006.04558.

8

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2019. Fastspeech: Fast,
robust and controllable text to speech. arXiv preprint
arXiv:1905.09263.

Morgane Rivière and Emmanuel Dupoux. 2020. To-
wards unsupervised learning of speech features in the
wild. In IEEE Spoken Language Technology Work-
shop (SLT), pages 156–163.

Steffen Schneider, Alexei Baevski, Ronan Collobert,
and Michael Auli. 2019. wav2vec: Unsupervised
pre-training for speech recognition. arXiv preprint
arXiv:1904.05862.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan,
et al. 2018. Natural tts synthesis by conditioning
wavenet on mel spectrogram predictions. In 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4779–4783.
IEEE.

Jing Shi, Xuankai Chang, Tomoki Hayashi, Yen-Ju
Lu, Shinji Watanabe, and Bo Xu. 2021. Discretiza-
tion and re-synthesis: an alternative method to
solve the cocktail party problem. arXiv preprint
arXiv:2112.09382.

Benjamin van Niekerk, Leanne Nortje, Matthew Baas,
and Herman Kamper. 2021. Analyzing speaker
information in self-supervised models to improve
zero-resource speech processing. arXiv preprint
arXiv:2108.00917.

Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani,
Shujie Liu, Furu Wei, Michael Zeng, and Xuedong
Huang. 2021. Unispeech: Unified speech representa-
tion learning with labeled and unlabeled data. arXiv
preprint arXiv:2101.07597.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim.
2020. Parallel wavegan: A fast waveform generation
model based on generative adversarial networks with
multi-resolution spectrogram. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6199–6203.
IEEE.

9

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 10 - 16

July 10-15, 2022 ©2022 Association for Computational Linguistics

Web-based Annotation Interface for Derivational Morphology

Lukáš Kyjánek
Charles University, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
Prague, Czechia

kyjanek@ufal.mff.cuni.cz

Abstract
The paper presents a visual interface for
manual annotation of language resources for
derivational morphology. The interface is web-
based and created using relatively simple pro-
gramming techniques, and yet it rapidly facil-
itates and speeds up the annotation process,
especially in languages with rich derivational
morphology. As such, it can reduce the cost
of the process. After introducing manual an-
notation tasks in derivational morphology, the
paper describes the new visual interface and
a case study that compares the current anno-
tation method to the annotation using the in-
terface. In addition, it also demonstrates the
opportunity to use the interface for manual an-
notation of syntactic trees. The source codes
are freely available under the MIT License on
GitHub.

1 Introduction

Making manual annotations is a common task when
a high-quality language resource is created. The
more complex the annotation task, the more time
consuming it is for an annotator, an expert in
a linguistic field captured by the resource. Con-
sequently, the cost of creating such resource can be
high. The simplest approach is to simplify the task;
however, it is not possible in many cases.

This paper presents such task and how to ap-
proach it in the field of annotating language re-
sources of derivational morphology. When annotat-
ing derivational data, annotators must make many
decisions at once. This complexity leads not only to
the prolongation of the annotation process but also
to mistakes that must be additionally re-annotated.
As the simplification of these decisions is out of
the question, a freely available web-based visual
interface has been created to make the annotation
process easier for annotators. The fact that annotat-
ing derivational morphology using the interface is
faster than the currently used annotation method is
also validated by real annotators.

read

reading reader readable

readability readableness readably

Figure 1: A derivational family of the verb read.

The paper is structured as follows. Section 2 de-
scribes the current state of annotating derivational
morphology. Section 3 focuses on the new inter-
face as well as its applicability to other annotation
tasks. Section 4 provide a comparison of the cur-
rent annotation method versus the utilisation of the
interface. Section 5 concludes the paper.

2 Related Work

2.1 Linguistic Background
Morphological derivation is a process of forming
new lexemes by modifying the already existing
ones. For instance, the noun reader is derived by
attaching the lexical affix -er to the morphological
base of the verb read. Štekauer et al. (2012) docu-
ment this process across many world languages.

One of the widely known approaches to deriva-
tional morphology (cf. Dokulil 1962; Buzássyová
1974; Horecký et al. 1989; Furdík 2004; Štekauer
2005) models all derivationally related lexemes
(DERIVATIONAL FAMILY) on the basis of:

(i) a system of directly derivationally related lex-
emes grouped around a single base lexeme,
e.g., read > read-ing, read-er, and read-able;

(ii) a sequence of consecutive derivatives,
e.g., read > read-able > read-abil-ity.

If these parts are applied recursively to a single
underived lexeme, it results in derivational families
structured in rooted trees, see Figure 1.

10

2.2 Data Resources

There is a lot of lexical resources of derivational
morphology (cf. Kyjánek 2018),1 many of which
model derivational families in rooted trees, con-
curring with the above-mentioned theory.2 Most
of the other existing resources that capture deriva-
tional families in non-tree-shaped data structures
have been harmonised into the rooted trees and are
available in the Universal Derivations collection
(Kyjánek et al., 2020; Kyjánek et al., 2021).3

The reasons why some resources do not model
derivational families in rooted trees cover a whole
range from technical to theoretical reasons.4 For ex-
ample, DErivBase for German (Zeller et al., 2013)
has been created by exploiting so-called deriva-
tional rules extracted from grammars in a form
of sophisticated regular expressions which the au-
thors have utilised to search derivationally related
lexemes in a given lexeme set. Consequently, the
resulting resource violates the main constraint of
the rooted tree structure that each lexeme can have
at most one base lexeme, e.g., the adjective glatt
(smooth) and the verb glätten (to smooth) are cap-
tured as bases for the noun Glätte (smoothness).
The manual annotation is thus necessary not only
before the creation of a high-quality resource but
also after that for its harmonisation, for example.

2.3 Manual Annotation Process

Annotators in the field of derivational morphology
have to make many small decisions at once, even if
they are only supposed to annotate Boolean deci-
sion like whether a given derivational relation is ac-
ceptable, e.g., glatt (smooth)>Glätte (smoothness)
vs. glätten (to smooth) > Glätte (smoothness). To
fulfil the conditions of the linguistic approach de-
scribed in Section 2.1, they must decide (i) whether
a given derived lexeme is really a derivative; if
yes, then (ii) from which base lexeme it is derived;
and (iii) whether the final decision does not violate
constraints of the rooted tree structure with other
derivationally related lexemes; and (iv) whether
they decide consistently across derivational fami-

1Perhaps the earliest modern case of a large-scale resource
is CELEX2 (Baayen et al., 1995) with its annotations of deriva-
tional morphology of Dutch, English, and German.

2For example: DeriNet for Czech (Vidra et al., 2021),
Spanish (Faryad, 2021), Persian (Haghdoost et al., 2019), and
Russian (Kyjánek et al., 2021), Polish and Spanish Word-
Formation Networks (Mateusz et al., 2018a,b), and Word
Formation Latin (Litta et al., 2016).

3
https://ufal.mff.cuni.cz/universal-derivations

4They are described in the text on the harmonisation.

1 + glatt_A Glätte_Nf
2 + glatt_A glätten_V
3 + glätten_V glättend_A
4 - glätten_V Glätte_Nf

Figure 2: Example of a common .tsv file format for
manual annotation. The data is stored in columns (an-
notator’s mark, base lexeme, and derivative; lexemes
are equipped with part-of-speech tags: A for adjectives,
V for verbs, Nf for feminine nouns).

lies. As these questions are interrelated, their sim-
plification seems to be out of the question.

One of the common ways of making manual an-
notation of derivational relations is to list them in
a file and assign each of them with a mark repre-
senting the presence/absence of the relation in the
resulting rooted tree, see Figure 2. The annota-
tion task seems easy if the data for annotation is
small; however, the data is relatively large in prac-
tice. For instance, you can see manual annotations
of one thousand relations from Wiktionary anno-
tated before their addition into DeriNet for Czech.5

Moreover, individual derivational families can be
relatively large, especially in languages with rich
derivational morphology, which even complicates
the annotation process.

2.4 Tools for Linguistic Annotation

To the best of our knowledge, there is no available
tool for making manual annotation of derivational
morphology. The previous cases have relied on
either non-public software developed solely for the
annotation project or on simple text-based methods.
There are few visualisation tools that at least dis-
play the data, e.g., WFL explorer6 (Passarotti and
Mambrini, 2012), DeriNet viewer7 (Žabokrtský
et al., 2016), DeriSearch v18 and v29 (Vidra and
Žabokrtský, 2017, 2020), and Canoonet.10 How-
ever, none of them allows editing the data.

There are also no case studies for annotation of
derivational morphology neither in the ACL An-
thology nor in the recent Handbook of Linguis-
tic Annotation (Ide and Pustejovsky, 2017). How-
ever, the handbook and other similar cases from

5
https://github.com/vidraj/derinet/blob/

master/data/annotations/cs/2018_04_wiktionary/
hand-annotated/der0001-1000.tsv

6
http://wfl.marginalia.it/

7
https://ufal.mff.cuni.cz/derinet/derinet-viewer

8
https://ufal.mff.cuni.cz/derinet/derinet-search

9
https://quest.ms.mff.cuni.cz/derisearch2/v2/

databases/
10
https://www.lehrerfreund.de/schule/1s/

online-grammatik-canoo/2319

11

Figure 3: Screenshot of the freely available online Inter-
face for manual annotation of derivational morphology.
It captures the same derivational family as Figure 2.

the fields of annotating data resources of syntax
(cf. Tyers et al. (2017)) and inflectional morphol-
ogy (cf. Obeid et al. (2018); Alosaimy and Atwell
(2018)) suggest that visualisation of the deriva-
tional data and a possibility to edit it in the vi-
sualisation interface is one of the best options to
facilitate the annotation process.

3 Interface for Manual Annotations

The new interface should visualise the annotated
data (cf. Figure 2) and allow annotators to edit it,
leading to the facilitation of the annotation pro-
cess. In this case, the process should lead to the
data of derivational morphology annotated into the
tree-shaped structure presented in Section 2.1. The
functionality and design of the interface have al-
ready been tested by real annotators. They provided
feedback for re-designing the interface to the cur-
rent state, see Figure 3. Validation of the interface
is presented in Section 4.

The development of such tools however never
ends, as many things can be still improved. There-
fore, the interface is distributed as open-source (on
GitHub)11 with a detailed manual that includes also
example data. It is possible to run the interface both
locally and online.12

3.1 Technical Properties

The interface is made as a web application thanks
to which annotators can run it in any web browser,
e.g., Microsoft Edge, Google Chrome, Mozilla
Firefox, and Safari. It prevents problems with

11
https://github.com/lukyjanek/

uder-annotation-interface
12
https://lukyjanek.github.io/subpages/

uder-annotation-interface/UDerAnnotation.html

1 [
2 {
3 "nodes":
4 [
5 {"data":
6 {"name":"glättend_A","id":"glättend_A"}
7 },
8 {"data":
9 {"name":"Glätte_Nf","id":"Glätte_Nf"}

10 },
11 {"data":
12 {"name":"glatt_A","id":"glatt_A"}
13 },
14 {"data":
15 {"name":"glätten_V","id":"glätten_V"}
16 }
17],
18 "edges":
19 [
20 {"data":
21 {"target":"glatt_A","source":"Glätte_Nf",
22 "intoTree":"solid"}
23 },
24 {"data":
25 {"target":"glatt_A","source":"glätten_V",
26 "intoTree":"solid"}
27 },
28 {"data":
29 {"target":"glätten_V","source":"Glätte_Nf",
30 "intoTree":"dotted"}
31 },
32 {"data":
33 {"target":"glätten_V","source":"glättend_A",
34 "intoTree":"solid"}
35 }
36]
37 }
38]

Figure 4: Input and output .json format of the annota-
tion data for the interface from Figure 3.

users’ installation of any programming environ-
ments. The interface is responsive by default (with-
out implementing the interface separately for in-
dividual types of devices), so the annotators can
annotate not only on their computers but also on
touchscreens of their mobile devices. The inter-
face is programmed using HTML5, CCS3, and
JavaScript with the libraries jQuery, CytoScape.js,
and Notify.js. These technologies runs the inter-
face on the client’s side/user’s device that brings
the mention benefit, but, on the other hand, the
interface suffers from the limits of web browsers.13

As for the input/output file formats, the interface
is ready to process derivational families stored in
the .json format; see Figure 4. There is also a func-
tion implemented to convert the .tsv file into the
.json file and vice versa (the TSV_to_JSON and
JSON_to_TSV buttons).

3.2 Design and Functionality
The interface screen consists of top and bottom but-
ton bars and a central canvas for data visualisation

13For instance, Google Chrome has a memory limit of
512MB for 32-bit and 1.4GB for 64-bit systems. However, it
is still enough memory for common manual annotation.

12

and annotation. While the top bar includes support
buttons, such as a link to the source codes stored
on GitHub and manual, the bottom bar contains
buttons for manual annotation.

The data is loaded using the Upload_JSON
button. The annotator can zoom in/out the screen
and move the displayed nodes and their relations.
Positions of nodes on canvas are stored in the .json
file. Annotators can thus return quickly to already
annotated derivational families. During the annota-
tion process, they select relations to be annotated
and change their state by one of the following
buttons: Restore_edge (draws the relation by
a solid line representing that it should be present
in the resulting family) or Remove_edge (dotted
line, should be absent). The annotators can switch
between families using the green arrow buttons or
the text box. At the end of the annotation, the work
is saved with the Save_JSON button.

Several functionalities have been added based
on the annotators’ feedback. If the annotator writes
a word or its substring to the text box, the interface
searches for the family containing the word/sub-
string and visualises it. To facilitate the annotation
of families with many relations, there are two but-
tons that remove and restore all derivational rela-
tions in the displayed derivational family. For an-
notators, it is sometimes easier to remove all edges
and build such a large tree from scratch by restor-
ing individual edges. Some buttons list all lexemes
from the visualised family and check whether the
solid lines in the annotated family are organised
in a rooted tree. In addition, keyboard shortcuts
have been introduced for all the functions. After
all these changes, the annotators confirmed that the
interface makes their work easier and faster.

3.3 Applicability to Different Tasks

To show the robustness of the new interface for
annotation of data in tree-shaped structures, a brief
experiment with annotating syntactic data has been
performed. The harmonised syntactic data from
the Universal Dependencies collection (Zeman
et al., 2021) was selected for this experiment. The
only thing in need was to create a script that
would convert the input .conllu format into the
.json format required by the annotation interface.
Figure 5 displays the German sentence ’Absolut
empfehlenswert ist auch der Service.’ (The service
is also highly recommended.) from the corpus GSD
(McDonald et al., 2013) in the annotation interface.

Figure 5: Screenshot of the freely available online In-
terface for manual annotation of derivational morphol-
ogy applied to the data from syntactic treebank from
Universal Dependencies. The underscores separate id,
token, lemma, part-of-speech category.

4 Human Validation

To validate the usefulness of the newly created in-
terface for manual annotation of derivational mor-
phology, as described in the Section 2.3, a simple
annotation experiment has been done with human
annotators. Two methods of manual annotation are
compared: (a) the currently used method when an-
notators work in the traditional text processor with
the .tsv format, and (b) the annotation by using the
newly created visual interface with the .json format.
The main expectation is that annotating the same
data by using the interface should be faster. The in-
dividual parts of this experiment, such as the input
sample as well as the annotated ones, are stored on
the GitHub repository with the source codes.

4.1 Annotation Experiment

The experiment involved 12 human annotators (uni-
versity students of other than linguistic studies).
They all annotated the same sample of derivational
families; however, six of the annotators did it in the
text processor with the .tsv file format, i.e., the cur-
rently used method of annotation such data, while
the other six annotators used the newly created
visual interface with the .json file format.

The annotators were instructed to annotate the
given data in a such way that it concurs with the
approach to model derivational families in rooted
trees (Section 2.1), i.e., that each lexeme can have
at most one base lexeme and that the morpholog-
ical complexity should grow from the root to the
leaves. They also got the instructions related to the
individual annotation methods, e.g., all functionali-
ties and buttons of the interface were explained to
the annotators who would use the interface.

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ANNOTATED FAMILY

0

100

200

300

400

500

600

700
TI

M
E

[s
]

Way of annotation
.tsv
.json

Figure 6: Time spent by annotators on annotating individual 20 derivational families in the .tsv file format and
using the new visual interface with the .json file format.

.tsv .json
WAY OF ANNOTATION

1000

1500

2000

2500

3000

3500

TI
M

E
[s

]

Figure 7: Total time spent by annotators on annotating
20 derivational families in the .tsv file format and using
the new visual interface with the .json file format.

4.2 Annotation Sample

The annotation sample consisted of two similar sets
of ten different derivational (sub-)families selected
from Czech DeriNet with respect to their numbers
of lexemes, derivational relations, depths (morpho-
logical complexity) of the original trees, and the
part-of-speech categories of the tree roots. Each
set of the sample thus includes four families with
the noun and verbal tree roots and two families
with the adjective tree roots; it has the following
ranges: for the number of lexemes from 6 to 20, for
relations from 6 to 24, for depth from 2 to 5.

A few random incorrect connections (from 2 to
5 relations) were made in all families in the sample.
The annotators were supposed to annotate these
errors and let the other correct relations.

The division of the sample into two sets of ten
families can provide an overview of how the an-
notators’ experience with the annotation using the
assigned method influence the time spent on the
annotation of individual families. The assumption
associated with this is that the time spent over the
second set should be less than for the first set be-
cause the annotators learn the annotation process
with each annotated family. On the other hand, if
the visual interface is useful, then the time spent on
annotating the .json file format by using the inter-
face should be still lower than on the annotation of
the .tsv file format.

As for the specific properties of the individual
families in the sample, the smallest families in
terms of the number of lexemes are numbered as
1, 2, 9, 10, 11, 12, 19, 20; and the families 9 and
19 includes a complete graph which the annotators
have to annotate into the rooted tree structure.

4.3 Results
The main hypothesis that the annotation process is
faster if the newly created visual interface is used
(with .json format) instead of the current annota-
tion method (with .tsv format) was proved, at least
for Czech, a language that has rich derivational
morphology. Annotators with the visual interface
annotated faster in the case of all annotated deriva-
tional families; see Figure 6. However, the differ-
ence in time was small for smaller families, which
indicates that the current .tsv annotation method
is comparably good as the annotation using the
interface in the case of derivational families with
few tens of relations. If the family is bigger, then

14

the annotators were much faster when using the
visual interface. In total, Figure 7 illustrates that
the annotation process with visual interface takes
noticeably fewer seconds than the currently used
annotation method.

The secondary hypothesis that the annotators
are faster in the second half of the sample, espe-
cially when this half shares the same parameters
in terms of numbers of lexemes and relations, was
not proved so conclusively as the main hypothesis.
There is such trend in the second half of the sample,
but the differences are not so radical.

5 Conclusion

When developing high-quality data, especially data
that contains more complicated structures, develop-
ers often ask for manual annotations. They need the
annotations when they create, extend, test, or eval-
uate the data. Annotation of complex phenomena
is time-consuming and increases data production
costs. Therefore, it seems worth spending time to
simplify the annotation process.

In this paper, a case study about manual anno-
tation of complex phenomena from derivational
morphology has been presented. As a way of sim-
plifying the annotation process, a web-based visual
annotation interface in which annotators can edit
the displayed data has been created. The interface
is freely available (cf. Footnote 11). It was cre-
ated in direct collaboration with several annotators
who tested the interface on data of real derivational
families and provided useful feedback. The anno-
tators have also rated the annotation process with
the created interface as more attractive, easier, and
faster, which led to greater savings of time (and
potentially money spent on the development of the
resulting resource while still achieving high qual-
ity). Their feedback has led to the addition of sev-
eral new functionalities, such as keyboard shortcuts
and the button for checking treeness, that signifi-
cantly speed up the annotation process. In addition,
the desired benefits of the interface have been val-
idated by annotators, and the paper describes this
validation. It confirms that usage of the new in-
terface rapidly speeds up the annotation process
compared to the current method of annotating data
for derivational morphology.

In general, this paper underlines that a tool/inter-
face can be created by relatively basic techniques
but can still save a lot of annotators’ time and ef-
fort. One of the crucial points is, however, to be

open-minded and to communicate with annotators.
Since the annotators know how they must think
during the annotating, they can specify their needs
and provide informed feedback. There is still (and
always will be) a lot of ways in which such inter-
face can be improved or extended; they remain for
future work. The important message is that even
a simple interface can greatly facilitate the manual
annotation process. While a programmer creates
such interface in a few hours, annotators can save
days of work.

Acknowledgements

This work was supported by the Grant No. GA19-
14534S of the Czech Science Foundation, and the
Grant No. START/HUM/010 of Grant schemes at
Charles University (reg. No. CZ.02.2.69/0.0/0.0/
19_073/0016935). It was using language resources
developed, stored, and distributed by the LINDAT/
CLARIAH-CZ project.

References
Abdulrahman Alosaimy and Eric Atwell. 2018. Web-

based Annotation Tool for Inflectional Language Re-
sources. In Proceedings of the 11th International
Conference on Language Resources and Evaluation
(LREC 2018), pages 3933–3939.

Harald R. Baayen, Richard Piepenbrock, and Leon Gu-
likers. 1995. CELEX2. Linguistic Data Consortium,
Catalogue No. LDC96L14.

Klára Buzássyová. 1974. Sémantická struktúra sloven-
ských deverbatív. Veda, Bratislava.

Miloš Dokulil. 1962. Tvoření slov v češtině 1: Teorie
odvozování slov. Academia, Prague.

Ján Faryad. 2021. DeriNet.ES 0.6. Institute of Formal
and Applied Linguistics (ÚFAL), Faculty of Mathe-
matics and Physics, Charles University; included in
the UDer collection.

Juraj Furdík. 2004. Slovenská slovotvorba. NÁUKA,
Prešov.

Hamid Haghdoost, Ebrahim Ansari, Zdeněk Žabokrt-
ský, and Mahshid Nikravesh. 2019. DeriNet.FA 0.5.
Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity; included in the UDer collection.

Ján Horecký, Klára Buzássyová, Ján Bosák, et al. 1989.
Dynamika slovnej zásoby súčasnej slovenčiny. Veda,
Bratislava.

Nancy Ide and James Pustejovsky. 2017. Handbook of
Linguistic Annotation, 1st edition. Springer Publish-
ing Company, Incorporated.

15

Lukáš Kyjánek, Zdeněk Žabokrtský, Jonáš Vidra, and
Magda Ševčíková. 2021. Universal Derivations v1.1.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles Univer-
sity.

Lukáš Kyjánek, Zdeněk Žabokrtský, Magda Ševčíková,
and Jonáš Vidra. 2020. Universal Derivations
1.0, A Growing Collection of Harmonised Word-
Formation Resources. The Prague Bulletin of Math-
ematical Linguistics, 115:5–30.

Lukáš Kyjánek. 2018. Morphological Resources of
Derivational Word-Formation Relations. Technical
Report TR-2018-61, Faculty of Mathematics and
Physics, Charles University.

Lukáš Kyjánek, Olga Lyashevskaya, Anna
Nedoluzhko, Daniil Vodolazsky, and Zdeněk
Žabokrtský. 2021. DeriNet.RU 0.5. Institute of
Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University;
included in the UDer collection.

Eleonora Litta, Marco Passarotti, and Chris Culy. 2016.
Formatio Formosa est. Building a Word Formation
Lexicon for Latin. In Proceedings of the 3rd Ital-
ian Conference on Computational Linguistics, pages
185–189.

Lango Mateusz, Magda Ševčíková, and Zdeněk
Žabokrtský. 2018a. Polish Word-Formation Net-
work 0.5. Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University; included in the UDer collection.

Lango Mateusz, Magda Ševčíková, and Zdeněk
Žabokrtský. 2018b. Spanish Word-Formation Net-
work 0.5. Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University; included in the UDer collection.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Univer-
sal Dependency Annotation for Multilingual Parsing.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 92–97, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Ossama Obeid, Salam Khalifa, Nizar Habash, Houda
Bouamor, Wajdi Zaghouani, and Kemal Oflazer.
2018. MADARi: A web interface for joint Arabic
morphological annotation and spelling correction.
In Proceedings of the 11th International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Marco Passarotti and Francesco Mambrini. 2012. First
Steps towards the Semi-automatic Development of

a Wordformation-based Lexicon of Latin. In Pro-
ceedings of the 8th International Conference on
Language Resources and Evaluation (LREC 2012),
pages 852–859.

Pavol Štekauer. 2005. Onomasiological Approach to
Word-Formation. In Pavol Štekauer and Rochelle
Lieber, editors, Handbook of Word-Formation,
pages 207–232. Springer, Dordrecht.

Pavol Štekauer, Salvador Valera, and Lívia Körtvé-
lyessy. 2012. Word-Formation in the World’s Lan-
guages: A Typological Survey. Cambridge Univer-
sity Press, New York.

Francis Tyers, Mariya Sheyanova, and Jonathan Wash-
ington. 2017. UD Annotatrix: An annotation tool
for Universal Dependencies. In Proceedings of the
16th International Workshop on Treebanks and Lin-
guistic Theories, pages 10–17.

Jonáš Vidra, Zdeněk Žabokrtský, Lukáš Kyjánek,
Magda Ševčíková, Šárka Dohnalová, Emil Svo-
boda, and Jan Bodnár. 2021. DeriNet 2.1.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles Univer-
sity; included in the UDer collection.

Jonáš Vidra and Zdeněk Žabokrtský. 2017. Online
Software Components for Accessing Derivational
Networks. In Proceedings of the Workshop on Re-
sources and Tools for Derivational Morphology (De-
riMo 2017), pages 129–139. EDUCatt.

Jonáš Vidra and Zdeněk Žabokrtský. 2020. Next
Step in Online Querying and Visualization of Word-
Formation Networks. In Proceedings of the 23rd
International Conference on Text, Speech and Dia-
logue (TSD 2020), pages 144–152. Springer.

Britta Zeller, Jan Šnajder, and Sebastian Padó. 2013.
DErivBase: Inducing and Evaluating a Derivational
Morphology Resource for German. In ACL, vol-
ume 1, pages 1201–1211. Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers).

Daniel Zeman, Joakim Nivre, Mitchell Abrams,
et al. 2021. Universal Dependencies 2.9.
LINDAT/CLARIAH-CZ digital library at the
Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles
University.

Zdeněk Žabokrtský, Magda Ševčíková, Milan Straka,
Jonáš Vidra, and Adéla Limburská. 2016. Merg-
ing Data Resources for Inflectional and Derivational
Morphology in Czech. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 1307–1314.

16

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 17 - 26

July 10-15, 2022 ©2022 Association for Computational Linguistics

TurkishDelightNLP: A Neural Turkish NLP Toolkit

Hüseyin Aleçakır
Afiniti

Istanbul
huseyinalecakir@gmail.com

Necva Bölücü
Computer Engineering
Hacettepe University

Ankara
necvaa@gmail.com

Burcu Can
RGCL

University of Wolverhampton
Wolverhampton

b.can@wlv.ac.uk

Abstract

We introduce a neural Turkish NLP toolkit
called TurkishDelightNLP that performs com-
putational linguistic analyses from morpholog-
ical level to semantic level that involves tasks
such as stemming, morphological segmenta-
tion, morphological tagging, part-of-speech tag-
ging, dependency parsing, and semantic pars-
ing, as well as high-level NLP tasks such as
named entity recognition. We publicly share
the open-source Turkish NLP toolkit through
a web interface that allows an input text to be
analysed in real-time, as well as the open source
implementation of the components provided
in the toolkit, an API, and several annotated
datasets such as word similarity test set to eval-
uate word embeddings and UCCA-based se-
mantic annotation in Turkish. This will be the
first open-source Turkish NLP toolkit that in-
volves a range of NLP tasks in all levels. We be-
lieve that it will be useful for other researchers
in Turkish NLP and will be also beneficial for
other high-level NLP tasks in Turkish.

1 Introduction

Turkish is one of the low-resource languages with a
rich morphology. Although still limited, there has
been an increasing interest in Turkish NLP in the
last decade. Being a morphologically productive
language is the main drawback of the Turkish NLP
research. Current deep learning models are notori-
ously data-hungry. When it comes to morpholog-
ically productive languages, the data requirement
substantially increases compared to other morpho-
logically poor languages. This is due to the number
of different word forms that can be generated via in-
flection and/or derivation. Although current word
embedding models such as BERT (Devlin et al.,
2019) rely on tokenization that considers sub-word
tokens rather than word tokens, the recent research
(Haley, 2020) still shows that the performance of
such models degrades with novel words.

We introduce a new neural Turkish NLP toolkit
that involves the following linguistic and NLP tasks
in Turkish: Stemming, morphological segmenta-
tion, morphological tagging, part-of-speech tag-
ging, dependency parsing, semantic parsing, and
named entity recognition. Morphological segmen-
tation, morphological tagging, part-of-speech tag-
ging, and dependency parsing are learned jointly
using a multi-task learning approach. Most of the
previous work on Turkish morphology and syntax
considers morphological and syntactic tasks as in-
dependent problems. However, syntax is strongly
defined by morphology and vice versa, especially
in agglutinative languages. Therefore, in this study,
we benefit from the mutual interaction between
morphological and syntactic layers in the language.

All components apart from semantic parsing
model are built on LSTMs that are capable of learn-
ing especially long distance relations. The models
also utilise a Bahdanau (Bahdanau et al., 2015)
attention mechanism in various layers for an ef-
ficient learning of the valuable contextual infor-
mation within the sentence/word. Moreover, we
investigate cross-level information flow between
the layers by incorporating information between
words in different time steps. As distinct from the
other components, semantic parsing model adopts
an encoder-decoder model where the encoder is
based on self-attention mechanism (Vaswani et al.,
2017).

TurkishDelightNLP is available at http:
//rgcl.wlv.ac.uk/TurkishNLP/ and the
source codes of all components are also publicly
available, which are specified in each section be-
low. We also provide API to allow users to process
their data using HTTP requests1. In addition to
the NLP toolkit, we provide few datasets; that are
an UCCA-based semantic annotation for Turkish,

1The REST API for the TurkishDelightNLP toolkit
is available at https://github.com/halecakir/
turkish-delight-nlp-api.

17

a Turkish stemming training set based on METU-
Sabanci Turkish Treebank (Oflazer et al., 2003b),
and a word similarity test set along with the hu-
man judgements for assessing morphologically rich
Turkish word embeddings.

2 Related Work and Tools on Turkish
NLP

Despite being a low-resource language, Turkish has
been one of the actively studied languages among
other low-resource languages especially in the last
decade. Numerous models have been recently re-
leased for Turkish. However, most of them were
not released publicly available, and they were not
shared as tools that facilitate generating a result
in real time. The earlier studies on Turkish mor-
phology include morphological analyzers such as
the two-level description of Turkish morphology
(Oflazer, 1993), the stochastic morphological ana-
lyzer based on finite state transducers (Sak et al.,
2009), paradigmatic approaches (Can and Man-
andhar, 2009, 2012, 2018), and few other open
source analyzers such as Zemberek (Akın and Akın,
2007), TRmorph (Çöltekin, 2010), and the syn-
tactically expressive morphological analyzer by
Ozturel et al. (2019). The earlier studies also in-
volve dependency parsers such as the probabilis-
tic and deterministic dependency parser by Ery-
iğit et al. (2008), the two-phase statistical parser
based on Conditional Random Fields (CRFs) by
Durgar El-Kahlout et al. (2014), and the recent
neural parser by Tuç and Can (2020). There are
a couple of Turkish stemmers introduced such as
the probabilistic stemmer by Dincer and Karaoğlan
(2003), and the finite state machine-based Govde-
Turk by Yücebas and Tintin (2017); a few part-
of-speech taggers were also proposed such as the
Hidden Markov Model-based PoS tagger by Dinçer
et al. (2008), the deterministic tagger using the
two-level morphological description by Oflazer
and Kuruoz (1994), and unsupervised Bayesian ap-
proaches (Bölücü and Can, 2019, 2021). The first
semantic parsing annotation for Turkish (Azin
and Eryiğit, 2019) has been presented for Abstract
Meaning Representation (AMR) (Flanigan et al.,
2014) and there is not any other semantic parser
introduced for Turkish yet, to our knowledge.

As seen, most of the linguistic analysis tasks
on Turkish are based on either statistical or deter-
ministic approaches. Currently, the Turkish NLP
research focuses more on NLP applications such

as named entity recognition (Güneş and Tantuğ,
2018; Güngör et al., 2019; Eşref and Can, 2019),
text classification (Tokgoz et al., 2021), sentiment
analysis (Gezici et al., 2019; Demirci et al., 2019),
offensive language identification (Ozdemir and
Yeniterzi, 2020), text summarisation (Ertam and
Aydin, 2021), text normalisation (Göker and Can,
2018) with especially the availability of the large
pretrained neural word embeddings in almost any
language.

Most of the NLP tools in Turkish were released
before the deep learning era and they still have not
been replaced by the neural network approaches
and the researchers in the field still use the old-
fashioned statistical and deterministic models for
morphological or syntactic processing. We aim to
fill this gap with our Turkish NLP toolkit by intro-
ducing better performing neural-based methods for
Turkish linguistic analysis and NLP. The most sim-
ilar one to our toolkit is ITU NLP Toolkit (Eryiğit,
2014) that also involves a wide range of NLP tools
such as normalization, spell correction, morpho-
logical analysis, dependency parsing, and named
entity recognition. However, all of their models
are independent from each other and they are built
on either deterministic or statistical machine learn-
ing algorithms. Our toolkit deviates from theirs by
adopting neural models and analysing morphology
and syntax jointly by considering the interaction
between them. Moreover, their toolkit does not
involve any semantic parsing as ours.

3 About Turkish

Turkish is an agglutinating language with a rich
morphology. The morphological rules are quite
regular in Turkish that define the order of the mor-
phemes in a word, as well as the morphophonemic
processes such as consonant mutation and vowel
harmony, which lead the suffix and the final con-
sonant and vowel in a word to be harmonised with
each other mutually. Therefore, a morpheme can
have tens of different surface forms in Turkish,
which are allomorphs of the same morpheme. In
Turkish, syntactic information is encoded in in-
flectional morphemes. For example, the word ‘
yapabileceğim’ (in English, ‘ I will be able to do’)
involves the following inflectional morphemes that
each correspond to a syntactic role: ‘ -abil’ (’be
able’), ‘ -eceğ’ (‘ will’), and ‘ -im’ (‘ I’).

In this paper, we propose to process every word
considering its left and right context through a

18

cross-level information from morphological seg-
ments up to dependencies in a moving window, so
that morphological information of the contextual
words help to analyse the PoS tags, and the PoS
information of the contextual words help to analyse
the dependency relations in a sentence.

4 A Neural Turkish NLP Toolkit

The introduced toolkit involves different compo-
nents that are all described thoroughly below.

4.1 Stemmer

The stemmer is built on an encoder-decoder model
that employs a bidirectional LSTM (Can, 2019).
The model has two versions, one without an at-
tention mechanism considering all characters with
equal probability and another version with Bah-
danau attention (Bahdanau et al., 2015) over char-
acters of a given word in both directions to learn
character-based contextual information. The model
is trained on a dataset with 17025 word types along
with their stems obtained from Metu-Sabanci Tree-
bank (Oflazer et al., 2003b). Both the model that
is implemented in DyNet (Neubig et al., 2017) and
the dataset are publicly available2. The accuracy of
the stemmer is 85% and comparable to that of Zem-
berek (Akın and Akın, 2007), and outperforms the
other open-source Turkish stemmers (Zafer, 2015).

4.2 Joint Morphology and Syntax Model

A multi-task learning model is proposed for joint
learning of morphology and syntax (Can et al.,
2022). The model is built upon a multi-layer LSTM
structure where each layer contributes to the overall
loss in a joint learning framework and the errors
from all layers backpropagate from top layer to the
bottom. LSTM structure has been preferred both
due its low size data requirement compared to trans-
formers and the flexibility of processing sequential
information by controlling the vertical information
flow between the layers. The model is trained on
IMST Turkish Treebank (Sulubacak et al., 2016).
The model involves 4 layers where each of them
adopts a bidirectional LSTM that is specialised
in either morphology or syntax. The layers are
dedicated for morphological segmentation, mor-
phological tagging, part-of-speech tagging, and de-
pendency parsing. The order of the layers has been
designed based on the direction of the information

2https://github.com/burcu-can/Stemmer

flow and the size of the units (from smaller to big-
ger). A separate component for morph2vec (Üstün
et al., 2018) that is used to pretrain the morpheme
embeddings is also involved.

The joint model is trained and evaluated on
UD Turkish Treebank, which is called IMST
Treebank (Sulubacak and It, 2018) and it is
a re-annotated version of the METU-Sabanci
Treebank (Oflazer et al., 2003a). For the pre-
trained word embeddings, we use pre-trained 200-
dimensional word embeddings trained on Boun
Web Corpus (Sak et al., 2008) provided by CoNLL
2018 Shared Task. The overall architecture of
the joint model is given in Figure 1, where each
coloured component belongs to a different level of
processing that starts from morphological segmen-
tation till dependency parsing. Each level is built
on LSTMs that sequentially process every unit (i.e.
character, morpheme, word, or syntactic informa-
tion) in a given sentence by utilising the contex-
tual information as well (see Section 4.2.6 for the
details of the cross-level information flow). An
example analysis is also provided in Figure 2 and
Figure 3. All layers are described in detail below.
The open-source implementation in DyNet (Neubig
et al., 2017) is publicly available3.

4.2.1 Morpheme-based Word Embeddings:
morph2vec

Morph2vec (Üstün et al., 2018) is a morpheme-
based word embedding model that learns word
embeddings as a weighted sum of word embed-
dings each of which are obtained from a particu-
lar morphological segmentation of a word. It is
assumed that the correct morphological segmen-
tation of a word is not known apriori; therefore,
each potential morphological segmentation of a
word is predicted before training the model. Each
morphological segmentation is fed into a bidirec-
tional LSTM with each LSTM unit being fed with a
morpheme embedding that is randomly initialised.
So each LSTM generates a word embedding for
that particular morphological segmentation. Fi-
nally, Bahdanau attention mechanism (Bahdanau
et al., 2015) is employed to learn the weight of
each segmentation-specific word embedding. The
morpheme-based embeddings give a better Spear-
man correlation with the human judgements in
word similarity tasks compared to both char2vec
(Cao and Rei, 2016) and fasttext (Bojanowski et al.,

3https://github.com/halecakir/
JointParser

19

Figure 1: The layers of the proposed joint learning framework. The sentence “Ali okula gitti.” (“Ali went to school”)
is processed from morphology up to dependencies (Can et al., 2022).

2017). The source code in DyNet is publicly avail-
able4, and the datasets for syntactic analogy and
word similarity along with the human judgement
scores are also publicly available5.

Morph2vec is pre-trained on METU-Sabanci
4https://github.com/burcu-can/

morph2vec_dynet
5https://nlp.cs.hacettepe.edu.tr/

projects/morph2vec/

Turkish Treebank (Oflazer et al., 2003b) before
training the joint morphology and syntax model.
Therefore, pretrained morpheme embeddings are
used during joint learning.

4.2.2 Morphological Segmentation

The lowest layer of the joint model performs mor-
phological segmentation through a bidirectional

20

O iyi insanlar o güzel atlara binip çekip gittiler
o iyi insan-lar o güzel atlar-a binip çekip git-ti-ler

DET ADJ NOUN DET ADJ ADJ VERB VERB VERB
- - people-nom-3p - - horse-dat-3p got on-conv go away-conv go-3p-plu-past

det

amod

det

amod

amod

nmod nmod

nsubj

root

‘Those good people got on those beautiful horses and left.’

Figure 2: An example analysis of the toolkit for a sentence in Turkish. First line: The orthographic form. Second line:
morphological segments. Third line: PoS tags. Fourth line: morphological features (’-’ is for null). Dependencies in
the article are arrowed (head to dependent) and labeled UD dependencies (de Marneffe et al., 2021).

Figure 3: The UCCA-based semantic parse tree of the sentence, O iyi insanlar o güzel atlara binip çekip gittiler. (in
English, “Those good people got on those beautiful horses and left")

LSTM that encodes each character of a given word
with one hot encoding. The output at each time step
is reduced to a single dimension using a multilayer
perceptron (MLP) with sigmoid function to predict
whether there is a morpheme boundary after that
character or not. Each value above 0.6 refers to a
morpheme boundary, and below means that there
is not a morpheme boundary at that time step after
the current character. Binary cross entropy is used
for this layer that contributes to the overall loss of
the joint model.

We obtain the gold segments from the rule-based
morphological analyser Zemberek (Akın and Akın,
2007) to train the segmentation component since
the IMST Treebank does not involve morpholog-
ical segmentations but only morphological tags.
Our joint model performs 98.97% of accuracy on
morphological segmentation task6.

4.2.3 Morphological Tagging
We adopt an encoder-decoder model for the mor-
phological tagging layer. To encode the relevant

6It should be noted that the test set is also obtained from
Zemberek.

contextual information both within the word and
within the sentence, we use a character encoder and
word encoder respectively. The character encoder
processes the characters within the given word that
will be analysed and the word encoder processes
the contextual words in that sentence to better pre-
dict the morphological tagging of the given word in
a particular context, which can also help to disam-
biguate the word in a particular context. Both of the
encoders are built on bidirectional LSTMs and both
of them adopt a Bahdanau attention (Bahdanau
et al., 2015) to learn the weights over characters
and words. The input to the decoder is the con-
catenation of the weighted outputs obtained from
both character and context encoders. The decoder
is also built on a bidirectional LSTM that gener-
ates morpheme tags using a softmax function at
each time step. Our joint model performs 87.59%
FEATS score on morphological tagging, and com-
parable to a recently introduced neural Turkish mor-
phological tagger that performs 89.54% FEATS
score (Dayanık et al., 2018).

21

4.2.4 Part-of-Speech Tagging
The PoS tagging layer is built upon a bidirectional
LSTM that is fed with the concatenation of word-
level (i.e. word2vec embeddings), character-level
(learned through a character BiLSTM for each
word), morpheme-level (i.e. morph2vec), and mor-
pheme tag encodings of each particular word in a
sentence. Morpheme-level word embeddings are
obtained from pretrained morph2vec as mentioned
before. However, the other embeddings are all ran-
domly initialised and learned during training. The
output at each time step is passed through an MLP
with softmax activation function to predict the PoS
tag of the word at that time step. Our joint model
performs exactly the same with the state-of-art PoS
tagger by Che et al. (2018) with an accuracy of
94.78%.

4.2.5 Dependency Parsing
The dependency parsing is also built on BiLSTM
that is fed with the same embeddings used in PoS
tagging layer, and in addition, we concatenate the
PoS encodings of the words that are obtained from
the previous layer. PoS encodings are randomly
initialised and learned during training. The arcs
are scored by an MLP that involves a pointer net-
work that predicts whether there is an arc between
the given two words or not. Once the scores are
predicted by the MLP, the projective trees are gen-
erated using Eisner’s decoding algorithm (Eisner,
1996). Labels are analogously predicted using an-
other MLP with a softmax function. Our joint
model gives comparable results with the state-of-
art dependency parsing results of Straka (2018)
with 71% UAS and 63.92% LAS (whereas Straka
(2018) achieves 72.25% UAS and 66.44% LAS).

4.2.6 Cross-Level Information Flow
The custom in such a multi-layered and multi-task
models is to feed the obtained information regard-
ing the current word from the previous layers to
pass it over to the upper layers for the same word
(Nguyen and Nguyen, 2021). However, to our
knowledge, we are the first to analyse cross-level
information flow between the layers by allowing
information flow across different words in different
layers. For this, we incorporate contextual infor-
mation from the previous word to the current word
in different layers, by adding contextual informa-
tion obtained from morpheme tagging encoding
and morpheme encoding of the previous word to
POS and dependency layers of the current word.

Similarly, we incorporate POS tagging encoding
of the previous word into the dependency layer
of the current word. This is shown in Figure 1
with PoSVerticalFlow, MorphTagVerticalFlow, and
MorphVerticalFlow. The results show that such
cross-level information flow improves the perfor-
mance of the model especially in upper layers.

4.3 Semantic Parsing

We use the Universal Conceptual Cognitive Annota-
tion (UCCA) (Abend and Rappoport, 2013) frame-
work for semantic annotation, which is a cross-
lingual semantic annotation framework. Since
there is no Turkish UCCA dataset, the model is
trained using a combination of English, German
and French datasets (Hershcovich et al., 2017)7,
and the Turkish annotations are obtained in a zero-
shot setting and manually revised. We annotated
50 sentences obtained from METU-Sabaci Turkish
Treebank that is also publicly available8.

We adopt an encoder/decoder model that tack-
les the semantic parsing task in the form of a
chart-based constituency parsing (Bölücü and Can,
2021)9. Self-attention layers (Vaswani et al., 2017)
are used in the encoder where the encoding is fed
into an MLP with two fully-connected layers with
ReLU activation function, and the CYK (Cocke-
Younger-Kasami) algorithm (Chappelier and Ra-
jman, 1998) is used within the decoder that gen-
erates the tree with the maximum score using the
scores obtained from the encoder. Our Turkish
UCCA-based semantic parser performs 81.11% F1
score on labeled evaluation and 90.24% F1 score
on unlabeled evaluation in few shot learning.

4.4 Named Entity Recognition (NER)

We use a BiLSTM-CRF model where each word
is encoded through a BiLSTM and decoded with
a CRF layer to learn the named entities in a given
text (Kağan Akkaya and Can, 2021). We feed the
BiLSTM with character-level (learned through a
character-level BiLSTM), character n-gram-level
(fasttext), morpheme-level (morph2vec), and word-
level word embeddings (word2vec), as well as or-
thographic embeddings that are learned either with
a CNN or BiLSTM by encoding alphabetic charac-
ters similar to that of Aguilar et al. (2017).

7https://github.com/
UniversalConceptualCognitiveAnnotation

8https://github.com/necvabolucu/semantic-dataset
9https://github.com/necvabolucu/ucca-parser

22

Figure 4: The user interface of the TurkishDelightNLP. The user selects a task from the dropdown menu on the left
and populates an input sentence. The output is displayed on the right.

Since the particular target domain for NER in
our study is noisy text especially obtained from
social media, we use transfer learning to utilise
any available information in a formal but possibly
larger text to learn the named entities in an informal
but usually a smaller text. Therefore, we adopt two
CRF layers one of which is trained on the formal
text (i.e. Turkish news corpus) and the other one
is trained on an informal text (i.e. tweets) (Şeker
and Eryiğit, 2017). Training is performed alter-
nately between the two CRF layers which share
the same BiLSTM layer. Our named entity recog-
nition model outperforms the current state-of-art
model on noisy text by Şeker and Eryiğit (2017)
with 67.39% F1 score on DS-1 v4 (Şeker and Ery-
iğit, 2017). All source code and related material on
NER are publicly available10.

5 Web Interface

TurkishDelightNLP is a Streamlit application that
provides a simple user interface for producing pre-
dictions for different tasks. We selected Stream-
lit since it is a low-code web framework that en-
ables researchers to easily create a data-driven
app. Streamlit has a relatively simple application
programming interface and it is specifically de-
signed for data science applications. In TurkishDe-
lightNLP, in the backend, query and model are

10https://github.com/emrekgn/
turkish-ner

cached to avoid repeated calculations of the same
input. Docker is used to increase portability and
to be deployed in different operating systems and
hardware platforms.

Figure 4 shows the user interface. In the left
panel, there is a menu for the models. Whenever
the user selects a model and populates a sentence,
the result is displayed on the right panel.

We also provide a REST API that allows users
to access the toolkit with HTTP requests. To be
able to use the API, we provide an API token, so
a user can access it from clients such as cURL
and Postman. Moreover, with the help of Swagger
and Redoc documentation, users can see how to
consume API endpoints.

6 Conclusion and Future Work

We introduce a new Neural Turkish NLP toolkit
that performs different levels of linguistic analysis
from morphology to semantics, as well as other
NLP applications such as NER. All source codes
and relevant datasets are publicly available and we
believe that this framework for Turkish NLP will
be beneficial for other researchers in the area, and
will eventually expedite the Turkish NLP research.

Acknowledgements

The joint model was funded by Scientific and Tech-
nological Research Council of Turkey (TUBITAK),
project number EEEAG-115E464.

23

References
Omri Abend and Ari Rappoport. 2013. UCCA: A

semantics-based grammatical annotation scheme. In
Proceedings of the 10th International Conference on
Computational Semantics (IWCS 2013)–Long Papers,
pages 1–12.

Gustavo Aguilar, Suraj Maharjan, Adrian Pastor López
Monroy, and Thamar Solorio. 2017. A multi-task ap-
proach for named entity recognition in social media
data. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 148–153.

Ahmet Afşın Akın and Mehmet Dündar Akın. 2007.
Zemberek, an open source nlp framework for Turkic
languages.

Zahra Azin and Gülşen Eryiğit. 2019. Towards Turkish
Abstract Meaning Representation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 43–47, Florence, Italy. Association for
Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Necva Bölücü and Burcu Can. 2019. Unsupervised
joint PoS tagging and stemming for agglutinative lan-
guages. ACM Transactions on Asian Low-Resource
Language Information Processing, 18(3).

Necva Bölücü and Burcu Can. 2021. A cascaded unsu-
pervised model for PoS tagging. ACM Transactions
on Asian Low-Resource Language Information Pro-
cessing, 20(1).

Necva Bölücü and Burcu Can. 2021. Self-attentive con-
stituency parsing for UCCA-based semantic parsing.
CoRR, 2110(621).

Burcu Can. 2019. Stemming Turkish words with lSTM
networks. Bilişim Teknolojileri Dergisi, 12:183 –
193.

Burcu Can, Hüseyin Aleçakır, Suresh Manandhar, and
Cem Bozşahin. 2022. Joint learning of morphology
and syntax with cross-level contextual information
flow. Natural Language Engineering, page 1–33.

Burcu Can and Suresh Manandhar. 2009. Clustering
morphological paradigms using syntactic categories.
In Proceedings of the 10th Cross-Language Evalu-
ation Forum Conference on Multilingual Informa-
tion Access Evaluation: Text Retrieval Experiments,
CLEF’09, page 641–648. Springer-Verlag.

Burcu Can and Suresh Manandhar. 2012. Probabilistic
hierarchical clustering of morphological paradigms.
In Proceedings of the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 654–663, Avignon, France. Asso-
ciation for Computational Linguistics.

Burcu Can and Suresh Manandhar. 2018. Tree struc-
tured Dirichlet processes for hierarchical morpho-
logical segmentation. Computational Linguistics,
44(2):349–374.

Kris Cao and Marek Rei. 2016. A joint model for word
embedding and word morphology. In Proceedings
of the 1st Workshop on Representation Learning for
NLP, pages 18–26, Berlin, Germany. Association for
Computational Linguistics.

J-C Chappelier and Martin Rajman. 1998. A gener-
alized CYK algorithm for parsing stochastic CFG.
In Proceedings of 1st Workshop on Tabulation in
Parsing and Deduction (TAPD’98), CONF, pages
133–137.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages 55–64.
Association for Computational Linguistics.

Çağrı Çöltekin. 2010. A freely available morphological
analyzer for Turkish. In Proceedings of the Seventh
International Conference on Language Resources
and Evaluation (LREC’10), Valletta, Malta. Euro-
pean Language Resources Association (ELRA).

Erenay Dayanık, Ekin Akyürek, and Deniz Yuret. 2018.
MorphNet: A sequence-to-sequence model that com-
bines morphological analysis and disambiguation.
CoRR, abs/1805.07946.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Gözde Merve Demirci, Şeref Recep Keskin, and Gülüs-
tan Doğan. 2019. Sentiment analysis in Turkish with
deep learning. In 2019 IEEE International Confer-
ence on Big Data (Big Data), pages 2215–2221.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

24

Bekir Dincer and Bahar Karaoğlan. 2003. Stemming in
agglutinative languages: A probabilistic stemmer for
Turkish. In Lecture Notes in Computer Science book
series, volume 2869, pages 244–251. Springer.

Bekir Taner Dinçer, Bahar Karaoglan, and Tarik Kisla.
2008. A suffix based part-of-speech tagger for Turk-
ish. Fifth International Conference on Information
Technology: New Generations (itng 2008), pages
680–685.

İlknur Durgar El-Kahlout, Ahmet Afşın Akın, and
Ertuǧrul Yılmaz. 2014. Initial explorations in two-
phase Turkish dependency parsing by incorporating
constituents. In Proceedings of the First Joint Work-
shop on Statistical Parsing of Morphologically Rich
Languages and Syntactic Analysis of Non-Canonical
Languages, pages 82–89, Dublin, Ireland. Dublin
City University.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Pro-
ceedings of COLING 1996 Volume 1: The 16th Inter-
national Conference on Computational Linguistics,
pages 340–345.

Fatih Ertam and Galip Aydin. 2021. Abstractive text
summarization using deep learning with a new Turk-
ish summarization benchmark dataset. Concurrency
and Computation: Practice and Experience.

Gülşen Eryiğit. 2014. ITU Turkish NLP web service. In
Proceedings of the Demonstrations at the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL), Gothenburg,
Sweden. Association for Computational Linguistics.

Gülşen Eryiğit, Joakim Nivre, and Kemal Oflazer. 2008.
Dependency parsing of Turkish. Computational Lin-
guistics, 34:627.

Yasin Eşref and Burcu Can. 2019. Using morpheme-
level attention mechanism for Turkish sequence la-
belling. In 2019 27th Signal Processing and Com-
munications Applications Conference (SIU), pages
1–4.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the Abstract Meaning Repre-
sentation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1426–1436, Bal-
timore, Maryland. Association for Computational
Linguistics.

Bahar Gezici, Necva Bölücü, Ayça Tarhan, and Burcu
Can. 2019. Neural sentiment analysis of user reviews
to predict user ratings. In 2019 4th International
Conference on Computer Science and Engineering
(UBMK), pages 629–634.

Onur Güngör, Tunga Güngör, and Suzan üsküarlı. 2019.
The effect of morphology in named entity recognition
with sequence tagging. Natural Language Engineer-
ing, 25(1):147–169.

Sinan Göker and Burcu Can. 2018. Neural text nor-
malization for Turkish social media. In 2018 3rd
International Conference on Computer Science and
Engineering (UBMK), pages 161–166.

Asim Güneş and A. Cüneyd Tantuğ. 2018. Turkish
named entity recognition with deep learning. In 2018
26th Signal Processing and Communications Appli-
cations Conference (SIU), pages 1–4.

Coleman Haley. 2020. This is a BERT. Now there are
several of them. Can they generalize to novel words?
In Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 333–341, Online. Association for Com-
putational Linguistics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A Transition-Based Directed Acyclic Graph
Parser for UCCA. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1127–1138.

Emre Kağan Akkaya and Burcu Can. 2021. Trans-
fer learning for Turkish named entity recognition
on noisy text. Natural Language Engineering,
27(1):35–64.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Cloth-
iaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,
Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Kumar, Chai-
tanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. Dynet: The dynamic neu-
ral network toolkit.

Linh The Nguyen and Dat Quoc Nguyen. 2021. Phonlp:
A joint multi-task learning model for Vietnamese
part-of-speech tagging, named entity recognition and
dependency parsing. CoRR, abs/2101.01476.

Kemal Oflazer. 1993. Two-level description of Turkish
morphology. In Proceedings of the Sixth Conference
on European Chapter of the Association for Com-
putational Linguistics, EACL ’93, page 472, USA.
Association for Computational Linguistics.

Kemal Oflazer and Ilker Kuruoz. 1994. Tagging and
morphological disambiguation of Turkish text. In
Fourth Conference on Applied Natural Language Pro-
cessing, pages 144–149, Stuttgart, Germany. Associ-
ation for Computational Linguistics.

Kemal Oflazer, Bilge Say, Dilek Zeynep Hakkani-Tür,
and Gökhan Tür. 2003a. Building a Turkish Treebank,
pages 261–277. Springer Netherlands, Dordrecht.

Kemal Oflazer, Bilge Say, Dilek Zeynep, and Gokhan
Tur. 2003b. Building a turkish treebank. Abeillé.

Anil Ozdemir and Reyyan Yeniterzi. 2020. SU-NLP
at SemEval-2020 task 12: Offensive language Iden-
tifiCation in Turkish tweets. In Proceedings of the

25

Fourteenth Workshop on Semantic Evaluation, pages
2171–2176, Barcelona (online). International Com-
mittee for Computational Linguistics.

Adnan Ozturel, Tolga Kayadelen, and Isin Demirsahin.
2019. A syntactically expressive morphological an-
alyzer for Turkish. In Proceedings of the 14th In-
ternational Conference on Finite-State Methods and
Natural Language Processing, pages 65–75, Dresden,
Germany. Association for Computational Linguistics.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2008.
Turkish language resources: Morphological parser,
morphological disambiguator and web corpus. In
Advances in Natural Language Processing, pages
417–427, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2009. A
stochastic finite-state morphological parser for Turk-
ish. In Proceedings of the ACL-IJCNLP 2009 Con-
ference Short Papers, pages 273–276, Suntec, Singa-
pore. Association for Computational Linguistics.

Gökhan Akın Şeker and Gülşen Eryiğit. 2017. Extend-
ing a CRF-based named entity recognition model for
Turkish well formed text and user generated content
1. Semantic Web, 8(5):625–642.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Umut Sulubacak, Memduh Gokirmak, Francis Tyers,
Çağrı Çöltekin, Joakim Nivre, and Gülşen Eryiğit.
2016. Universal Dependencies for Turkish. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical
Papers, pages 3444–3454, Osaka, Japan. The COL-
ING 2016 Organizing Committee.

Umut Sulubacak and G. It. 2018. Implementing uni-
versal dependency, morphology, and multiword ex-
pression annotation standards for turkish language
processing. Turkish Journal of Electrical Engineer-
ing and Computer Sciences, 26:1662–1672.

Meltem Tokgoz, Fatmanur Turhan, Necva Bolucu, and
Burcu Can. 2021. Tuning language representation
models for classification of Turkish news. In 2021
International Symposium on Electrical, Electronics
and Information Engineering, ISEEIE 2021, page
402–407, New York, NY, USA. Association for Com-
puting Machinery.

Salih Tuç and Burcu Can. 2020. Self attended stack
pointer networks for learning long term dependen-
cies. In Proceedings of the 17th International Confer-
ence on Natural Language Processing, pages 90–100.
NLP Association of India.

Ahmet Üstün, Murathan Kurfalı, and Burcu Can. 2018.
Characters or morphemes: How to represent words?
In Proceedings of The Third Workshop on Represen-
tation Learning for NLP, pages 144–153, Melbourne,
Australia. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sait Can Yücebas and Rabia Tintin. 2017. Gövde-Türk:
A Turkish stemming method. 2017 International
Conference on Computer Science and Engineering
(UBMK), pages 343–347.

Harun Resit Zafer. 2015. Resha stem-
mer. https://github.com/hrzafer/
resha-turkish-stemmer/. [Online; ac-
cessed 6-Feb-2022].

26

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 27 - 38

July 10-15, 2022 ©2022 Association for Computational Linguistics

ZS4IE: A toolkit for Zero-Shot Information Extraction
with simple Verbalizations
Oscar Sainz1,*, Haoling Qiu2,*,

Oier Lopez de Lacalle1, Eneko Agirre1, and Bonan Min2

1HiTZ Basque Center for Language Technologies - Ixa NLP Group
University of the Basque Country (UPV/EHU)

2Raytheon BBN Technologies
oscar.sainz@ehu.eus, haoling.qiu@raytheon.com

Abstract

The current workflow for Information Extrac-
tion (IE) analysts involves the definition of
the entities/relations of interest and a train-
ing corpus with annotated examples. In this
demonstration we introduce a new workflow
where the analyst directly verbalizes the enti-
ties/relations, which are then used by a Tex-
tual Entailment model to perform zero-shot
IE. We present the design and implementation
of a toolkit with a user interface, as well as
experiments on four IE tasks that show that
the system achieves very good performance
at zero-shot learning using only 5–15 min-
utes per type of a user’s effort. Our demon-
stration system is open-sourced at https://
github.com/BBN-E/ZS4IE. A demon-
stration video is available at https://
vimeo.com/676138340.

1 Introduction

Information Extraction (IE) systems are very costly
to build. The current define-then-annotate-and-
train workflow uses supervised machine learning,
where the analyst first defines the schema with the
entities and relations of interest and then builds a
training corpus with annotated examples. Unfor-
tunately, each new domain and schema requires
starting from scratch, as there is very little transfer
between domains.

We present an alternative verbalize-while-
defining workflow where the analyst defines the
schema interactively in a user interface using natu-
ral language verbalizations of the target entity and
relation types. Figure 1 shows sample verbaliza-
tion templates for a simple schema involving an em-
ployee relation and a passing away event, as well as
a sample output annotated with the schema. The an-
notation of the EMPLOYEEOF relation requires per-
forming Named Entity Recognition (NER) (Tjong
Kim Sang and De Meulder, 2003) and Relation

*Denotes equal contribution.

Extraction (RE) (Zhang et al., 2017), while anno-
tating the LIFE.DIE event involves NER, Event
Extraction (EE), and Event Argument Extraction
(EAE) (Walker et al., 2006). Our toolkit is able to
perform those four IE tasks using a single user inter-
face, allowing the analyst to easily model and test
the schema without the need to annotate examples.

Our toolkit leans on recent work which has suc-
cessfully recast several IE tasks as Textual Entail-
ment (TE) tasks (White et al., 2017; Poliak et al.,
2018; Levy et al., 2017; Sainz et al., 2021). For in-
stance, Sainz et al. (2021) model relation types be-
tween entity pairs using type-specific verbalization
templates that describe the relation, generates a ver-
balization (hypothesis) automatically using those
templates and then uses a pre-trained TE model to
predict if the premise (the sentence where the pair
appears) entails the hypothesis, therefore leading
to a prediction of the relation or “no relation”.

In this paper we thus present ZS4IE, a toolkit for
zero-shot IE. We show that the four mainstream IE
tasks mentioned above can be reformulated as TE
problems, and that it is possible to achieve strong
zero-shot performances leveraging pre-trained TE
models and a small amount of templates curated by
the user. Our toolkit allows a novice user to curate
templates for each new types of entities, relations,
events, and event argument roles, and validate their
effectiveness online over any example. We also
present strong results on widely used datasets with
only 5-15 minutes per type of a user’s effort.

2 Related Work

Textual Entailment has been shown to be a rea-
sonable proxy for classification tasks like topic
or sentiment analysis (Yin et al., 2019; Sainz and
Rigau, 2021; Zhong et al., 2021). To reformulate
a classification problem as TE, it often starts with
defining templates to describe each class label, lead-
ing to a natural language text (a “verbalization” of
a hypothesis) for each possible label. Inference is

27

Figure 1: Verbalization templates for a sample schema involving four tasks (from left to right, NER, EE, RE,
EAE), with example output (bottom). The schema contains a EMPLOYEEOF relation between PERSON and
ORGANIZATION entities and a LIFE.DIE event with three argument types (VICTIM, PLACE and TIME) and PERSON,
DATE and GPE entities as fillers. Due to space constraints, at most two verbalizations per task shown.

Figure 2: Three steps for entailment-based NER. The steps for the other IE tasks is analogous.

performed by selecting the most probable candi-
date hypothesis entailing the premise. TE is usually
implemented with pre-trained language model fine-
tuned on TE datasets, such as MNLI (Williams
et al., 2018), SNLI (Bowman et al., 2015), FEVER
(Thorne et al., 2018), ANLI (Nie et al., 2020) or
XNLI (Conneau et al., 2018). The results on classi-
fication have been particularly strong for zero-shot
and few-shot learning, with Wang et al. (2021b)
hypothesizing that entailment is a true language
understanding task, where a model that performs
entailment well is likely to succeed on similarly-
framed tasks.

Sainz et al. (2021) reformulated relation extrac-
tion as a TE task surpassing the state-of-the-art in
zero- and few-short learning. A similar approach
was previously explored by Obamuyide and Vla-
chos (2018), using TE models that are not based on
pre-trained language models. Similar to TE, (Clark
et al., 2019) performs yes/no Question Answering,
in which a model is asked about the veracity of
some fact given a passage. Lyu et al. (2021) re-
cast the zero-shot event extraction as a TE task,
using TE model to check whether a piece of text
is about a type of event. Lastly, Sainz et al. (2022)
showed that TE allows to leverage the knowledge
from other tasks and schemas.

3 IE via Textual Entailment

We first describe how to recast each of the IE tasks
(NER, RE, EE, EAE) as TE independently, and

leave the workflow between the tasks for the next
section. At a high level, the zero-shot TE reformu-
lation consists of three steps: candidate generation,
label verbalization and TE inference (Figure 2 illus-
trates the steps for NER). The first step, candidate
generation, identifies text spans (e.g., proper nouns
for NER) or span pairs (a pair of entity mentions
for relation extraction) in the input sentence as the
focus of the prediction. Taking a text span (or span
pair) as input, the label verbalization step applies
a verbalization template to generate a hypothesis,
which is a natural language sentence describing
the span (or span pair) being an instance of a type
of entity, relation, event, or event argument. The
verbalization generates hypothesis for each of the
target types. Finally, the TE inference step takes
the original sentence (the premise) and each hy-
pothesis as input, and uses a pre-trained TE model
to predict if the premise entails, contradicts, or is
neutral to the hypothesis. The type with the verbal-
ization having the highest entailment probability is
selected. We next describe each step in detail.

3.1 Candidate Generation

We describe the candidate generation for each of
the task below.

Named Entity Recognition (NER): Candidates
are extracted using specific patterns of PoS tags as
returned by Stanza (Qi et al., 2020). For instance,
for the simple example in Figure 1 it suffices to

28

select proper nouns (shown in Figure 2), which are
easily extended with other PoS patterns if needed.
The toolkit also allows the usage of a constituency
parser (Kitaev and Klein, 2018).

Relation Extraction (RE): Each relation re-
quires a pair of entities that satisfy specific type
constraints, e.g. the EMPLOYEEOF relation re-
quires a PERSON and an ORGANIZATION. A NER
module is used to extract all candidate entities that
follow the required entity types according to the
target schema. The toolkit uses the TE based NER
module, although it also allows usage of a super-
vised NER system (Qi et al., 2020).

Event (Trigger) Extraction (EE): The main
goal of this task is to detect whether the input sen-
tence contains a mention of any of the target event
types in the schema, e.g. LIFE.DIE. This task can
be formulated as a multi-label text classification
task, and in this case the full sentence is the candi-
date. Alternatively, the textual span that most likely
expresses the event (the so-called trigger) can be
extracted. In this case, the candidates are generated
using specific PoS tags, e.g. verbs like died (cf.
Figure 1). Our toolkit allows both options.

Event Argument Extraction: Given a sentence
containing an event type (as detected by EE above),
the goal is to extract entity mentions that are fillers
of the target arguments in the schema. For exam-
ple, the schema in Figure 1 involves three target
arguments. Each of the arguments requires spe-
cific entity types, e.g. PERSON for the VICTIM

argument. The candidates of the required types are
extracted using the same NER module as for RE.

3.2 Label Verbalization

For each of the IE tasks, the label verbalization pro-
cess takes a sentence, a set of candidates and the
set of target types (e.g. NER types), and generates
a natural language text (the hypothesis) describ-
ing the existence of the type in the sentence (the
premise) using verbalization templates. Each can-
didate is a span (or pair of spans) that can belong
to a specific type (e.g. being a PERSON in NER).
Therefore, the textual verbalization is generated
to express each potential type for the span or the
pair of spans. For the NER and event extraction
tasks, each verbalization expresses one potential
entity (or event type) for the target candidate. For
the relation and event argument extraction tasks,
the verbalization template combines the informa-

tion from the text spans of the candidate pair and
produces a text that expresses a relation (or event
argument role). The analyst just needs to write the
verbalization templates for each target type, and
they are applied to the candidates to generate the
hypothesis, as shown in the second step in Figure 2
for NER.

Figure 1 shows sample TE verbalization tem-
plates for entity, relation, event, and event argu-
ment types corresponding to the 4 IE tasks, as well
as sample example as output. The templates for
NER and event extraction (leftmost part of the
figure) are applied over a single candidate as ex-
tracted in the previous step (the candidate entity
or event trigger, respectively). Note that for event
extraction it is also possible to produce hypothe-
sis using templates with no slots, e.g. "A person
died" for LIFE.DIE. In the case of relation ex-
traction, the verbalization templates contain two
slots for the two entity spans potentially holding
the relation. Finally, templates for event argument
extraction can be more varied. The figure shows
two examples: a template using a single slot for the
candidate filler, and a template which, in addition
to the filler slot, uses the trigger ("died" in this case,
for PLACE).

3.3 Inference

Given a premise (the original sentence) and a hy-
pothesis (an verbalization generated by label verbal-
ization templates), we use a pre-trained TE model
to decide whether the hypothesis is entailed by, con-
tradicted with, or is neutral to the premise. In prin-
ciple, any model trained on an entailment dataset
can be used. The inference is mainly determined
by three key factors: the TE probabilities for the
verbalizations of all templates for all labels, the
type-specific input span constraints, and a thresh-
old that decides if the probability is high enough
to consider the candidate a positive instance. The
type-specific input span constraints are enforced to
make sure we don’t have candidates that violates
the constraints. We return the class label of the
hypothesis with highest entailment probability. If
none of the hypothesis is higher than the threshold,
we return the negative class, that is the class that
represents that there is not a valid entity, relation,
event, or event argument role type for the input
candidate. The threshold for minimal entailment
probability is set by default to 0.5.

29

4 ZS4IE toolkit

ZS4IE comprises a pipeline and a user interface.

4.1 The ZS4IE Pipeline

As described in Section 3.1 and illustrated in Figure
3, there are inter-task dependencies between the
four IE tasks (e.g., relation extraction requires that
entity mentions have already been tagged in the
input sentence). Some task also require external
NLP tools for generating candidates. To address
these issues and to allow maximal flexibility for
the users, we support the following two workflows.

The End-to-End (E2E) Mode: This mode will
run the ZS4IE modules in a pipeline: we allow
the users to start from raw text, and perform cus-
tomization (e.g., develop templates for new types
of interest) for all four IE tasks. The user has to
follow the inter-task dependencies as illustrated in
Figure 3: the user must finish NER customization
before moving on to relation extraction or the event
argument extraction task, because the later two
tasks needs NER to generate their input candidates.
Similarly, the user must finish customization for
the event trigger classification task, before working
on the event argument extraction task.

The end-to-end pipeline also runs a customiz-
able pre-processing step including a POS tagger
and a constituency parser, before any of the later
modules.

The Task Mode: In this mode, the user can
choose to work on each of the four IE tasks indepen-
dently. In order to address the inter-dependencies,
the user can choose to run an independent NER
module instead, as part of the pre-processing step.
The user interface allows the user to tag any spans
for entity or event trigger types, before running
customization for the more complex tasks such as
relation extraction or event argument extraction.
This option allows to explore additional entity and
event trigger types before actually implementing
them

4.2 User Interface (UI)

Figure 4 shows the User Interface. It allows the
user to add new types of entities, relations, events
and event argument roles, and then develop tem-
plates (along with input type constraints for each
type). Figure 5 shows the NER extraction results
on an user-input sentence. It also displays the like-
lihood scores produced by the TE model of those

Figure 3: An illustration of the dependencies between
the four IE tasks.

templates that are above the threshold, to allow the
user to validate templates.

To show why it extracts each entity, it displays a
ranked list of likely entity types, the template that
led to that type, along with the entailment probabil-
ity produced by the pre-trained TE model. The user
can click on "+" and "-" sign next to each extraction
to label its correctness. Our system will track the
total number of extractions and and accuracy for
each task, each type and each template, to allow
the user to quickly validate the effectiveness of the
templates and to spot any low-precision template.

Supplying Input Text: The user can supply a
text snippet, one at a time, to test writing templates.
As described in Section 4.1, when using the �task
mode, the user can label spans in the input text
for the more complex relation extraction and event
argument extraction tasks, so that the text already
has the right entity or event trigger spans and types
to begin with.

Develop Templates for New Types: The user
can add new types of entities, relations, events, and
event argument role. For each type, the user can
create templates along with the input span type
constraints, and then run inference interactively
on the input text, to see whether these templates

30

Figure 4: The UI for curating templates for types of
interests for NER, relation extraction, event extraction
and event argument extraction tasks. The NER tab is
partially shown with two types.

Figure 5: The UI for displaying NER extraction results
on an user-input sentence. We show the extractions
and the likelihood scores of the templates above the
threshold (e.g. T = 0.5).

can be used for extract the instances. The user
can label the correctness of the extracted instances,
resulting a small development dataset (the dev set)
to help measuring the precision and relative recall
for each template, and to tune the threshold for the
TE inference.

Display Metrics: The UI displays the accuracy
and yield for each template and each type in real-
time, to allow the user to monitor the progress and
make adjustments on the fly.

More screenshots and details of our UI are de-
scribe in Appendix A.

5 Experiments

We evaluated our system using publicly available
datasets. We use CoNLL 2003 (Tjong Kim Sang

and De Meulder, 2003) for NER evaluation, TA-
CRED (Zhang et al., 2017) for RE, and ACE for
EE and EAE (Walker et al., 2006). We evaluate
each task independently (not as a pipeline) to make
as comparable as possible to existing zero-shot sys-
tems. In order to apply our toolkit we made some
adaptations as follows: We consider only proper
nouns as candidates for NER, and we ignore the
MISC label because it is not properly defined in
the task 1. We evaluate EE as event classification,
where the task is to output the events mentioned in
the sentence without extracting the trigger words,
as we found that deciding which is the trigger word
is in many cases an arbitrary decision 2. In the case
of RE we used the templates from (Sainz et al.,
2021), which are publicly available. We will re-
lease the templates used on the experiments as ad-
ditional material along with the paper. The analysts
spent between 5-15 minutes per type, depending
on the task, with NER and EE being the fastest.

Table 1 shows the zero-shot results for NER, RE,
EE, and EAE tasks. We report the results of three
entailment models: RoBERTa (Liu et al., 2019)
trained on MNLI, RoBERTa* trained on MNLI,
SNLI, FEVER and ANLI; and DeBERTa (He et al.,
2021) trained on MNLI. The main results (top three
rows) use the default threshold (T = 0.5), we se-
lected the T blindly, without checking any devel-
opment result.

The results show strong zero-shot performance.
Note that there is no best entailment model, sug-
gesting that there still exists margin for improve-
ment. However, we see that RoBERTa* performs
relatively well in all scenarios except EE (see Sec-
tion 6 for further discussion).

The table also shows in the middle three rows the
results where we optimize the threshold on develop-
ment. The results improve in most of the cases, and
allow comparison to other zero-shot systems which
sometimes optimize a threshold in development
data.

Furthermore, we compare our system with zero-
shot task specific approaches from other authors
when available. For RE, Wang et al. (2021a) pro-
pose a text-to-triple translation method that given
a text and a set of entities returns the existing re-
lations. For EE, Lyu et al. (2021) propose, similar

1More specifically, we re-labeled the MISC instances to O
label.

2Note that EAE can be addressed without an explicit men-
tion of the trigger since we used templates that do not require
the trigger

31

NER RE EE EAE AVG
Model Pre Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 F1

RoBERTa 53.3 54.5 53.9 32.8 75.5 45.7 23.8 63.0 34.5 20.5 60.9 30.7 46.7
RoBERTa* 73.5 76.3 74.9 36.8 76.7 49.8 23.5 60.8 33.9 30.1 63.2 40.8 49.0
DeBERTa 58.0 50.2 53.8 40.3 77.7 53.0 12.9 60.3 21.2 20.0 31.9 24.6 45.1

RoBERTa (+ T opt) 49.3 61.8 ↑ 54.9 56.1 55.8 ↑ 55.9 32.0 52.9 ↑ 39.9 25.8 40.1 ↑ 31.4 ↑ 50.9

RoBERTa* (+ T opt) 71.9 77.8 ↓ 74.8 54.2 59.5 ↑ 56.8 25.1 58.6 ↑ 35.1 31.1 58.3 ↓ 40.6 ↑ 51.9

DeBERTa (+ T opt) 56.3 63.1 ↑ 59.5 66.3 59.7 ↑ 62.8 13.0 55.8 ↓ 21.1 28.9 17.5 ↓ 21.8 ↑ 51.3

Other authors - - - - - 49.2 36.2† 69.1† 47.5† 38.2 35.8 37.0 -

Table 1: Results for NER, RE, EE and EAE experiments results. Three top rows for zero-shot systems with default
parameters. Middle rows for threshold optimized on development. The best scores among our results obtained with
default thresholds are marked in bold. The † indicates non-comparable results due to additional SRL preprocessing.

to us, the use of an entailment model, but in their
case the input sentence is split in clauses according
to the output of a Semantic Role Labelling sys-
tem. In order to compare their results with ours, we
only use the event types, not the trigger informa-
tion3. The results from our system can be seen as
an ablation where we do not make use of any SRL
preprocessing. For EAE, Liu et al. (2020) perform
zero-shot EAE by recasting the task as QA. Some
of these approaches also optimize a threshold on
development data, although it is not always clear.
We show that our toolkit with default threshold ob-
tains excellent results despite being an all-in-one
method.

6 Discussion

Towards post-editing on IE. Our internal evalu-
ation suggest that verbalizing-while-defining work-
flow can have similar impact as post-editing ma-
chine translated text, where human translators ob-
tain quality translations with less effort (Toral et al.,
2018). The idea of this new framework will bring
down the effort required to create larger and higher
quality datasets. Current IE system are subject
to a predefined schema and are useless to classify
new types of entities, relations and events. The
use interface of ZS4IE brings to the annotators the
opportunity of defining the schema interactively
and manually annotating the dataset with the help
of the entailment model. In the future we would
like to use the manual annotations to fine-tune the
TE model, which would further improve the perfor-
mance, as shown by the excellent few-shot results
of Sainz et al. (2021).

Implicit events extraction. During the develop-
ment of the EE verbalizations we found out that the

3Output kindly provided by the authors.

entailment model is prone to predict implicit events
that are implied by other events. For example, an
event type of JUSTICE:JAIL implies an event of
JUSTICE:CONVICT where as the same time it im-
plies event type of JUSTICE:TRIAL-HEARING. As
the entailment models are not specifically trained
for a particular IE task (e.g. EE) they are not limited
to the extraction of explicit mentions of types (e.g.
event types) annotated in the dataset. We think
that this phenomenon might have penalized the
RoBERTa* model on the EE task, as ACE dataset
only contains annotations of explicit events. On the
contrary, rather than a limitation of our approach,
we believe that this is a positive feature that can be
exploited by the users.

7 Conclusions

The ZS4IE toolkit allows a novice user to model
complex IE schemas, curating simple yet effective
templates for a target schema with new types of en-
tities, relations, events, and event arguments. Em-
pirical validation showed that reformulating the IE
tasks as an entailment problem is easy and effective,
as spending only 5-15 minutes per type allows to
achieve very strong zero-shot performance. ZS4IE
brings to the users the opportunity of defining the
desired schema on the fly. In addition it allows
to annotate examples, similar to post editing MT
output. Rather than being a finalized toolkit, we
envision several exciting directions, such as includ-
ing further NLP tasks, allowing the user to select
custom pre-processing steps for candidate genera-
tion and allowing the user to interactively improve
the system annotating examples that are used to
fine-tune the TE model.

More generally, we would like to extend the in-
ference capability of our models, perhaps acquired
from other tasks or schemas (Sainz et al., 2022),

32

in a research avenue where entailment and task
performance improve in tandem.

Acknowledgements

Oscar is funded by a PhD grant from the Basque
Government (PRE_2020_1_0246). This work
is based upon work partially supported via the
IARPA BETTER Program contract No. 2019-
19051600006 (ODNI, IARPA), and by the Basque
Government (IXA excellence research group
IT1343-19).

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333–342, Vancouver,
Canada. Association for Computational Linguistics.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Qing Lyu, Hongming Zhang, Elior Sulem, and Dan
Roth. 2021. Zero-shot event extraction via transfer
learning: Challenges and insights. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 322–332, Online.
Association for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Abiola Obamuyide and Andreas Vlachos. 2018. Zero-
shot relation classification as textual entailment. In
Proceedings of the First Workshop on Fact Extraction
and VERification (FEVER), pages 72–78, Brussels,
Belgium. Association for Computational Linguistics.

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Ed-
ward Hu, Ellie Pavlick, Aaron Steven White, and Ben-
jamin Van Durme. 2018. Towards a unified natural
language inference framework to evaluate sentence
representations. CoRR, abs/1804.08207.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Oscar Sainz, Itziar Gonzalez-Dios, Oier Lopez de La-
calle, Bonan Min, and Agirre Eneko. 2022. Textual
entailment for event argument extraction: Zero- and
few-shot with multi-source learning. In Findings
of the Association for Computational Linguistics:
NAACL-HLT 2022, Online and Seattle, Washington.
Association for Computational Linguistics.

Oscar Sainz, Oier Lopez de Lacalle, Gorka Labaka,
Ander Barrena, and Eneko Agirre. 2021. Label ver-
balization and entailment for effective zero and few-
shot relation extraction. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1199–1212, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

33

Oscar Sainz and German Rigau. 2021.
Ask2Transformers: Zero-shot domain labelling
with pretrained language models. In Proceedings
of the 11th Global Wordnet Conference, pages
44–52, University of South Africa (UNISA). Global
Wordnet Association.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Antonio Toral, Martijn Wieling, and Andy Way. 2018.
Post-editing effort of a novel with statistical and neu-
ral machine translation. Frontiers in Digital Humani-
ties, 5:9.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57:45.

Chenguang Wang, Xiao Liu, Zui Chen, Haoyun Hong,
Jie Tang, and Dawn Song. 2021a. Zero-shot informa-
tion extraction as a unified text-to-triple translation.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1225–1238, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao,
and Hao Ma. 2021b. Entailment as few-shot learner.

Aaron Steven White, Pushpendre Rastogi, Kevin Duh,
and Benjamin Van Durme. 2017. Inference is every-
thing: Recasting semantic resources into a unified
evaluation framework. In Proceedings of the Eighth
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 996–
1005, Taipei, Taiwan. Asian Federation of Natural
Language Processing.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking zero-shot text classification: Datasets, eval-
uation and entailment approach. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3914–3923, Hong Kong,
China. Association for Computational Linguistics.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
35–45, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein.
2021. Adapting language models for zero-shot learn-
ing by meta-tuning on dataset and prompt collections.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2856–2878, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

A User Interface

We present more details on our user interface (UI)
in this section. Our system supports all 4 IE tasks
into a single integrated interface.

Template development. Figure 6a shows the
main template development UI, in which each tab
on the top represents one of the entity, relation,
event, and event argument tasks. The user switch
between tasks by simply clicking on a different
tab (the tabs for the other 3 tasks are shown in
Figure 6b, 6c, and 6d, respectively).

Take the NER task as an example (Figure 6a), it
shows an overview of all entity types along with
the templates defined for each type (e.g., “X is a
person” for the type PERSON, in which “X” is a
placeholder that can be replaced with a noun phrase
“New York City”). If the user clicks on the edit
button (the pen-shaped button), the pop-up window
for adding a new entity type (the right-hand side
figure in Figure 6a) shows up. The user can add a
template by clicking on "+" sign, and then input the
template to the left (the user can repeat this several
times to add more templates). The user can remove
a template by clicking on "-". The user can also
click on the big "+" card to the left to add a new
entity type.

Template development for the relation extraction
task is similar to NER, except for two differences:
first, as shown in Figure 6b (right), we can further
add a set of "allowed type" pairs, that are the set of

34

entity pairs each relation is defined over. For exam-
ple, the “per:date_of_death” relation is only valid
between a pair of PERSON and DATE mentions.
Our UI allows the user to specify the “LeftEntity-
Type” (left entity type) and the “RightEntityType”
(right entity type) for each relation type under "al-
lowed type". These type constraints are show on
the top box for each relation card on the left fig-
ure in Figure 6b (e.g., "PERSON->DATE" under
“per:date_of_death”). Second, a relation involves
a pair of entity mentions. Therefore, each pattern
has two placeholders, “X” and “Y”, which can be
replaced with two entity candidates that are likely
to participate in the relationship.

Template development for the event extraction
task (Figure 6c) is also similar to NER, except
that the template may not contain any trigger. For
example, “Someone died” is a template for the
“Death” event (Figure 6c). This template would
allow the TE approach to classify whether an extent
(e.g., a sentence) expresses a type of event.

Template development for the event argument
extraction task (Figure 6d) is similar to relation ex-
traction, except that the template can include either
two placeholders “X” and “Y” in which “X” is an
event trigger and “Y” is an event argument candi-
date filler (an entity), or only one placeholder “Y”
which is the event argument candidate filler. The
later would require the template to implicitly de-
scribes the event type as well (for example, “Some-
one died in Y” for the LOCATION event argument
role in Figure 6d).

Template validation. We developed an interac-
tive workflow to allow the user to quickly develop
templates and validate their effectiveness in our TE-
based framework. To support this workflow, our UI
allows the user to run inference over any free text
supplied by the user herself/himself. For simplicity,
we omit the UI where we allow the user type in free
text. We show the UI that displays the extraction
output on the free text, that also allows the user to
label the correcness of the extractions. Based on
those labeled examples, the UI also automatically
calculate a few metrics to help the user to find the
effectiveness of the templates curated so far.

Figure 7 shows the UI for displaying NER ex-
traction outputs (left) and automatically calculated
metrics (right). Taken the user-supplied sentence
“John Smith, an executive at XYZ Corp., died in
Florida on Sunday” as input, the UI on the left-hand
side shows the extracted named entities. It shows

extractions such as “John Smith is a/an PERSON”,
“Sunday is a/an DATE”, and so on. To provide ra-
tionale for each extraction, it displays a rank list of
possible entity types, the template led to that type,
along with the entailment probability produced by
the pre-trained TE model. The user can click on
"+" and "-" sign next to each extraction to label its
correctness. In Figure 7, all extractions are green
(labeled by the user as correct) except that “Florida
is a/an CITY” is in red (labeled as incorrect by the
user). Based on these user-labeled extractions, the
system calculated a number of metrics to facilitate
template validation: the total number of extracted
named entities (shown under “total”), the number
of correct and incorrect extractions under “correct”
and “incorrect”, respectively (the accuracy number
is also shown in the parenthesis next to “correct”)
for the overall task, each type, and each pattern.
The right-hand side UI in Figure 7 displays these
metrics, and allows the user to sort patterns/types
by each of the metric. The user can quickly iden-
tify some templates are low-precision (e.g., “X is a
location” for the entity type CITY), and can revise
them to improve precision.

Figure 8a, 8b, and 8c shows the UI for display-
ing extraction results for the relation extraction,
event extraction, and event argument extraction,
respectively. Similar to the NER task. Similarly,
our system also includes metric board (the met-
rics above) for the other 3 IE tasks. To view the
metric boards for these tasks, please refer to our
demonstration video.

35

(a) NER

(b) Relation extraction

(c) Event extraction

(d) Event argument extraction

Figure 6: The UI for developing templates for the 4 IE tasks. For each task, we show the overall UI on the left, and
the pop-up window for adding a new entity type PERSON on the right.

36

Figure 7: The UI for displaying NER extraction outputs (left) and automatically calculated metrics (right). The
left-hand side shows the named entities extracted from an user-input sentence (shown on the top). The user can click
on "+" and "-" sign next to each extraction to label its correctness. The right-hand side shows the total number of
extracted named entities (total), the number of correct and incorrect extractions (the accuracy number is also shown
in the parenthesis next to “correct”) for the overall task, each type, and each pattern. These metrics are calculated
based on the set of user labels.

37

(a) Relation extraction

(b) Event extraction

(c) Event argument extraction

Figure 8: The UI for displaying extractions for relation
extraction, event extraction, and event argument extrac-
tion, respectively. The user an click on the "+" or "-"
sign next to each extraction to label the extraction as
correct or incorrect.

38

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 39 - 45

July 10-15, 2022 ©2022 Association for Computational Linguistics

Flowstorm: Open-Source Platform with Hybrid Dialogue Architecture
Jan Pichl,12 Petr Marek, 12 Jakub Konrád 12 Petr Lorenc 12

Onřej Kobza1 Tomáš Zajíček 2 Jan Šedivý 32

1 Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
2 PromethistAI, Prague, Czech Republic

3 CIIRC, Czech Technical University, Prague, Czech Republic
{pichljan,marekp17,konrajak,lorenpe2,kobzaond}@fel.cvut.cz,

{tomas.zajicek,jan.sedivy}@promethist.ai

Abstract

This paper presents a conversational AI plat-
form called Flowstorm. Flowstorm is an open-
source SaaS project suitable for creating, run-
ning, and analyzing conversational applications.
Thanks to the fast and fully automated build
process, the dialogues created within the plat-
form can be executed in seconds. Furthermore,
we propose a novel dialogue architecture that
uses a combination of tree structures with gen-
erative models. The tree structures are also
used for training NLU models suitable for spe-
cific dialogue scenarios. However, the gener-
ative models are globally used across applica-
tions and extend the functionality of the dia-
logue trees. Moreover, the platform function-
ality benefits from out-of-the-box components,
such as the one responsible for extracting data
from utterances or working with crawled data.
Additionally, it can be extended using a custom
code directly in the platform. One of the essen-
tial features of the platform is the possibility
to reuse the created assets across applications.
There is a library of prepared assets where each
developer can contribute. All of the features are
available through a user-friendly visual editor.

1 Introduction

With the increasing popularity of conversational
systems in various areas, there is an increasing de-
mand for human-like aspects of the systems. The
human-like aspects cover not only the content of
the conversation but also the conversational style
and tone of voice. Moreover, many conversational
constructs are applicable to various situations and
are therefore suitable for sharing and reusing. We
introduce the Flowstorm platform1, where conver-
sational designers can easily design an application
using shared assets created by a community, create
an application on their own, or use a combination
of both approaches. The platform does not require
any installation as it can be used as a web app.

1https://app.flowstorm.ai

However, advanced developers can use the open-
source code2 to run and modify their own version
of the platform.

Our platform works with a novel dialogue archi-
tecture we have proposed. It uses a combination of
dialogue trees/graphs (scenarios) specific to a do-
main (or only a part of the domain) and generative
models handling the aspects of the conversation
that are not domain-specific. The Flowstorm plat-
form targets users with limited coding skills and
conversational AI knowledge as well as the experts
in the area who can easily extend an out-of-the-
box functionality with custom logic. Using the
provided tools, documentation3, and library of the
shared assets, one can create a dialogue applica-
tion in minutes. The Alquist (Konrád et al., 2021)
socialbot, which was the first place winner in the
Alexa Prize Socialbot Grand Challenge 4 (Hu et al.,
2021), was created using the Flowstorm platform,
proving the platform to be suitable even for such a
complex system.

Flowstorm platform supports English, Czech,
German and Spanish languages.

2 Related Work

There are two categories of related software: open-
source frameworks or libraries and online plat-
forms. Rasa (Bocklisch et al., 2017) and Deep-
Pavlov (Burtsev et al., 2018) are the most famous
representatives of the framework category. They
provide the developer with a set of programmatic
and declarative interfaces for defining and train-
ing natural language understanding (NLU) and dia-
logue management (DM) models. They also allow
creating a pipeline of the components where the
developer can create a sequence of models or com-
ponents for utterance processing. Both libraries
require a local installation and, in addition, inte-

2https://gitlab.com/promethistai/
flowstorm

3https://docs.flowstorm.ai/

39

grating either of them with the rest of the conversa-
tional application requires considerable effort.

Alexa Skills Kit (ASK)4, Google Dialogflow5,
and Voiceflow6 are representatives of the category
of online platforms. ASK and Dialogflow offer an
online application for the definition of NLU mod-
els (intents and slots/entities). For dialogue man-
agement, ASK introduced Alexa Conversations
(Acharya et al., 2021) allowing the developer to
specify the conversation flow using sample conver-
sations. Dialogflow CX (a part of Dialogflow pro-
viding a new way of working with conversational
agents) offers a visual view of the conversation
agents to see the possible flows of the conversa-
tion. Voiceflow uses a visual dialogue editor as an
approach to building a conversational application.
Dialogue blocks can be connected via transitions to
create a flow of blocks where each block represents
a specific functionality such as keyword matching
or API calls.

The comparison of the key aspects of the de-
scribed libraries and platforms is shown in Table 1.

Flow
sto

rm

Rasa Dee
pP

av
lov

Amaz
on

ASK

Goo
gle

Dial
og

flow

Voic
efl

ow

SaaS ✓ ✓ ✓ ✓
Open-source ✓ ✓ ✓ p
Visual editor ✓ p p
Custom code ✓ ✓
ML-based NLU ✓ ✓ ✓ ✓ ✓ ✓
Sub-dialogues ✓
Sharing assets ✓ ✓
Built-in NRG ✓
Analytic tools ✓ ✓ ✓ ✓

Table 1: Comparison of frameworks and online conver-
sational platforms, p means partial functionality.

3 Architecture

The Flowstorm platform combines two sets of
functions—design and analytics. The design func-
tions allow users to create individual sub-dialogues,
train entity models, write shared code, and com-
bine the sub-dialogues into complex conversational
applications. Each of the created assets can then be
shared with the community. The analytic functions

4https://developer.amazon.com/alexa/
alexa-skills-kit

5https://cloud.google.com/dialogflow
6https://www.voiceflow.com/

can be used to inspect the applications’ traffic and
show basic metrics such as session transcripts or
visualizations of specific parameters.

The following sections describe a novel conver-
sational system architecture. The novel aspect con-
sists of a combination of manually created sub-
dialogues (that can be easily combined into a com-
plex dialogue structure) and neural generative mod-
els. First, we describe the blocks essential for cre-
ating an application, and then we describe each
component used in runtime in detail.

3.1 Conversational Application

Conversational application is a set of dialogue trees
we call sub-dialogues. Each sub-dialogue is fo-
cused on a small subset of a domain (e.g., in the
movie domain, one sub-dialogue can be focused
on a user’s favorite movie). Each application has
at least one sub-dialogue, but typically consists of
several sub-dialogues. The sub-dialogue which is
triggered when the application is launched is called
“main”. The other sub-dialogues are triggered when
a specific situation occurs during the conversation.
It depends on the specific design of the applica-
tion, and it is described in detail in the following
subsection.

Additionally, each application has configurable
parameters such as language, Skimmer rules, or
voice.

3.2 Sub-dialogue

Sub-dialogue is a graph structure consisting of con-
nected nodes representing the flow of the conver-
sation. The key node types are described in the
following list. The basic structure and node types
are shown in Figure 1.

Enter – Entry point of the sub-dialogue. Each
sub-dialogue must have exactly one Enter.

Speech – Speech node contains one or more nat-
ural language responses that are presented to a user.
If there are multiple responses, one is randomly
selected. It can also contain slots that are eventu-
ally filled with variables based on the context. The
responses can be customized using Kotlin-based
DSL language.

User Input – Point in a conversation where the
bot waits for the user utterance. It is typically
connected to multiple intent nodes. Each User
Input node has its own underlying intent recog-
nition model trained separately. It has as many
intent classes as there are intent nodes connected

40

Figure 1: Nodes connected to the sub-dialogue struc-
ture. The names of the node types are shown in the
corresponding boxes in the picture.

to it. The default behavior can be customized using
Kotlin-based DSL language.

(Global) Intent – Intent node contains examples
of the users’ possible utterances which serve as
training data for the intent recognition model. Each
intent represents a single class in the intent recog-
nition model. There are two types of intent nodes:
contextual Intent and Global Intent. Contextual
intents can be recognized only at a specific point
of the conversation—when the conversation flow
reaches the User Input node they are connected to.
Global Intents, however, can be recognized at any
point of the conversation.

Function – Function node contains code written
in the Kotlin language (JetBrains, 2011). The code
can contain arbitrary logic (usually working with
attributes — see the attributes subsection). The
function returns the transition to the next dialogue
node. It is suitable for branching the dialogue based
on the attribute values, API results, etc.

(Global) Action – Actions represent specific sit-
uations in the conversation flow. There are several
predefined situations: Silence, Error and Out of
domain. Silence action is triggered when no speech
is recognized. Error action is triggered when the
logic written in the Function nodes fails (connec-
tion errors or bad design). Out of domain action
represents the utterance that does not belong to any
of the intent classes. This will be described in detail
in the following sections.

Sub-dialogue – Sub-dialogue node introduces
the ability to reference another sub-dialogue. When

the conversation flow reaches this node, it triggers
the referenced sub-dialogue, processing its logic
from the Enter node to the Exit.

Exit – Exit node represents the end of the sub-
dialogue flow. If the sub-dialogue is the “main”
dialogue, the session is ended. If it is a lower-level
sub-dialogue, the conversation flow jumps to the
parent sub-dialogue (i.e., the one where the current
sub-dialogue was referenced).

Init code – Each sub-dialogue has a declarative
code part that typically serves as a place to define at-
tributes (see below) and methods that can be called
from the function nodes. As the code is written in
the Kotlin language, the type control is done in the
build phase, which lowers runtime errors.

Attributes – There are four scopes of the at-
tributes that can be defined in the Init code. The
attribute stores values that can be used to modify
the conversation flow, or they can be presented di-
rectly as part of a response. Each attribute must
have its default value which is used to initialize the
attribute based on its scope.

1. Turn – the value is reset to default at the be-
ginning of each turn.

2. Session – the value is reset to default at the
beginning of each session.

3. User – the default value is used for each new
user. Once the value of a user attribute is set,
it is valid for all sessions of the user.

4. Community – the default value is used for each
community namespace. Once the value of a
community attribute is set, it is valid for all
users using the same community namespace.

4 System Components

The Flowstorm conversational platform consists of
several components crucial for processing the user
utterance and driving the dialogue. First, NLU gath-
ers the information required by the DM. Afterward,
DM traverses the corresponding sub-dialogue tree
structure based on the NLU output.

4.1 Natural Language Understanding
The NLU consists of the main components—entity
recognition and intent recognition—that are com-
monly used in conversational systems. Addition-
ally, the out-of-domain detection enhances the in-
tent recognition, allowing the system to handle a
situation that was not expected during dialogue
design.

41

4.1.1 Entity Recognition
There are two modules used for Entity Recognition.
Regex-based tool Duckling7 and a sequence label-
ing neural network. The neural network uses the
Bi-LSTM-CRF architecture (Huang et al., 2015).
The architecture is simple enough to provide rea-
sonable response time when run on CPU. Duckling
is used to recognize such entities that have a spe-
cific structure and can be easily described using
regular expressions (date, time, numbers, URLs,
amount of money, etc.). Additionally, it parses (not
only) the date and time values from natural lan-
guage representation into a structured format. We
enhanced the Duckling component with rules for
numbers and time values in the Czech language.

During the process of dialogue creation, one
can define custom entity types that can be
recognized in the conversation. The enti-
ties are defined using example sentences where
they can occur, e.g. My favorite movie
is [Matrix]{movie}, meaning the word
Matrix is an entity with type movie. These ex-
amples are used as training data for the sequence
labeling model.

4.1.2 Entity Masking
The recognized entities are masked out in the
user utterance prior to the intent recognition
phase. This step allows the intent recognition
model to focus only on the types of entities
rather than the actual values. The intent recog-
nition module receives, for example, the sentence
My favorite movie is {movie} instead
of My favorite movie is Matrix. Only
the entity types included in the intent examples (in
the intent nodes) are masked out.

4.1.3 Intent Recognition
A key part of each sub-dialogue are the intent nodes.
Each sub-dialogue may contain multiple global in-
tents and multiple user input nodes with various
numbers of local intents connected to it. Let the
G = (g1, . . . , gn) be a set of global intents of the
sub-dialogue S and let the U = (u1, . . . , um) be
the set of User Input nodes where each node ui
has its own set of local intents Li = (l1, . . . , lki).
There is one model trained for each ui ∈ U that
classifies the user utterance into |Li| classes. Addi-
tionally, there is one extra model trained for global
intents which has |G| classes.

7https://github.com/facebook/duckling

When the conversation flow reaches the User
Input node, the system starts listening to the user
(or waits for a text input). Then the actual intent
recognition process consists of two steps:

First, the user utterance is embedded using the
Universal Sentence Encoder (Cer et al., 2018) and
the embedding is compared with the training exam-
ples from both global and local intent classes. This
step only decides whether the final intent will be se-
lected from local intents, global intents or whether
the utterance is out of domain given the context of
the current User Input node (see Subsection Out
of Domain Detection and Figure 2). Note that not
only global intents from the current sub-dialogue
are considered but also the global intents from all
parent sub-dialogues which are on the path from
the current sub-dialogue to the main dialogue.

Second, the corresponding model (either global
intent model or a model corresponding to the cur-
rent User Input node) is selected. This model clas-
sifies the utterance into the final class.

The intent recognition experiments and a com-
parison with other NLU tools is described in the
paper by Lorenc et al. (2021).

4.1.4 Out of Domain Detection
During each dialogue turn, the utterance is classi-
fied into one of the intent classes. However, the
utterance does not have to correspond to either of
the classes. We call such utterances out of domain
(OOD). Whether the utterance is OOD or not de-
pends purely on the sample utterances in the global
intents and the corresponding local intent classes
given in the current User Input node. The OOD is
triggered using the confidences of the correspond-
ing intent classes and the empirically estimated
threshold. When the OOD is recognized, the dia-
logue flow continues with a local OOD action (if
connected to the current User input node) or with a
global OOD action.

4.2 Skimmer

The Skimmer is a component that extracts relevant
data from the user utterance and stores it for later
usage. It is done on a turn basis regardless of the
dialogue context. An example of such informa-
tion is: the information about the user having a
brother mentioned “by the way” in the conversa-
tion (e.g., in a movie-related conversation, the user
may mention “I went to the cinema with my brother
yesterday.”). The component skims through each
utterance and saves the values into the attributes.

42

Intent 2Intent 1 Intent 3

Local intents

Logistic regressionLogistic regression

Cosine

G.Intent1 G.Intent2

Global intents

OOD

Utterance

Figure 2: Classification algorithm for intent and OOD
detection. The utterance is first classified by a cosine
similarity into a class of local intents or a class of global
intents. Next, the corresponding logistic regression
makes the final intent classification. Additionally, co-
sine similarity can predict the OOD class if the similarity
score falls below the threshold.

The dialogue creator can then use the information
in the conversation. The Skimmer is defined by a
set of rules containing the following attributes:

• Regular expression - a set of patterns which
must be contained in the utterance.

• Attribute name - the name of the attribute
where the value will be stored.

• Value - the value stored in the attribute, typ-
ically true, false, or a matched group of the
regular expression.

This component is inspired by a similar function-
ality used in the Alquist socialbot (Konrád et al.,
2021).

4.3 Dialogue Management

Dialogue management (DM) of a conversational
application created in Flowstorm is divided into
two stages: Sub-dialogue DM and Dialogue se-
lection. The former stage operates on the graph
structure of the corresponding sub-dialogue. The
DM simply follows the directed edges beginning
in the Start node. There are two types of nodes that
may have multiple outgoing edges: User Inputs and
Functions. In the User Input nodes, the next edge
is selected using Intent Recognition results, i.e., the
edge leading to the most probable intent or global
intent is selected. The Function nodes contain code
that returns one of the connected edges.

4.3.1 Dialogue selector
The dialogue selector stage is triggered whenever
a previous sub-dialogue is ended, and there is not
a direct transition to a different one. The overall

goal is to select a sub-dialogue that is related to
the context of the conversation. The most suitable
sub-dialogue is selected from a list of eligible sub-
dialogues, which is defined by the developer who
creates the dialogue application. Each sub-dialogue
has several properties that are considered during
the process of the dialogue selection.

• Label – one or more labels can be assigned to
each sub-dialogue.

• Entity – a sub-dialogue can use the informa-
tion about an entity and work with the entity
attributes. E.g., a sub-dialogue works with
the information about a person, including the
information about their birth date, occupation,
etc. In that case, the sub-dialogue is tagged
with the entity type Person.

• Starting conditions is a custom logic that tells
whether the corresponding sub-dialogue can
be selected given the current context. E.g.,
in the case of the sub-dialogue discussing
the user’s favorite movie, it needs to check
whether the information about the favorite
movie is already stored. Additionally, most of
the sub-dialogue can be triggered only once
per session. Hence, the starting condition typ-
ically checks that as well.

The intuition behind the dialogue selector is to
choose a dialogue whose starting condition is met,
and its label and entity sets have the biggest over-
lap with the label and entity sets currently being
discussed in the session. Formally, let D be a set
of eligible sub-dialogues, S be the current session.
label(d, S) returns the overlapping labels between
the dialogue d and session S, and, analogically,
entity(d, S) returns overlapping entities, and C is
a set of starting conditions. Then the dialogue se-
lector selects a sub-dialogue as follows:

argmax
d∈D

| label(d, S) ∪ entity(d, S)|

s.t. ∀ condi ∈ C : condi(d, S)

4.4 Neural Response Generation
All the principles described in the previous sections
are suitable for creating high-quality content for
various scenarios with maximum control over the
conversation flow. A natural language conversation
can, however, easily deviate from these scenarios.
The Flowstorm platform comes with a novel ap-
proach using a combination of manually created

43

content and generated content for this type of sit-
uation. During the dialogue creation process, the
user may plug the generated response into any part
of the sub-dialogue.

The platform currently uses a GPT-2-based (Rad-
ford et al., 2019) architecture for generating re-
sponses. The model takes a sequence of user ut-
terances and bot responses as input. Additionally,
the input contains the information about the dia-
logue act of the desired response. Since the model
expects only natural language as the input, it is
suitable for situations where the next response can-
not be determined using only the tree-like dialogue
structure.

Figure 3: Two basic NRG usage scenarios. The upper
part uses NRG response when OOD is detected. NRG
generates a statement and a question, and then the sys-
tem waits for the user’s utterance. Afterward, another
NRG statement is used, and the flow is returned to the
dialogue graph. The lower part illustrates the scenario
where the crawled text or information from a DB is
used. A single NRG generated question follows it. The
next turn starts with the NRG statement, and the flow is
returned to the dialogue graph.

A typical use case for a generative model is to
use it whenever an out-of-domain utterance is rec-
ognized. Since the dialogue designer cannot eas-
ily predict all out-of-domain variants and design a
proper reaction, the generative approach is a suit-
able solution as it operates purely with the dialogue
history.

In Figure 3, we show two typical use cases of
the generative model—generating response after an
out-of-domain utterance is detected and asking ad-
ditional questions based on free text (news article,
fun-fact, etc.).

5 Analytics

The set of analytic tools allows developers to in-
spect the traffic on their conversational applications.
There are tools for inspecting session transcripts,
community and user attributes, and creating metric
visualizations. The Session transcripts contains a
list of the dialogue turns of each session with all
the annotations and log messages. One can easily

watch the NLU results, identify a weak part of the
corresponding application, inspect the Automatic
Speech Recognition (ASR) hypotheses, duration of
each turn, and session attributes stored during the
conversation. The community and user attributes
can be viewed in individual tables to watch the
values gathered during conversations.

The metric visualization tool allows creating
plots of values defined as a metric. One can easily
filter the specific values, time ranges, applications,
users and specify the granularity of the visualiza-
tion. An example visualization is shown in Figure
4.

Figure 4: Example metric visualization. The columns
show the count of sessions per client (Android, iOS,
web and total).

6 Conclusion

The open-source platform Flowstorm allows users
to easily create conversational applications with
low effort while allowing them to modify each part
with custom functionality. Developers can visually
design an application and extend it with custom
code thanks to an easy-to-use interface. A library of
shared assets contains common dialogue structures
that can be used in various use cases. A novel
hybrid architecture allows the system to handle
unexpected utterances and make the conversation
more robust. Analytic tools show the conversation
transcripts, attributes, and metrics directly in the
Flowstorm app. Based on the analytic data, the
developer can quickly identify the weak parts of the
application and fix them by modifying the dialogue
structure or intent examples.

The Flowstorm platform is in active develop-
ment, and we are primarily focusing on the gener-
ative part of the dialogue architecture to make it
more suitable for various dialogue situations.

44

References
Anish Acharya, Suranjit Adhikari, Sanchit Agarwal,

Vincent Auvray, Nehal Belgamwar, Arijit Biswas,
Shubhra Chandra, Tagyoung Chung, Maryam Fazel-
Zarandi, Raefer Gabriel, et al. 2021. Alexa con-
versations: An extensible data-driven approach for
building task-oriented dialogue systems. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies: Demon-
strations, pages 125–132, Online. Association for
Computational Linguistics.

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open source language
understanding and dialogue management.

Mikhail Burtsev, Alexander Seliverstov, Rafael
Airapetyan, Mikhail Arkhipov, Dilyara Baymurz-
ina, Nickolay Bushkov, Olga Gureenkova, Taras
Khakhulin, Yurii Kuratov, Denis Kuznetsov, et al.
2018. Deeppavlov: Open-source library for dia-
logue systems. In Proceedings of ACL 2018, System
Demonstrations, pages 122–127.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Shui Hu, Yang Liu, Anna Gottardi, Behnam Hedayatnia,
Anju Khatri, Anjali Chadha, Qinlang Chen, Pankaj
Rajan, Ali Binici, et al. 2021. Further advances in
open domain dialog systems in the fourth alexa prize
socialbot grand challenge. In 4th Proceedings of
Alexa Prize (Alexa Prize 2021).

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

JetBrains. 2011. Kotlin programming language.
https://kotlinlang.org/. Accessed on
14.09.2021.

Jakub Konrád, Jan Pichl, Petr Marek, Petr Lorenc,
Van Duy Ta, Ondřej Kobza, Lenka Hýlová, and Jan
Šedivý. 2021. Alquist 4.0: Towards social intelli-
gence using generative models and dialogue person-
alization. In 4th Proceedings of Alexa Prize (Alexa
Prize 2021).

Petr Lorenc, Petr Marek, Jan Pichl, Jakub Konrád, and
Jan Šedivý. 2021. Benchmark of public intent recog-
nition services. Language Resources and Evaluation,
pages 1–19.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

45

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 46 - 53

July 10-15, 2022 ©2022 Association for Computational Linguistics

Contrastive Explanations of Text Classifiers as a Service

Lorenzo Malandri1,3, Fabio Mercorio1,3, Mario Mezzanzanica1,3, Navid Nobani2, Andrea Seveso2,3

1Dept of Statistics and Quantitative Methods, University of Milano Bicocca, Italy
2Dept of Informatics, Systems and Communication, University of Milano Bicocca, Italy

3CRISP Research Centre crispresearch.eu, University of Milano Bicocca, Italy

Abstract

The recent growth of black-box machine-
learning methods in data analysis has increased
the demand for explanation methods and tools
to understand their behaviour and assist human-
ML model cooperation. In this paper, we
demonstrate ContrXT , a novel approach that
uses natural language explanations to help
users to comprehend how a back-box model
works. ContrXT provides time contrastive (t-
contrast) explanations by computing the differ-
ences in the classification logic of two different
trained models and then reasoning on their sym-
bolic representations through Binary Decision
Diagrams. ContrXT is publicly available at
ContrXT.ai as a python pip package.

1 Introduction and Contribution

Consider a text classifier ψ1, retrained with new
data and resulting into ψ2. The underlying learning
function of the newly trained model might lead
to outcomes considered as contradictory by the
end users when compared with the previous ones,
as the system does not explain why the logic is
changed. Hence, such a user might wonder "why
do the criteria used by ψ1 result in class c, but ψ2

does not classify on c anymore?". This is posed as
a T-contrast question, namely, "Why does object A
have property P at time ti, but property Q at time
tj?" (Miller, 2019; Van Bouwel and Weber, 2002).

1.1 Contribution
In this paper we demonstrate ContrXT as a
service, built on top of the approach we pre-
sented in (Malandri et al., 2022). ContrXT
(Contrastive eXplainer for Text classifier) is a tool
that computes model-agnostic global T-contrast
explanations from any black box text classifiers.
ContrXT, as a novelty, (i) encodes the differences
in the classification criteria over multiple training
phases through symbolic reasoning, and (ii) esti-
mates to what extent the retrained model is con-

gruent with the past. ContrXT is available as an
off-the-shelf Python tool on Github, a pip package,
and as a service through REST-API.1 We present a
system to deliver ContrXT as a service, together
with detailed insights and metrics. Among them,
we introduce an explanation of how - and to what
extent - the single classification rules differ through
time, along with examples of instances with the the
rules used by classifiers highlighted in the text.

To date, there is no work (other than ContrXT)
that the authors are aware of that computes T-
contrast explanation globally, as clarified by the
most recent state-of-the-art surveys on XAI for
supervised ML (see (Burkart and Huber, 2021;
Mueller et al., 2019)).

2 ContrXT in a nutshell

ContrXT aims at explaining how a classifier
changes its predictions through time. Below
we describe the five building blocks composing
ContrXT, as in Fig.1: (A) the two text classifiers,
(B) their post-hoc interpretation using global, rule-
based surrogate models, (C) the Trace step, (D) the
eXplain step and, finally, (E) the generation of the
final explanations through indicators and Natural
Language Explanations (NLE).

(A) Text classifiers. ContrXT takes as input
two text classifiers ψ1,2 on the same target class
set C, and the corresponding training datasets
D1,2.As clarified in (Sebastiani, 2002), classifying
Di under C consists of |C| independent problems
of classifying each d ∈ Di under a class ci for
i = 1, . . . , |C|. Hence, a classifier for ci is a func-
tion ψ : D × C → B approximating an unknown
target function ψ̇.
Output: Two black-box classifiers on the same
class set.

(B) Post-hoc interpretation. Following the
study about ML post-hoc explanation methods

1http://ContrXT.ai

46

of (Burkart and Huber, 2021), one of the ap-
proaches consists in explaining a black box model
globally by approximating it to a suitable inter-
pretable model (i.e., the surrogate) solving the fol-
lowing:

pg∗ = argmax
pg∈I

1

X

∑

x∈X
S(pg(x), ψ(x))

s.t.Ω(pg) ≤ Γ

(1)

where I represents a set of possible white box
models to be chosen as surrogates, and S is the
fidelity of the surrogate pg, that measures how well
it fits the predictions of the black box model ψ. In
addition to (Burkart and Huber, 2021), ContrXT
adds Ω(pg) ≤ Γ as a constraint to Eq. 1 to keep
the surrogate simple enough to be understandable
while maximising the fidelity score. The constraint
measures the complexity of the model whilst Γ
is a bounding parameter. In the global case, the
surrogate model pg approximates ψ over the whole
training setX taken fromD which is representative
of the distribution of the predictions of ψ.2

Output: Two white-box, rule based surrogates p1,2
of ψ1,2

08/11/21, 11:42 Senza nome.drawio

1/1

Black-box
Classifier

Generate
Global

Surrogate

Generate
Global

Surrogate

Compute
t-contrast

explanations

Indicators

BDDs

Data Process I/O Object

Step 1: Trace

BDD
encoding

 over

BDD
encoding

 over

Black-box
Classifier

Natural Language
Explanations

(via BDD2Text)

Step 2: Explain

Figure 1: Overview of ContrXT, taken from (Malandri
et al., 2022)

(C) Trace. This step aims at tracing the logic of the
models p1,2 while working on a datasets D1,2. It
generates the classifiers’ patterns through a global
interpretable predictor (i.e., the surrogate), then
it is encoded into the corresponding Binary Deci-
sion Diagram (BDD) (Bryant, 1986). A BDD is
a rooted, directed acyclic graph with one or two
terminal nodes of out-degree zero, labelled 0 or 1.
BDDs are usually reduced to canonical form, which
means that given an identical ordering of input vari-
ables, equivalent Boolean functions will always
reduce to the same BDD. Reduced ordered BDDs
allow ContrXT to (i) compute compact represen-
tations of Boolean expressions, (ii) apply efficient

2in case the surrogate is a decision tree, Ω(pg) might be
the number of leaf nodes whilst it could be the number of
non-zero coefficients in case of a logistic regression

algorithms for performing all kinds of logical op-
erations, and (iii) guarantee that for any function
f : Bn → B there is one BDD representing it,
testing whether it is true or false in constant time.
Output: two BDDs b1,2 representing the logic of
pg1,2.

(D) eXplain. This step takes as input the BDDs
b1,2, that formalise the logic of the surrogates pg1,2,
and computes the BDDs encoding the differences
between the two. Step D manipulates the BDDs
generated from the Trace step to explain how ψ1

and ψ2 differ (i) quantitatively by calculating the
distance metric defined below (aka, Indicators),
and (ii) qualitatively by generating the BDDs of the
added/deleted patterns over multiple datasets Dti .
As this is the key idea of ContrXT, we formalise
the following.

Definition: T-contrast explanations using BDDs
Given f1 : Bn → B and f2 : Bm → B we define:

f1 = f2 = ¬f1 ∧ f2 (2) f1 < f2 = f1 ∧ ¬f2 (3)

The goal of the operator < (=) is to obtain a
boolean formula that is true iff a variables assign-
ment that satisfies (falsifies) f1 is falsified (satis-
fied) in f2 given f1 (f2). Let b1 and b2 be two
BDDs generated from f1 and f2 respectively, we
synthesise the following BDDs:

bb1,b2= = b1 = b2 (4) bb1,b2< = b1 < b2 (5)

where b= (b<) is the BDD that encodes the reduced
ordered classification paths that are falsified (satis-
fied) by b1 and satisfied (falsified) by b2. We also
denote as
• var(b) the variables of b;
• sat(bb1,b2=) all the true (satisfied) paths of bb1,b2=

removing var(b1) \ var(b2);
• sat(bb1,b2<) all the true (satisfied) paths of bb1,b2<

removing var(b2) \ var(b1).
Both bb1,b2= and bb1,b2< encode the differences in

the logic used by b1 and b2 in terms of feature
presence (i.e., classification paths). Indeed, bb1,b2=
(bb1,b2<) can be queried to answer a T-contrast ques-
tion like "Why did a path on b1 have a true (false)
value, but now it is false (true) in b2?". Clearly,
features discarded (added) by b2 are removed from
paths of bb1,b2= (bb1,b2<) as they are used by ψ1.

Output: Two BDDs bb1,b2= and bb1,b2< encoding the
rules used by b2 but not by b1 and vice-versa.

47

(E) Generation of final explanations: Starting
from bb1,b2= and bb1,b2< , the final explanations are
provided through a set of indicators and Natural
Language Explanations.

Indicators estimate the differences between the
classification paths of the two BDDs through the
Add and Del values (see Eq. 6 and 7). To com-
pare add and del across classes, we compute the
Add_Global (Del_Global) as the number of paths
to true in b= (b<) over the corresponding maximum
among all the bc= (bc<) with c ∈ C.

In the case of a multiclass classifier, as for
20newsgroup, ContrXT suggests focusing on
classes that changed more with respect the indi-
cators distribution.

Add(bb1,b2=) =
|sat(bb1,b2=)|

|sat(bb1,b2=)|+ |sat(bb1,b2<)|
(6)

Del(bb1,b2<) =
|sat(bb1,b2<)|

|sat(bb1,b2=)|+ |sat(bb1,b2<)|
(7)

Natural Language Explanations (NLE) exhibits the
added/deleted paths derived from b= and b< to final
users through natural language. ContrXT uses the
last four steps of six NLG tasks described by (Gatt
and Krahmer, 2018), responsible for microplanning
and realisation. In our case, the structured output of
BDDs obviates the necessity of document planning
which is covered by the first two steps.

The explanation is composed of two main parts,
corresponding to Add and Del paths. Content of
each part is generated by parsing the BDDs, ex-
tracting features, aggregating them using Frequent
Itemsets technique (Rajaraman and Ullman, 2011)
to reduce the redundancy, inserting the related parts
in the predefined sentences (Rosenthal et al., 2016).

2.1 ContrXT as a Service

ContrXT has been implemented through Python
as a pip package, using scikit-learn for generating
surrogates and pyEDA package for synthesising
BDDs. It takes as input the training data and the
predicted labels by the classifier.

The user can specify (i) the coverage of the
dataset to be used (default: 100%), otherwise a
sampling procedure is used; (ii) to obtain explana-
tions either for the multiclass case (default: one
class vs all) or the two-class case (class vs class,
by restricting the surrogate generation to those
classes); (iii) the Γ value as a measure of com-
plexity of the surrogate.

ContrXT can be used either as a pip Python
package3 or as a service through REST API. In
the former case, ContrXT can be easily installed
via pip install contrxt. Then, it can be
executed as in Code 1. A python notebook ready
to use is available on the Google Colab platform.4

1 from contrxt.contrxt import ContrXT
2 exp = ContrXT(
3 X_t1, predicted_labels_t1,
4 X_t2, predicted_labels_t2,
5 save_path=’results/’,
6 hyperparameters_selection=True,
7)
8 exp.run_trace()
9 exp.run_explain()

10 exp.explain.BDD2Text()

Code 1: Invoke ContrXT with few lines of code.

The API is written using Python and the Flask li-
brary (Grinberg, 2018) and can be invoked using a
few lines code shown in Code 3. Users are required
to upload two csv files for time 1 and 2 Each csv
is expected to have two columns respectively for
corpus (texts to be classified) and predicted (the
outcome of the classifier) for which the schema is
shown in the following JSON.

1 schema = {
2 "type": "csv",
3 "columns": {
4 "corpus": {"type": "string"},
5 "predicted": {"type": "string"},
6 },
7 }

Code 2: API schema

A load testing has been performed using lo-
cust.io to measure the quality of service of the
ContrXT’s API, adding a virtual user every 10
seconds, executing the whole ContrXT process
for the 20newsgroups dataset for each. Time
needed to upload/download datasets and to gen-
erate PDF versions of the BDDs are not consid-
ered. We followed (Menascé, 2002) to determine
the number of users/requests our API web server
can tolerate in order to guarantee an acceptable re-
sponse time (set to 5 minutes) while increasing the
throughput, i.e., requests per second.

Our architecture reached a throughput of 2.55
users per second, as seen in Fig. 2. Beyond this
value, the API service keeps working, putting addi-
tional requests into a queue.

1 import requests, io
2 from zipfile import ZipFile

3https://pypi.org/project/contrxt/
4https://tinyurl.com/ContrXT-pyn

48

Figure 2: Load testing provided by Locust.io: MRT (median response time, green), Request per Seconds (throughput,
green) and the number of failures (requests reached the 5 min timeout, red).

3 files = {
4 ’time_1’: open(t1_csv_path, ’rb’),
5 ’time_2’: open(t2_csv_path, ’rb’)
6 }
7 r = requests.post(’[see details on

github repo]’,files=files)
8 result = ZipFile(io.BytesIO(r.content))

Code 3: Complete Python code to call ContrXT API

3 Experimental Evaluation

ContrXT was evaluated in terms of approxima-
tion quality to the input model to be explained (i.e.,
the fidelity of the surrogate) on 20newsgroups, a
well-known benchmark used in (Jin et al., 2016) to
build a reproducible text classifier, and in (Ribeiro
et al., 2016), to evaluate LIME’s effectiveness in
providing local explanations.

We ran ContrXT over different classifiers,
trained using popular classifiers such as linear re-
gression (LR), random forest (RF), support vector
machines (SVM), Naive Bayes (NB), Bidirectional
Gated Recurrent Unit (bi-GRU) (Cho et al., 2014),
and BERT (Devlin et al., 2019) (bert-base-uncased)
with a sequence classification layer on top. Re-
sults are shown in Table 1. We considered and
evaluated all the global surrogate models surveyed
by (Burkart and Huber, 2021), representing the
state of the art. Approaches falling outside the goal
of ContrXT (e.g., SP-LIME (Ribeiro et al., 2016)
and k-LIME (Hall et al., 2017) whose outcome is
limited to the feature importance values) and pa-
pers that did not provide the code were discarded.

To date, ContrXT relies on decision trees to
build the surrogate, though it can employ any sur-
rogate algorithms.

3.1 Results Comment for 20newsgroup

One might inspect how the classification changes
from ψ1 to ψ2 for each class, i.e., which are the
paths leading to class c at time t1 (before) that lead
to other classes at time t2 (now) (added paths) and
those who lead to c at t2 that were leading to other

Table 1: ContrXT on 20newgroups (Dt1 , Dt2 from
(Jin et al., 2016)) varying the ML algorithm. • indicates
the best surrogate.

ML Model F1-w Surrogate Fidelity F1-w
Algo Dt1 Dt2 Dt1 Dt2

LR .88 .83 .76 (±.06) .78 (±.07)
RF .78 .74 .77 (±.06) .79 (±.07)

SVM .89 .84 .76 (±.06) .78 (±.06)
NB .91 .87 .76 (±.06) .78 (±.06)

bi-GRU .79 .70 .77 (±.06) .78 (±.06)
BERT .84 .72 .78 (±.05) • .83 (±.06) •

Figure 3: Indicators for the changes in classification
paths from t1 to t2 for each 20newsgroup class. On the
x-axis, we present the classification classes, and on the
y-axis the ADD/DEL indicators

classes at time t1 (deleted paths). Focusing on
the class atheism of Fig. 3 the number of deleted
paths is higher than the added ones. Fig. 4 reveals
that the presence of the word bill leads the ψ2 to
assign the label atheism whilst the presence of such
a feature was not a criterion for ψ1. Conversely, ψ1

used the feature keith to assign the label, whilst ψ2

discarded this rule. Actually, both terms refer to
the name of the posts’ authors.

The example of Fig. 4 sheds light on the goal
of ContrXT, which is providing to the final user
a way to investigate why ψ2 classified documents
to a different class with respect to ψ1, as well as
monitoring future changes. NLE allows the user to
discover that -though the accuracy of ψ1 and ψ2 is
high5- the underlying learning functions (i) learned

5The Spearman correlation test revealed the accuracy is
not correlated with the ADD/DEL indicators, confirming they

49

terms that should have been discarded during the
preprocessing, (ii) ψ2 persists in relying on those
terms, which are changed after retraining (using bill
instead of keith), and (iii) having political_atheist
is no longer enough to classify in the class.

Figure 4: NLE for alt.atheism using the BERT model
of Tab. 1

Get Rule Examples. The NLE shows the differ-
ences between the two models. However, a user
might also wish to see example instances in the
datasets where these rules apply.

To do so, ContrXT provides the
get_rule_examples function, which requires
the user to specify a rule to be applied and the
number of examples to show. ContrXT applies
the rule to D1 and D2, specifying the number of
document classified by that rule and provides some
examples, highlighting in the text the portion in
which the rule applies, as in Fig. 5.

Notice this function is also useful to check the
consistency of a specific rule, that is, for an add
rule, its prevalence should be higher inD1, for a del
rule the opposite, while for a still rule the should
be roughly equivalent in both D1 and D2.

3.2 Evaluation through Human Subjects
We designed a study to assess if - and to what
extent - final users can understand and describe
what differs in the classifiers’ behaviour by look-
ing at NLE outputs. We recruited 15 participants
from prolific.co (Palan and Schitter, 2018), an on-
line service that provides participants for research

provide additional insights beyond the quality of the trained
models

Figure 5: ContrXT shows examples in which a rule
applies for the class alt.atheism.

studies. Participants were asked to look at NLE
textual explanations and to select one (or more)
statements according to the meaning they catch
from NLEs. Results showed that the participants
understood the NLE format and answered with an
89% accuracy on average, and an F1-score of 87%.
Finally, we computed Krippendorff’s alpha coeffi-
cient, a statistical measure of the extent of agree-
ment among users. We reached an alpha value of
0.7, which Krippendorff (2004) considers as accept-
able to positively assess the subjects consensus.

Figure 6: NLE for 2511, Systems Analysts using the RF
model.

Figure 7: ContrXT shows examples in which a rule
applies for the class 2511, Systems Analysts .

50

3.3 ContrXT in a real-life scenario

In the last years, the problem of extracting knowl-
edge from online job ads (OJA, aka, online job
vacancies) in terms of occupations and skills is
growing in interest in academic, industrial, and
government organisations to monitor and under-
standing labour market changes (i) timely and (ii)
at a very fine-grained geographical level, (iii) catch-
ing novelties in terms of novel occupations and
skills as soon as they emerge in the real-labour mar-
ket. This is the goal of labour market intelligence
(aka, skill intelligence) which refers to the use and
design of AI algorithms and frameworks to analyse
labour market data for supporting decision making
(see, e.g., (Giabelli et al., 2021a,c; Turrell et al.,
2018; Zhang et al., 2019)).

From a statistical perspective, in late 2020 EU-
ROSTAT and Cedefop have joined forces announc-
ing a call for tender (EuroStat, 2020) aimed at estab-
lishing results from (CEDEFOP, 2016a,b) fostering
AI and Statistics to build up the European Hub of
Online Job Ads. In such a scenario, training an ML
model would be helpful to support questions such
as: Which occupations will grow in the future and
where? What skills will be demanded the most in
the next years? However, once such an ML model
has been trained and deployed (see, e.g., (Colombo
et al., 2019; Boselli et al., 2018)) it needs to be pe-
riodically re-trained as the labour market demand
constantly changes through time, mainly due to rise
of new emerging occupations and skills (Giabelli
et al., 2021a,b). This, in turn, leads policy makers
to ask if - and to what extent - the re-trained model
is coherent in classifying new job ads with respect
to the past criteria.

As an example, let us consider the systems ana-
lysts, an occupation that changed a lot in the last
years driven by technological progresses (Malan-
dri et al., 2021). A policy maker might ask: "how
systems analysts are now classified by the updated
model, and how the updated model differs with
respect to the previous one?"

Figure 6 shows the difference in the criteria be-
tween the two classifiers for the class "Systems An-
alysts". The Figure shows that the updated model
considers business analysts as Systems Analysts.
Furthermore, the user can easily discover that a
novel occupation, i.e., "data scientist", is consid-
ered as a system analyst by the updated model. On
the other side, Fig. 6 clarifies to the user that the
updated model changed its criterion in regard to the

term "test analyst", that now does not characterise
the class anymore. Being able to catch those dif-
ferences -class by class- is helpful to end users as
it allows understanding to what extent the updated
model is coherent with past predictions, as well as
its ability to catch the novelty in the domain and
terms that might lead the model to misclassifica-
tion. Furthermore, the Get Rule function provides
samples to the user, as shown in Fig. 7.

4 Conclusion, Limitations and Future
Work

In this demonstration we presented a system to
deliver contrastive explanations of text classifiers
as a service. The system is built on top of
ContrXT (Malandri et al., 2022), a novel model-
agnostic tool to globally explain how a black box
text classifier change its learning criteria with re-
gard to the past (T-contrast) by manipulating BDDs.
Given two classifiers trained on the same target
class set, the system we presented provides time
contrastive explanations of their behaviour, to-
gether with detailed insights and metrics. Among
them, we presented the possibility to highlight how
and how much the classification rules differ along
time. A load test demonstrated that our architecture
has a throughput of 2.55 users per second. Beyond
this value, the API service puts the additional re-
quests into a queue but keeps working.

To date, ContrXT is bounded to explain text
classifiers. We are working to extend ContrXT to
tabular classifiers.

4.1 Demonstration of ContrXT
Video to see ContrXT in action through a

video demonstration at https://tinyurl.com/
ContrXT-NAACL.

Google Colab to run ContrXT directly on a
python notebook, using Google Colab re-
sources at at https://tinyurl.com/ContrXT-pyn

REST-API to embed ContrXT into a third-
party application. Notice, it is required
to ask for credential at https://tinyurl.com/
contrxt-request-form

GitHub to download as well as to contribute to
this project, at https://ContrXT.ai

51

Impact Statement and Ethical
Considerations

AI-based decision systems interact with humans in
many application domains, including sensitive ones
like credit-worthiness, education and law enforce-
ment. An unmitigated data-driven decision-making
algorithm can systematically make unfair decisions
against certain population subgroups with specific
attributes (e.g. race or gender) due to the inherited
biases encoded in the data. Even a system which
has been carefully trained in order to mitigate such
effects can change its behaviour over time, due to
changes in the underlying data. The opaque nature
of machine learning models can hide those unfair
behaviours to the end user.

In this context, ContrXT might reveal itself
extremely useful in tracing and explaining how
the model, which was designed to be fair at time
1, changed its behaviour and rules after being re-
trained at time 2. This allows one to check whether
the model kept fair over time.

An interesting example of application in such
sense is the paper Towards Fairness Through
Time (Castelnovo et al., 2021), presented at the
2nd Workshop on Bias and Fairness in AI (BIAS)6

at ECML-PKDD, which uses ContrXT to observe
the evolution of a ML model for credit lending over
time. Understanding the changing of the gaps be-
tween different population subgroups, like gender
or race, allows observing whether the mitigation
strategies in place are bringing benefits to society,
favoring the convergence between individual and
group fairness.

References
Roberto Boselli, Mirko Cesarini, Stefania Marrara,

Fabio Mercorio, Mario Mezzanzanica, Gabriella Pasi,
and Marco Viviani. 2018. Wolmis: a labor market
intelligence system for classifying web job vacancies.
Journal of Intelligent Information Systems, 51(3).

Randal E Bryant. 1986. Graph-based algorithms for
boolean function manipulation. IEEE Transactions
on Computers.

Nadia Burkart and Marco F Huber. 2021. A survey
on the explainability of supervised machine learning.
JAIR, 70:245–317.

Alessandro Castelnovo, Lorenzo Malandri, Fabio Mer-
corio, Mario Mazzanzanica, and Andrea Cosentini.
2021. Towards fairness through time. ECML PKDD,
CCIS 1524, page 1–17.
6https://sites.google.com/view/bias2021/

CEDEFOP. 2016a. Real-time labour market informa-
tion on skill requirements: Setting up the eu system
for online vacancy analysis. https://goo.gl/5FZS3E.

CEDEFOP. 2016b. Real-time labour market informa-
tion on skill requirements: Setting up the eu system
for online vacancy analysis. https://goo.gl/5FZS3E.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Emilio Colombo, Fabio Mercorio, and Mario Mezzan-
zanica. 2019. AI meets labor market: exploring the
link between automation and skills. Information Eco-
nomics and Policy, 47.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL, pages 4171–4186.

EuroStat. 2020. Towards the european web intelligence
hub — european system for collection and analysis
of online job advertisement data (wih-oja), available
at https://tinyurl.com/y3xqzfhp.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. JAIR, 61.

Anna Giabelli, Lorenzo Malandri, Fabio Mercorio,
Mario Mezzanzanica, and Andrea Seveso. 2021a.
NEO: A system for identifying new emerging oc-
cupation from job ads. In Thirty-Fifth AAAI Con-
ference on Artificial Intelligence, AAAI 2021, pages
16035–16037. AAAI Press.

Anna Giabelli, Lorenzo Malandri, Fabio Mercorio,
Mario Mezzanzanica, and Andrea Seveso. 2021b.
Neo: A system for identifying new emerging occupa-
tion from job ads. In AAAI - Demo track.

Anna Giabelli, Lorenzo Malandri, Fabio Mercorio,
Mario Mezzanzanica, and Andrea Seveso. 2021c.
Skills2job: A recommender system that encodes job
offer embeddings on graph databases. Appl. Soft
Comput., 101:107049.

Miguel Grinberg. 2018. Flask web development: de-
veloping web applications with python. " O’Reilly
Media, Inc.".

Patrick Hall, Navdeep Gill, Megan Kurka, and
Wen Phan. 2017. Machine learning inter-
pretability with h2o driverless ai. H2O. ai.
URL: http://docs. h2o. ai/driverless-ai/latest-
stable/docs/booklets/MLIBooklet. pdf.

Peng Jin, Yue Zhang, Xingyuan Chen, and Yunqing Xia.
2016. Bag-of-embeddings for text classification. In
IJCAI, pages 2824–2830.

Klaus Krippendorff. 2004. Reliability in content analy-
sis: Some common misconceptions and recommen-
dations. Human communication research, 30(3).

52

Lorenzo Malandri, Fabio Mercorio, Mario Mezzanzan-
ica, and Navid Nobani. 2021. MEET-LM: A method
for embeddings evaluation for taxonomic data in the
labour market. Comput. Ind., 124:103341.

Lorenzo Malandri, Fabio Mercorio, Mario Mezzanzan-
ica, Navid Nobani, and Andrea Seveso. 2022. Con-
trXT: Generating contrastive explanations from any
text classifier. Information Fusion, 81:103–115.

Daniel A Menascé. 2002. Load testing of web sites.
IEEE internet computing, 6(4):70–74.

Tim Miller. 2019. Explanation in artificial intelligence:
Insights from the social sciences. Artificial Intelli-
gence, 267.

Shane T Mueller, Robert R Hoffman, William Clancey,
Abigail Emrey, and Gary Klein. 2019. Explanation in
human-ai systems: A literature meta-review, synopsis
of key ideas and publications, and bibliography for
explainable ai. arXiv preprint arXiv:1902.01876.

Stefan Palan and Christian Schitter. 2018. Prolific.
ac—a subject pool for online experiments. Journal
of Behavioral and Experimental Finance, 17:22–27.

Anand Rajaraman and Jeffrey David Ullman. 2011.
Mining of massive datasets. Cambridge University
Press.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explaining
the predictions of any classifier. In ACM-SIGKDD.

Stephanie Rosenthal, Sai P Selvaraj, and Manuela M
Veloso. 2016. Verbalization: Narration of au-
tonomous robot experience. In IJCAI, volume 16,
pages 862–868.

Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. CSUR, 34(1).

Arthur Turrell, Bradley Speigner, Jjyldy Djumalieva,
David Copple, and James Thurgood. 2018. Using job
vacancies to understand the effects of labour market
mismatch on uk output and productivity.

Jeroen Van Bouwel and Erik Weber. 2002. Remote
causes, bad explanations? JTSB, 32(4).

Denghui Zhang, Junming Liu, Hengshu Zhu, Yanchi
Liu, Lichen Wang, Pengyang Wang, and Hui Xiong.
2019. Job2vec: Job title benchmarking with collec-
tive multi-view representation learning. In CIKM.

53

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 54 - 63

July 10-15, 2022 ©2022 Association for Computational Linguistics

RESIN-11: Schema-guided Event Prediction for 11 Newsworthy Scenarios
Xinya Du1, Zixuan Zhang1, Sha Li1, Ziqi Wang1, Pengfei Yu1, Hongwei Wang1,

Tuan Manh Lai1, Xudong Lin2, Iris Liu3, Ben Zhou4, Haoyang Wen1, Manling Li1,
Darryl Hannan5, Jie Lei5, Hyounghun Kim5, Rotem Dror4, Haoyu Wang4,

Michael Regan3, Qi Zeng1, Qing Lyu4, Charles Yu1, Carl Edwards1,
Xiaomeng Jin1, Yizhu Jiao1, Ghazaleh Kazeminejad3, Zhenhailong Wang1,

Chris Callison-Burch4, Carl Vondrick2, Mohit Bansal5, Dan Roth4,
Jiawei Han1, Shih-Fu Chang2, Martha Palmer3, Heng Ji1

1 University of Illinois Urbana-Champaign 2 Columbia University 3 University of Colorado, Boulder
4 University of Pennsylvania 5 University of North Carolina at Chapel Hill

{xinyadu2,zixuan11,shal2,hengji}@illinois.edu

Abstract

We introduce RESIN-11, a new schema-guided
event extraction and prediction system that
can be applied to a large variety of newswor-
thy scenarios. The framework consists of two
parts: (1) an open-domain end-to-end multime-
dia multilingual information extraction system
with weak-supervision and zero-shot learning-
based techniques. (2) a schema matching and
schema-guided event prediction system based
on our curated schema library. We build a demo
website1 based on our dockerized system and
schema library publicly available for installa-
tion2. We also include a video demonstrating
the system.3

1 Introduction

If the evening news discusses a migration of people
due to drought and the infrastructure cannot han-
dle the population influx, what will happen next?
While annotated datasets have fueled progress in
machine intelligence, the knowledge required for
event forecasting is vast and potentially ambiguous.
For example, to predict that a rebellion is likely in
the future, models need to integrate background
events (drought), abstractions (strained infrastruc-
ture causes unrest), and event schemas (structure
and duration of rebellion). Existing link predic-
tion (Zhang and Chen, 2018; Wang et al., 2018; Lei
et al., 2019) or knowledge graph completion meth-
ods (Zhang et al., 2019; Goel et al., 2020; Wang
et al., 2021a) cannot meet this goal because the
event instance graphs extracted from news are of-
ten incomplete and noisy. Recent work (Li et al.,
2020b, 2021a) proposes to leverage complex event

1Demo: http://18.221.187.153:11000
2Github: https://github.com/RESIN-KAIROS/RESI

N-11
3Video: https://screencast-o-matic.com/watch

/c3nlhnVbeyg

schemas (stereotypical evolution pattern of com-
plex events) for event prediction. However, these
methods are often limited to a few scenarios due
to the lack of high-quality, open-domain informa-
tion extraction systems to construct event instance
graphs needed for schema induction.

To tackle these challenges, in this paper we use
the event schemas discovered at scale to guide the
learning of predictive models. We first identify 11
newsworthy scenarios, and construct comprehen-
sive hierarchical schemas through the combination
of automatic schema induction and manual cura-
tion. Then we develop an open-domain end-to-end
multimedia multilingual information extraction sys-
tem that can extract entities, relations, events, and
temporal orders for all of these scenarios, based on
a series of weak supervision based methods, includ-
ing few-shot learning and lifelong learning. Com-
pared with previous event tracking systems (Wen
et al., 2021) that conduct graph matching on a lin-
earized sequence, we propose a new schema match-
ing algorithm that directly operates on graphs. We
also proposed a event prediction model trained with
self-supervision to predict possible missing events
to form a coherent story. Our contributions include:

• We induce and curate hierarchical schemas for
11 scenarios, capturing a wide coverage of news-
worthy events.

• We extend our multi-lingual multi-media infor-
mation extraction techniques (Wen et al., 2021)
to handle the open-domain extraction setting.

• We develop a new schema matching and pre-
diction algorithm that is capable of recovering
missing events and predicting events that will
likely to happen in the future.

54

2 Methodology

Overview Figure 1 illustrates the overall architec-
ture of our framework. It includes three parts: (1)
schema library construction (Section 2.1); (2) open-
domain multimedia multilingual Information Ex-
traction (IE) system (Section 2.2-2.3) ; (3) schema
matching and prediction component (Section 2.4).

We first perform schema induction and curation
for 11 identified newsworthy scenarios. Specifi-
cally, we use GPT-3 generated results as an outline,
enrich the schema with the help of the WikiData
ontology and expand the steps for better coverage.

On the IE side, we assume our input consists of
multilingual multimedia document clusters about
a specific scenario (e.g., disease outbreak). Each
document cluster contains documents about a spe-
cific complex event scenario (e.g., COVID-19 pan-
demic). Our textual IE pipeline takes documents
and transcribed speech as input and extracts entity,
relation and event mentions (Section 2.2). In or-
der to extend IE to open-domain, we have adopted
weak supervision and zero-shot transfer learning
techniques. Then we perform cross-document
cross-lingual entity and event coreference resolu-
tion, and link them to WikiData. The extracted
events are then ordered by temporal relation extrac-
tion. Our visual pipeline extracts events and argu-
ments from visual signals (i.e., images and videos),
and link the extracted knowledge elements to our
extracted graph using cross-media event corefer-
ence resolution (Section 2.3). Finally, our system
automatically selects the schema from a schema
library that best matches the extracted IE graph and
new events are predicted (Section 2.4).

2.1 Schema Induction and Curation
For our schema library creation, we first start with
creating schemas with a zero-shot approach utiliz-
ing GPT-3. Given a scenario for which we want
to create a schema, we generate multiple texts that
discuss the topically-related complex events using
the OpenAI GPT-3 API4 with the Davinci-instruct-
beta-v3 model. We use three prompting methods
to generate documents of diverse genres such as
news articles, Wikihow-style documents, and step-
by-step event description. One example of such a
prompt and the generated output is shown in Figure
2. Then we identify the events mentioned in the
texts and link the events to WikiData Qnodes. We
use generated documents instead of real documents

4https://openai.com/blog/openai-api/

because we observe that generated documents are
generally cleaner and contain a higher percentage
of events that can be linked. For instance, compar-
ing the generated text and the crawled news articles
for IED attacks, the generated text contains 0.13
events per token and the news articles only contain
0.06 events per token. From there we add argu-
ments to the events, and identify the temporal and
hierarchical relations between the events effectively
converting each text into a graph structure (Figure
3).

Note that the automatic induced schema is often
noisy and has limited coverage. Some of such
mistakes come from the GPT3 generation, e.g., in
the generated output in Figure 2, it omits how the
disease was discovered. Other mistakes root from
incorrect prediction of temporal relations, such as
the “Kill”→ “Come (Attack)” edge in Figure 3.

To improve coverage, human curators further
check Wikipedia and news articles on the related
topics and add more events. Three other crucial as-
pects of human curation are (1) entity coreference
resolution, (2) temporal ordering and (3) hierar-
chical structure construction. Entity coreference
chains in schemas often involve implicit entities,
such as the “area where the sick live” in step 2.
This location entity is futher coreferential with the
“contaminated areas” entity mentioned later in step
4. The generated output is a list of steps, which can
be converted to a linear ordering of events. How-
ever, some events can happen concurrently such as
the “Educate” event in step 4 and all other events.
In addition, some events have strong semantic co-
herence involving the same set of entities and thus
can be grouped together. For example, this chain
of “Identify-Quarantine-Disinfect” can be seen as
a medical response to one batch of infections. We
refer to this as a sub-schema and this medical re-
sponse sub-schema can be repeated with a different
set of patients and medical agents. An example of
the human curated schema is shown in Figure 4.

In the curation process, we use a web-based
graphical interface (Mishra et al., 2021) to help
visualize and assess schemas.

2.2 Open Domain IE from Speech and Text

We first convert speech data into text using the
Amazon Transcribe API5. When the language is
not specified, it is automatically detected from the
audio signal. It returns the transcription with start-

5https://aws.amazon.com/transcribe/

55

ASR

 English Entity/Relation/Event Mention Extraction

OneIE

Fine-grained
Entity Extraction

Weak Supervision

Trigger
Labeling

Argument
Labeling

Spanish
OneIE

Cross-document Cross-lingual
Coreference Resolution and

Qnode Linking

Machine
Translation

Schema Matching
and Prediction

Historical
News

Schema
Induction

Schema
Curation

Schema
Library

Multilingual
Multimedia

Document Clusters
Doc-level

Event Argument
Extraction

Visual IE

Cross-media Matching
and Enrichment

Final output

Temporal Ordering

Figure 1: The architecture of RESIN-11 framework: including (1) open-domain multimedia multilingual information
extraction; and (2) schema matching and prediction.

1. Monitor and track disease spread.
2. Identify and isolate the sick.
3. Quarantine the sick and those who have been in
contact with them.
4. Disinfect and clean contaminated areas.
5. Educate the public about the disease and how to
prevent it.

Prompt: What are the steps involved in a
disease outbreak?

GPT-3

Tracing
Q322229

A0_pag_thing_following:
Medical Agent

A1_ppt_thing_followed:
Pathogen

WikiData Ontology

Figure 2: An illustration of the schema curation process.
The steps are actual output from GPT-3.

ing and ending times for each detected words, as
well as potential alternative transcriptions.

To achieve wide coverage of event types from
11 scenarios, our information extraction system
consists of 3 components: (1) the supervised
joint entity, relation and event extraction model
OneIE (Lin et al., 2020); (2) weakly supervised
keyword-guided event extraction; and (3) zero-shot
generation-based argument extraction (Li et al.,
2021b).

OneIE is a joint neural model for sentence-level
information extraction. Given a sentence, the goal
of this module is to extract an information graph
G = (V,E), where V is the node set contain-
ing entity mentions and event triggers and E is
the edge set containing entity relations and event-
argument links. In order to capture the interac-

Kill Injure

Detonate

Come
(Attack) Open fire

Wound

Strike

Claim
responsibility

Leave

Choose

Select
Method

Acquire
Weapon

Carry out
(Attack)

Attack

AND

Figure 3: An automatically induced schema for the ter-
rorist attack scenario with model predicted temporal
order, hierarchical relations and logical relations. Argu-
ments are omitted for clarity.

tions among knowledge elements, we incorporate
schema-guided global features when decoding in-
formation graphs. After we extract these men-
tions, we apply a syntactic parser (Honnibal et al.,
2020) to extend mention head words to their extents.
Based on OneIE relations output, we perform rule-
based relation enrichment to obtain fine-grained
relation subsubtypes. We collect keywords for vari-
ous fine-grained types, then we construct rules by
checking keywords in Shortest Dependency Paths
(SDP) between two relation entities.

To extract emergent event types for which we
do not have large-scale annotation, we employ a
keyword-based event detection system. Specifi-
cally, we select a list of keywords for each new

56

Medical Response I

Infection Illness

Diagnosis

Treatment

Gather Data
Identify Outbreak

Alert Authorities
Recover

Die
XOR

Quarantine Funeral

Testing

Tracing

Contaminate

XOR

Eat

Drink

ConsumeThroughAir

Spread

Disease Outbreak

Contributory Factors Onset Outbreak

Authority Response

Research Response

Society Response

Investigation Justice

Figure 4: The curated schema for the disease outbreak scenario. Blue diamond shapes represent sub-schemas and
yellow circles represent primitive events. Black arrows between primitive events represent temporal order, light blue
lines between the primitive events and the sub-schema node represent event-subevent hierarchical relationship. Here
we only show the primitive events under the Onset sub-schema.

event type, and search for the occurrences of these
keywords in a text corpus. We compute keyword
representations by averaging the contextualized rep-
resentations from BERT (Devlin et al., 2019) of
keyword occurrences, and cluster keyword repre-
sentations for the same event type to get a set of
cluster representations for each event type. For
event trigger detection, we first compute BERT rep-
resentations of all the tokens in a sentence, and
consider a token as an event trigger if its cosine
similarity with some cluster representations of an
event type is larger than a threshold. We tuned the
threshold using a few example event mentions.

After identifying the event triggers, we further
employ a document-level event argument extrac-
tion model (Li et al., 2021b) to improve the recall
of event argument role labeling. This model for-
mulates the argument extraction problem as con-
ditional text generation. The condition consists of
the original document and a blank event template.
For example, the template for Transportation
event type is arg1 transported arg2 in arg3 from
arg4 place to arg5 place. To apply this model in a
zero-shot setting, we create new templates for the
emerging event types and use them as input.

For entity linking over Wikidata, we directly use
the EPGEL system proposed in Lai et al. (2022).
For cross-document cross-lingual coreference res-
olution, we follow the approach of (Wen et al.,
2021). After the coreference resolution/entity link-
ing stage, we conduct temporal ordering for all
of the extracted events. First we provide two
independent temporal ordering results from two
learning-based pairwise event order classification

systems (Zhou et al., 2021; Wen and Ji, 2021). To
make the prediction consistent and valid over each
document cluster, we use a greedy algorithm that
selects conflict-free predicted temporal relations to
the final instance graph sequentially based on their
confidence scores. Similar to Wen et al. (2021),
these two results will be used for schema matching
and event prediction and only the best prediction
will be used in the final output.

2.3 Cross-media Info Grounding and Fusion

Visual event and argument role extraction Our
goal is to extract structured visual events and en-
tities. Specifically, given an image or a video seg-
ment, the desired output are its event type and the
associated argument roles. Due to the expensive
cost of event annotation for images and videos, it
is not feasible to perform annotation for each new
type. Unlike existing systems leveraging super-
vised training (Chen et al., 2021a), we propose an
open-domain framework to enable the visual event
extraction for a broader spectrum of event types.

Our proposed system is composed of two com-
plementary models. The first model is a supervised
model based on a large-scale image dataset, Situa-
tion with Groundings (SWiG) (Pratt et al., 2020).
We manually define the mapping that covers 16
event types and use the model pretrained on the
SWiG dataset to extract event and argument roles.
The second model is an unsupervised model by
leveraging large-scale vision-language pretrained
model (Li et al., 2022; Radford et al., 2021). We
conduct further pretraining on an event-rich cor-
pus (Li et al., 2022) by adding an additional pre-

57

training task of event structure alignment between
two modalities. In detail, we extract event struc-
tures from captions and utilize them as the super-
vision for image event extraction. The pretrain-
ing corpus comprises multiple scenarios, providing
support for the extraction of events for a wide range
of scenarios. To process images and videos in a uni-
fied manner, we follow Wen et al. (2021) to sample
frames at a frame rate of 1 frame per second from
videos and process these key-frames as individual
images.

Cross-media event coreference resolution To
augment the text event graph, we leverage a weakly-
supervised coreference resolution model (Chen
et al., 2021a) that is trained based on the align-
ment between video frames and speech texts on a
large collection of news videos to predict the rel-
evance between a textual event and the extracted
visual event. Once the relevance is higher than a
threshold, we leverage a rule-based approach to de-
cide whether the visual event mention and a textual
event mention are coreferential: (1) Matched event
types; (2) No contradiction of entity types for the
same argument role in different modalities. This
pipeline enables adding provenance of visual-only
arguments into the event graph, which provides
more comprehensive event understanding.

2.4 Schema Matching and Prediction
After obtaining a large-scale library of schema
graphs for various scenarios, our goal is to instan-
tiate the schema graphs with extracted events, and
then use it for schema-guided event prediction.

Schema Matching To match the event nodes be-
tween the IE graphs and schema graphs, previous
work (Wen et al., 2021) first linearizes graphs into
event sequences and then conducts event matching
using longest common subsequences (LCS). How-
ever, such a sequence-based matching algorithm
cannot well capture some global dependencies in
a graph point of view, and the performance largely
depends on the quality of event temporal order-
ing results. Also, the LCS based matching algo-
rithm can only handle the cases where the events in
schema graph and IE graph use an identical ontol-
ogy (i.e., the same category of event types), which
is however not applicable for open-domain settings
since the names of events could be diverse and
multifarious.

To tackle these problems, we propose a new
schema matching algorithm that directly operates

on each pair of instance graph I and schema graph
S. We formulate schema matching as an integer
programming problem, where we can use an assign-
ment matrix X ∈ R|I|×|S| to represent the match-
ing results. To enable matching between events
with different names, we compute the pairwise
Synsets similarities from WordNet6 and store it
into a node similarity matrix A. For each event ei
in a given instance graph I , we obtain the set of all
reachable event nodes RI(i) = {e | PI(ei, e) =
1, e ∈ I}, where PI(ei, e) denotes whether there
exists a path from ei to e in the instance graph I .
Similarly, we can also obtain the reachable event
setsRS and PS for the schema graph S. For edge
similarity between each pair of events ei and ej , in-
stead of strictly judging whether they are temporal
neighbors (i.e., whether there exists an event-event
temporal link between ei and ej) , we only use the
reachability as temporal constraints (i.e., whether
ej ∈ RI(i)) to mitigate the high dependence on the
quality of event temporal ordering results. Specif-
ically, we aim to find the optimal solution Xopt

Xopt = argmax
X

∑

i,j

Ai,jXi,j − c · Q(X), (1)

where c is a hyper-parameter and Q(X) denotes
the penalty term for the violation of temporal con-
straints. The penalty term Q(X) is defined as the
total number of event pairs that violates the tempo-
ral constraints.

Schema-guided Event Prediction After schema
matching, an instance graph I is mapped to a sub-
graph of the schema graph, i.e., I ′ ⊆ S. The next
step is to determine whether a candidate event node
e ∈ S\I ′ is a missing node for I ′. Specifically, we
aim to learn a function f(e, I ′) : S × 2S 7→ [0, 1],
which outputs the probability that event node e is
missing for subgraph I ′. We consider two factors
when designing the function f(e, I ′): (1) Neigh-
bors of e and I ′. We use a graph neural network
(GNN) to aggregate neighbor information and learn
embedding vectors for nodes in S, then aggregate
embeddings of nodes in I ′ to obtain the embedding
of I ′. The embeddings of e and I ′ are concate-
nated, followed by an MLP to output the predicted
probability. (2) Paths. We identify all paths that
connect e and each node in I ′ in the schema graph
S, then aggregate the paths together to obtain the
bag-of-path feature for the pair of (e, I ′). The bag-
of-path feature is fed into another MLP to output

6https://www.nltk.org/howto/wordnet.html

58

Scenario # Episodes # Events # Ents # Rels

Business Change 18 81 24 54
Civil Unrest 6 34 18 24
Disease Outbreak 19 102 27 93
Election 8 35 14 33
International Conflict 17 95 56 50
Kidnapping 9 66 15 56
Mass Shooting 8 37 13 31
Sports Events 4 17 14 19
Terrorist Attacks 8 36 11 26
Disaster/Manmade Disaster 8 38 10 29
Disaster/Natural Disaster 4 23 8 18
IED/General Attack 19 52 40 22
IED/General IED 10 48 18 39
IED/Drone Strikes 10 50 19 43
IED/Backpack IED 10 49 18 40
IED/Roadside IED 10 48 19 39
IED/Car IED 10 50 19 43

Table 1: Statistics of our schema library.

the predicted probability. Finally, the outputs of
the above two modules are averaged as the final
prediction.

3 Schema and Experiments

The overall statistics of our schema library are pre-
sented in Table 1. The performance of each com-
ponent is shown in Table 2. We evaluate the perfor-
mance of our full system on a complex event cor-
pus (LDC2022E02), which contains multi-lingual
multi-media document clusters. We train our
mention extraction component on ACE05 (Walker
et al., 2006) and ERE (Song et al., 2015);
document-level argument extraction on ACE05 and
RAMS (Ebner et al., 2020); coreference compo-
nent on ACE05, EDL 2016 (LDC2017E03), EDL
2017 (LDC2017E52), OntoNotes (Pradhan et al.,
2012), ERE, CoNLL 2002 (Tjong Kim Sang, 2002),
DCEP (Dias, 2016) and SemEval10 (Recasens
et al., 2010); temporal ordering component on MA-
TRES (Ning et al., 2018); weakly supervised event
extraction on ACE05; schema matching and predic-
tion on LDC2022E03; visual event and argument
extraction on M2E2 (Li et al., 2020a) and cross-
media event coreference on Video M2E2 (Chen
et al., 2021a). For coreference resolution, similar
to previous work (Wen et al., 2021), we use the
CoNLL metric.

4 Related Work

Event Schema Induction and Curation Event
schemas, or otherwise known as scripts, are
structures that represent typical event progres-
sions (Schank and Abelson, 1975). Prior to this
work, there has been some effort in creating schema

Component Benchmark Metric Score

Weakly-supervised IE
Trigger ACE F1 63.3

Argument ACE F1 41.5

Mention
Extraction

En
Trigger ACE+ERE F1 64.1

Argument ACE+ERE F1 49.7
Relation ACE+ERE F1 49.5

Es
Trigger ACE+ERE F1 63.4

Argument ACE+ERE F1 46.0
Relation ACE+ERE F1 46.6

Document-level
Argument Extraction

ACE F1 66.7
RAMS F1 48.6

Coreference
Resolution

En
Entity OntoNotes CoNLL 92.4
Event ACE CoNLL 84.8

Es
Entity SemEval 2010 CoNLL 67.6
Event ERE-ES CoNLL 81.0

Wikidata QNode Linking TACKBP-2010 Acc. 90.9

Temporal
Ordering

RoBERTa MATRES F1 81.7
T5 MATRES-b Acc. 89.6

Visual Event Extraction M2E2 F1 52.7
Cross-media Event Coreference Video M2E2 F1 51.5

Benchmark Metric Score

Schema Matching LDC2022E03 Recall 63.2
Schema Prediction WikiEvents F1 45.5

Table 2: Performance (%) of each component our open-
domain multimedia multilingual IE system (upper) and
schema matching and prediction component (bottom).

databases through crowdsourcing (Regneri et al.,
2010; Modi et al., 2016; Wanzare et al., 2016; Sak-
aguchi et al., 2021). The key characteristics that
separate our schema library from exiting resources
include (1) focus on diverse newsworthy scenarios
instead of everyday events; (2) highly structured
multi-level schema organization.

In addition to schema resources, there has also
been work on automating the schema induction
process, through the use of probabilistic graphi-
cal models (Chambers, 2013; Cheung et al., 2013;
Nguyen et al., 2015; Weber et al., 2018) and event-
based language models (Pichotta and Mooney,
2016; Modi and Titov, 2014; Rudinger et al., 2015;
Li et al., 2020b, 2021a). We hope that our schema
library can serve as a resource for the development
of better automatic schema induction methods.

Weakly-Supervised Event Extraction Due to
the high cost of annotating event instances, low re-
source event extraction has received much attention
in recent years. There are a variety of settings ex-
plored, including zero-shot transfer learning (Lyu
et al., 2021; Huang et al., 2018), cross-lingual trans-

59

fer (Subburathinam et al., 2019), inducing event
types (Huang et al., 2016; Wang et al., 2021b),
keyword-based supervision (Zhang et al., 2021)
and few-shot learning (Peng et al., 2016; Lai et al.,
2020; Shen et al., 2021; Cong et al., 2021; Chen
et al., 2021b).

Schema-Guided Event Prediction Our schema-
guided event prediction model is also related to
link prediction (Zhang and Chen, 2018; Wang
et al., 2018; Lei et al., 2019) and graph completion
(Zhang et al., 2019; Goel et al., 2020; Wang et al.,
2021a) methods. The advantages of our schema-
guided method are that: (1) Our method is specially
designed for multiple small event graphs, rather
than a single large graph as studied in previous
work. Therefore, using event schema enables us
to model the common pattern of instance event
graphs. (2) An event schema can be seen as a
pool of inter-connected candidate events, which
provides new event nodes that can be added into an
incomplete instance event graph. However, exist-
ing work can only predict missing links rather than
missing nodes.

5 Conclusions and Future Work

We build an open-domain schema-guided event
prediction system that is capable of extracting and
predicting structured information regarding events
from various scenarios. In the future, we plan to fur-
ther improve both the extraction quality and porta-
bility to cover even more scenarios, and use the
automatic zero-shot schema induction algorithm to
iteratively extend our curated schemas. The hier-
archy structure of our event schemas can also be
further utilized to improve future event prediction.

6 Broader Impact

The goal of this project is to advance the state-of-
the-art schema-guided information extraction and
event prediction from real-world multi-modal news
sources. We believe that grounding our work in
real-world applications will help us make progress
in event-centric natural language understanding.
However, this work is not void of possible improper
use that may have adverse social impacts.

One major distinction between beneficial use and
harmful use depends on the data sources. Proper
use of the technology requires that input sources
are legally and ethically obtained. As an instance
of beneficial use, our demo may contribute to dis-
ease outbreak monitoring and disaster emergency

response, which is included in our chosen scenarios.
Besides, we should also be aware of the possible
biases that may exists in the datasets. Our system
components, as well as pretrained language models
that we use, are trained and evaluated on specific
benchmark datasets, which could be affected by
such biases. For example, as is observed in Abid
et al. (2021), the text generated by GPT-3 might
include undesired social biases. Our careful hu-
man curators’ effort involved in the schema library
building can mitigate this issue.

Generally, increasing transparency and explain-
ability of models can help prevent social harm, such
as over-estimation of the model ability. We plan
to make our software fully open source for pub-
lic audition and verification. We are also open
to explore countermeasures to prevent unintended
consequences.

The event prediction part of our model is able
to forecast the future trend of the current complex
event, which enables us to better understand the
structure and semantics of complex events. More-
over, it is particularly helpful for us to analyze and
predict the public opinion.

Acknowledgement

We thank the anonymous reviewers helpful sug-
gestions. This research is based upon work sup-
ported by U.S. DARPA KAIROS Program No.
FA8750-19-2-1004, U.S. DARPA AIDA Program
No. FA8750-18-2-0014 and LORELEI Program
No. HR0011-15-C-0115. The views and conclu-
sions contained herein are those of the authors and
should not be interpreted as necessarily represent-
ing the official policies, either expressed or implied,
of DARPA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes notwithstand-
ing any copyright annotation therein.

References
Abubakar Abid, Maheen Farooqi, and James Zou. 2021.

Large language models associate muslims with vio-
lence. Nature Machine Intelligence, 3(6):461–463.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing (EMNLP2013), vol-
ume 13, pages 1797–1807.

Brian Chen, Xudong Lin, Christopher Thomas, Man-
ling Li, Shoya Yoshida, Lovish Chum, Heng Ji, and

60

Shih-Fu Chang. 2021a. Joint multimedia event ex-
traction from video and article. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 74–88, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2021b. Honey or poison? solving the trigger curse
in few-shot event detection via causal intervention.
EMNLP.

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy Van-
derwende. 2013. Probabilistic frame induction. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 837–846, Atlanta, Georgia. Association for
Computational Linguistics.

Xin Cong, Shiyao Cui, Bowen Yu, Tingwen Liu, Wang
Yubin, and Bin Wang. 2021. Few-Shot Event Detec-
tion with Prototypical Amortized Conditional Ran-
dom Field. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
28–40, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Francisco Dias. 2016. Multilingual Automated Text
Anonymization. Msc dissertation, Instituto Superior
Técnico, Lisbon, Portugal, May.

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins,
and Benjamin Van Durme. 2020. Multi-sentence
argument linking. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2020. Diachronic embedding for
temporal knowledge graph completion. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3988–3995.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.
Zenodo.

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng
Ji, Clare R. Voss, Jiawei Han, and Avirup Sil. 2016.
Liberal event extraction and event schema induction.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 258–268, Berlin, Germany.
Association for Computational Linguistics.

Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan, Se-
bastian Riedel, and Clare Voss. 2018. Zero-shot
transfer learning for event extraction. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2160–2170, Melbourne, Australia. Association
for Computational Linguistics.

Tuan Manh Lai, Heng Ji, and ChengXiang Zhai. 2022.
Improving candidate retrieval with entity profile gen-
eration for wikidata entity linking. arXiv preprint
arXiv:2202.13404.

Viet Dac Lai, Thien Huu Nguyen, and Franck Dernon-
court. 2020. Extensively matching for few-shot learn-
ing event detection. In Proceedings of the First Joint
Workshop on Narrative Understanding, Storylines,
and Events, pages 38–45, Online. Association for
Computational Linguistics.

Kai Lei, Meng Qin, Bo Bai, Gong Zhang, and Min
Yang. 2019. Gcn-gan: A non-linear temporal link
prediction model for weighted dynamic networks. In
IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communications, pages 388–396. IEEE.

Manling Li, Sha Li, Zhenhailong Wang, Lifu Huang,
Kyunghyun Cho, Heng Ji, Jiawei Han, and Clare
Voss. 2021a. The future is not one-dimensional:
Complex event schema induction by graph modeling
for event prediction. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5203–5215.

Manling Li, Ruochen Xu, Shuohang Wang, Luowei
Zhou, Xudong Lin, Chenguang Zhu, Michael Zeng,
Heng Ji, and Shih-Fu Chang. 2022. Clip-event: Con-
necting text and images with event structures. arXiv
preprint arXiv:2201.05078.

Manling Li, Alireza Zareian, Qi Zeng, Spencer White-
head, Di Lu, Heng Ji, and Shih-Fu Chang. 2020a.
Cross-media structured common space for multime-
dia event extraction. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 2557–2568, Online. Association
for Computational Linguistics.

Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng
Ji, Jonathan May, Nathanael Chambers, and Clare
Voss. 2020b. Connecting the dots: Event graph
schema induction with path language modeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 684–695.

Sha Li, Heng Ji, and Jiawei Han. 2021b. Document-
level event argument extraction by conditional gen-
eration. In Proc. The 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics - Human Language Technologies
(NAACL-HLT2021).

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020. A
joint end-to-end neural model for information extrac-
tion with global features. In Proc. The 58th Annual

61

Meeting of the Association for Computational Lin-
guistics (ACL2020).

Qing Lyu, Hongming Zhang, Elior Sulem, and Dan
Roth. 2021. Zero-shot event extraction via transfer
learning: Challenges and insights. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 322–332, Online.
Association for Computational Linguistics.

Piyush Mishra, Akanksha Malhotra, Susan Windisch
Brown, Martha Palmer, and Ghazaleh Kazeminejad.
2021. A graphical interface for curating schemas. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 159–166,
Online. Association for Computational Linguistics.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2016. InScript: Narrative texts
annotated with script information. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3485–
3493, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Ashutosh Modi and Ivan Titov. 2014. Inducing neural
models of script knowledge. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning, pages 49–57.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret, and
Romaric Besançon. 2015. Generative event schema
induction with entity disambiguation. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 188–197.

Qiang Ning, Hao Wu, and Dan Roth. 2018. A multi-
axis annotation scheme for event temporal relations.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1318–1328, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Haoruo Peng, Yangqiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 392–402, Austin, Texas. Association for
Computational Linguistics.

Karl Pichotta and Raymond J Mooney. 2016. Learning
statistical scripts with lstm recurrent neural networks.
In Thirtieth AAAI Conference on Artificial Intelli-
gence.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unrestricted
coreference in ontonotes. In Joint Conference on

Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learn-
ing - Proceedings of the Shared Task: Modeling
Multilingual Unrestricted Coreference in OntoNotes,
EMNLP-CoNLL 2012, July 13, 2012, Jeju Island,
Korea, pages 1–40. ACL.

Sarah Pratt, Mark Yatskar, Luca Weihs, Ali Farhadi,
and Aniruddha Kembhavi. 2020. Grounded situation
recognition. In European Conference on Computer
Vision, pages 314–332. Springer.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Marta Recasens, Lluís Màrquez, Emili Sapena, M. Antò-
nia Martí, Mariona Taulé, Véronique Hoste, Massimo
Poesio, and Yannick Versley. 2010. Semeval-2010
task 1: Coreference resolution in multiple languages.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, SemEval@ACL 2010, Uppsala
University, Uppsala, Sweden, July 15-16, 2010, pages
1–8. The Association for Computer Linguistics.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In ACL.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681–1686.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proScript: Partially ordered scripts generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2138–2149, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Roger C Schank and Robert P Abelson. 1975. Scripts,
plans, and knowledge. In IJCAI, volume 75, pages
151–157.

Shirong Shen, Tongtong Wu, Guilin Qi, Yuan-Fang Li,
Gholamreza Haffari, and Sheng Bi. 2021. Adap-
tive knowledge-enhanced Bayesian meta-learning for
few-shot event detection. In Findings of the Associa-
tion for Computational Linguistics: ACL-IJCNLP
2021, pages 2417–2429, Online. Association for
Computational Linguistics.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light to
rich ere: annotation of entities, relations, and events.
In Proceedings of the the 3rd Workshop on EVENTS:
Definition, Detection, Coreference, and Representa-
tion, pages 89–98.

62

Ananya Subburathinam, Di Lu, Heng Ji, Jonathan May,
Shih-Fu Chang, Avirup Sil, and Clare Voss. 2019.
Cross-lingual structure transfer for relation and event
extraction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
313–325, Hong Kong, China. Association for Com-
putational Linguistics.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The 6th
Conference on Natural Language Learning 2002
(CoNLL-2002).

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57.

Hongwei Wang, Hongyu Ren, and Jure Leskovec.
2021a. Relational message passing for knowledge
graph completion. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1697–1707.

Hongwei Wang, Fuzheng Zhang, Min Hou, Xing Xie,
Minyi Guo, and Qi Liu. 2018. Shine: Signed hetero-
geneous information network embedding for senti-
ment link prediction. In Proceedings of the Eleventh
ACM International Conference on Web Search and
Data Mining, pages 592–600.

Ziqi Wang, Xiaozhi Wang, Xu Han, Yankai Lin, Lei
Hou, Zhiyuan Liu, Peng Li, Juanzi Li, and Jie Zhou.
2021b. CLEVE: Contrastive Pre-training for Event
Extraction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 6283–6297, Online. Association for Computa-
tional Linguistics.

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan
Thater, and Manfred Pinkal. 2016. A crowdsourced
database of event sequence descriptions for the acqui-
sition of high-quality script knowledge. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
3494–3501, Portorož, Slovenia. European Language
Resources Association (ELRA).

Noah Weber, Leena Shekhar, Niranjan Balasubrama-
nian, and Nathanael Chambers. 2018. Hierarchical
quantized representations for script generation. ACL.

Haoyang Wen and Heng Ji. 2021. Utilizing relative
event time to enhance event-event temporal relation
extraction. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10431–10437, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Haoyang Wen, Ying Lin, Tuan Lai, Xiaoman Pan, Sha
Li, Xudong Lin, Ben Zhou, Manling Li, Haoyu Wang,
Hongming Zhang, et al. 2021. Resin: A dockerized
schema-guided cross-document cross-lingual cross-
media information extraction and event tracking sys-
tem. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies: Demonstrations, pages 133–143.

Hongming Zhang, Haoyu Wang, and Dan Roth. 2021.
Zero-shot Label-aware Event Trigger and Argu-
ment Classification. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1331–1340, Online. Association for Computa-
tional Linguistics.

Muhan Zhang and Yixin Chen. 2018. Link prediction
based on graph neural networks. Advances in Neural
Information Processing Systems, 31:5165–5175.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion knowledge graph embeddings. In Ad-
vances in Neural Information Processing Systems,
pages 2735–2745.

Ben Zhou, Kyle Richardson, Qiang Ning, Tushar Khot,
Ashish Sabharwal, and Dan Roth. 2021. Temporal
reasoning on implicit events from distant supervision.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1361–1371, Online. Association for Computa-
tional Linguistics.

63

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 64 - 70

July 10-15, 2022 ©2022 Association for Computational Linguistics

A Human-machine Interface for Few-shot Rule Synthesis for
Information Extraction

Robert Vacareanu, George C. G. Barbosa, Enrique Noriega-Atala, Gus Hahn-Powell,
Rebecca Sharp, Marco A. Valenzuela-Escárcega, Mihai Surdeanu

University of Arizona
Tucson, AZ, USA

{rvacareanu, gcgbarbosa, enoriega, hahnpowell, msurdeanu}@email.arizona.edu
{bsharpataz, marcovalenzuelaescarcega}@gmail.com

Abstract

We propose a system that assists a user
in constructing transparent information
extraction models, consisting of patterns
(or rules) written in a declarative lan-
guage, through program synthesis. Users
of our system can specify their require-
ments through the use of examples, which
are collected with a search interface. The
rule-synthesis system proposes rule can-
didates and the results of applying them
on a textual corpus; the user has the op-
tion to accept the candidate, request an-
other option, or adjust the examples pro-
vided to the system. Through an inter-
active evaluation, we show that our ap-
proach generates high-precision rules even
in a 1-shot setting. On a second evalua-
tion on a widely-used relation extraction
dataset (TACRED), our method generates
rules that outperform considerably man-
ually written patterns. Our code, demo,
and documentation is available at https:
//clulab.github.io/odinsynth/.

1 Introduction
Rule-based methods for information extraction
address the opacity of neural architectures by
producing models that are completely transpar-
ent, i.e., they are usually a collection of rules
written in a declarative language. Such models
are better suited for incremental improvements,
as each individual rule can be explicitly inter-
preted. However, these benefits do not come
for free: users of such systems must be familiar
with the underlying declarative rule language,
and, potentially, with representations of syntax
such as syntactic dependencies. None of these
are trivial to users outside of natural language
processing (NLP), which, we argue, should be
the target users of these systems.

To mitigate the above limitation, we propose
a human-machine interface (HMI) that: (a) lets

users synthesize rules from natural language
examples, and correct them without necessarily
understanding the rule syntax (although expert
users who do have access to the actual rule
produced), (b) generates rules in a few-shot set-
ting, i.e., from a very small number of examples.
The latter contribution is possible because our
rule synthesis engine has been pretrained on a
large collection of rules that were automatically
generated from a large text corpus (Vacareanu
et al., 2022). In other words, our rule synthe-
sis approach is akin to prompting for language
models (Liu et al., 2021). That is, we first train
an open-domain rule synthesis model, and then
we guide its predictions to the task of inter-
est using a small number of examples of the
desired extractions (the “prompt”).

We include two types of evaluations that
prove the value of the proposed approach. The
first evaluation focuses on interactive sessions
where users generate rules that extract men-
tions of named entity classes, e.g., CITY or
ACADEMIC INSTITUTION from a single exam-
ple extraction. Using six different users, we
show that, despite the minimal supervision,
the tool produces named entities in the corre-
sponding classes with high precision, e.g., pre-
cision at 20 (P@20) at over 75% for the CITY
class. This suggests that the proposed HMI is
useful to domain scientists that need to per-
form information extraction quickly, without
understanding the underlying NLP technology.
For completeness, we also include a traditional,
non-interactive evaluation, on the TACRED
dataset (Zhang et al., 2017), through which
we show that the rules synthesized by our ap-
proach outperform the manually-written rules
by over 4 F1 points, even though our synthesis
component is not re-trained on the TACRED
data.

64

Figure 1: The architecture of our proposed system.

2 Architecture
At a high level, the proposed system consists
of two main modules: a rule synthesis com-
ponent, and an UI module to facilitate rapid
rule prototyping with minimal programming
or linguistic knowledge. The rule synthesis
component consists of: (a) a searcher that ex-
plores the possible rule space, and (b) a neural
scorer that prioritizes next steps during rule
generation. Figure 1 summarizes the overall
architecture. The user selects a handful of ex-
amples after an initial query. Then, our system
proposes a rule, together with its potential ex-
tractions. The user then decides if this rule
is satisfactory. If not, the user can either ask
for a new rule or add new examples (positive
or negative). This process repeats until the
generated rule is accepted. We describe these
components in detail in the next two sections.

3 Rule Synthesis
Our proposed approach for rule generation fol-
lows closely the method proposed in (Vacare-
anu et al., 2022). For completeness, we summa-
rize it here as well. Our rule synthesis method
uses enumerative search that is guided by a
transformer-based scoring mechanism, and is
optimized using search-space pruning heuris-
tics. Our transformer model scores each po-
tential next state (where a state contains the
incompletely generated rule up to this point),
given the current state, such that the number of
states to be explored is minimized. Specifically,
our system consists of two main components:
A searcher, with Branch and Bound (Land
and Doig, 1960) as the underlying algorithm.
The searcher uses the scores assigned by the
scorer (below) to determine the order of ex-
ploration, choosing the state with the highest
score, regardless of its position in the search

tree. As such, it is important for the scorer
to assign high scores to states that are in the
sub-tree that leads to the desired final rule,
and lower scores to all other states;

A scorer, with a transformer backbone that
is initialized with a pretrained model, but fine-
tuned through self-supervision, i.e., over auto-
matically generated rules (see Section 3.2). The
scorer uses the current state and the specifica-
tion, i.e., the natural language examples to be
matched by the generated rule, to score each
potential next state.

The searcher is responsible for exploring the
states in priority order (as determined by the
scorer), and deciding if a given state is suc-
cessful (i.e., it is a valid query and correctly
extracts the requested highlighted words and
nothing more). The search space can be inter-
preted as a tree, where the root is the initial
candidate solution and the children of a node
n are the candidate solutions that the node n
could expand into. Given this, the searcher
can be seen as iteratively applying a sequence
of three operations: (a) Expand the current
state according to the domain-specific language
grammar, (b) Score each expanded candidate
next state and insert them into the priority
queue, and (c) Select from the queue the state
with the highest score to be the next state. We
repeat this process until we find a solution or
we reach our step limit.

The scorer assigns a numerical value to states
to establish the order of exploration. We ex-
plore two variants: a static variant, which
assigns static weights to states based on their
components, and a contextual neural variant
based on a self-supervised method that assigns
contextual state scores based on the current
context.

As a simple example, consider a user that
wants to learn named entities belonging to the
class CITY. She may start with a specifica-
tion based on the sentence “Regina Romero
is the mayor of Tucson, Arizona, having
been elected after. . . ”, in which she high-
lights “mayor of” as the relevant context rep-
resentative of this class, and “Tucson” as
the desired entity to be extracted. From
this specification, our method would generate
the rule: [lemma=mayor] [tag=IN] (?<arg>

65

[tag=NNP]+),1 which picks up “mayor” fol-
lowed by a preposition (part-of-speech tag IN)
as the context, and a sequence of 1 or more
proper nouns as the entity to be extracted.

3.1 Multiple sentences
Our system can handle specifications that con-
tain multiple sentences and their highlights.
We require the enumerative searcher to find a
rule that would satisfy all the constraints for
all sentences in the specification. When scoring,
we score a (current state, next potential state,
single-sentence specification) triple, and then
average over all sentences in the specification
to obtain a final score for the (current state,
next potential state) transition.

3.2 Training the neural scorer
Unlike the static scorer, the neural guiding
function of the contextual scorer needs to be
trained, which we do with self-supervision.
Because there is no large corpus of Odinson
rules, we artificially generate one with random
spans of text that we randomly manipulate
into rules. Our random-length text spans are
chosen from the UMBC corpus (Han et al.,
2013). Each token in this span is then ran-
domly manipulated into an Odinson token con-
straint based on either word, lemma, or part-
of-speech. For example, a span such as the
dog barked might be converted to [tag=DT]
[word=dog] [lemma=bark]. Then, to expose
the model to additional rule components (e.g.,
alternation, quantifiers), we add further ma-
nipulations, again with randomization. To add
alternations, we build a temporary query by
replacing one of the token constraints with
a wildcard that can match any token and
query the corpus for an additional sentence
that has different content in that position.
This new content is added as an alternation.
For example, with the temporary version of
the above query [tag=DT] [word=dog] [],2
we might find A dog runs, resulting in the
following alternation: [tag=DT] [word=dog]
([lemma=bark]|[lemma=run]). To add a
quantifier (i.e., *, +, or ?), we select a token
to modify and a quantifier to add, and check

1Our rules are generated in the Odinson rule lan-
guage (Valenzuela-Escárcega et al., 2020).

2The Odinson wildcard, [], matches any token.

the corpus to ensure that the addition of the
quantifier yields additional results.

After generating each random rule, we build
a corresponding specification by querying the
UMBC corpus: the retrieved sentences and
their matched spans constitute specifications.
However, having a specification and the corre-
sponding rule is not enough to train our model.
We also need a correct sequence of transitions
from the initial placeholder to the final rule.
For this, we use an Oracle to generate the short-
est sequence of transitions, which we consider
to be the correct sequence for our purposes.
This sequence of transitions, together with the
specification, forms the training data for our
model. Note that we train only on this data,
i.e., after this self-supervised training process
the transformer’s weights are fixed. We train
using the cross-entropy loss and with a cyclical
learning rate, as suggested by (Smith, 2017).
Further, we employ a curriculum learning ap-
proach (Bengio et al., 2009; Platanios et al.,
2019), splitting the training data by sentence
length and by pattern length. We did not tune
our hyperparameters.

4 User Interface

We accompany the above rule synthesis com-
ponent with a user interface (UI) to facilitate
rapid prototyping with minimal programming
or linguistic knowledge. We showcase the UI in
Figure 2, split into 5 blocks (a–e). Initially, the
user has to do an initial search for sentences
of interest (a). Then, she selects any relevant
sentence, highlighting the parts for which she
wishes to obtain a rule, e.g., highlighting the
capital city of as the context and Amman as
the entity of interest (b). The system then
returns a potential rule which satisfies the cur-
rent constraints, together with what the rule
extracts (c). Note that we display the rule for
the benefit of expert users, but most users are
not required to understand the format of the
rule. That is, a user can understand the rule’s
impact by analyzing what such a rule extracts.
She may add negative examples (a negative
example is a sentence on which the output rule
should not match anything), or ask for a new
rule (d). This process is repeated until the user
is satisfied with the given rule (e).

66

Figure 2: Walkthrough example of the user interface.

67

5 Evaluation
5.1 Interactive Evaluation

Figure 3: Example of a specification annotated by a
user in the interactive evaluation. The entity is high-
lighted in orange and its context in gray.

We evaluated the performance of the sys-
tem in an interactive scenario with a human
in the loop. The purpose of the interactive
evaluation is to quantify the performance of
rules generated with the interface to extract
specific entity types using a limited amount
of examples. The user is tasked with using
the interface to synthesize a rule to extract a
specific named entity type, and then manually
verify that the extractions indeed belong to
the intended entity type. Given an entity type,
the user queries an index of the UMBC corpus
to pinpoint and select a pattern in one of the
retrieved sentences. This pattern works as the
user’s specification, composed of the context
and an entity of the relevant type (See section
3). Figure 3 depicts an example of a pattern
selection.

Once the specification is selected, it is used
to synthesize a candidate rule and retrieve a
sample sentences with matches. We restrict the
evaluation to contain a single specification, to
emulate a one-shot learning scenario, where the
model generates rules using a limited amount
of information. The user inspects the rule and
its matches to determine whether the candidate
rule faithfully represents the original intent. If
it does not, the next candidate rule is generated
and the process is repeated. We encouraged
users to repeat this process up to three times,
but allowed them to repeat it a fourth time at
their discretion.

The interactive evaluation is carried out
for the following entity pairs: CITY/CAPITAL,
PERSON/ACTOR, and ORGANIZATION/ACADEMIC
INSTITUTION. Each pair represents two differ-
ent levels of granularity of the same concept.

One to two users were assigned to each pair
and each user was instructed to use the inter-
face to synthesize three rules per entity type.
For every rule, they retrieved and manually
verified precision at 10 (P@10) and precision
at 20 (P@20) on the most frequent entities in
the matches from the UMBC corpus.

Table 1 contains precision at 10 and precision
at 20 for each of the entity types. We can
observe that using minimal supervision, i.e.
using a single specification to synthesize a rule
for a named entity type, the system generates
rules that have high precision (P@20 ≥ .77)
for coarse grained named entities and similar,
albeit slightly lower precision (P@20 ≥ .63), for
finer grained named entities. This is achieved
with no more than three or four iterations,
highlighting how domain experts can readily
benefit from our proposed HMI.

Entity Type P@10 P@20
CITY .85 .85
CAPITAL .83 .75
PERSON .78 .77
ACTOR .71 .72
ORGANIZATION .93 .85
ACADEMIC INSTITUTION .70 .63

Table 1: P@10 and P@20 of our rule synthesis on
6 different named entity types. CITY, PERSON and
ORGANIZATION are coarse types. CAPIITAL, ACTOR and
ACADEMIC INSTITUTION are fine grained types.

5.2 Non-interactive Evaluation
To facilitate a comparison with other ap-
proaches, we also include an evaluation on the
TACRED dataset, a widely-used relation clas-
sification dataset (Zhang et al., 2017). In this
setting, we cluster the training sentences to
generate specifications. In particular, for each
sentence, we compute an embedding by aver-
aging the embeddings of the words in between
the two given entities.3 Then, we compare the
similarity of two sentences by cosine similarity,
and cluster similar sentences together; each
cluster becomes one specification. Then, for
each cluster we run our system to generate a
rule, considering the words in-between the two
entities as the highlighted part.

We compare our approach against sev-
eral state-of-the-art approaches, as well as
three baselines. Our first baseline is
a traditional sequence-to-sequence approach
(Sutskever et al., 2014) with transformers
(Vaswani et al., 2017). We train it to decode
the rule using the specification as input, akin

3We used GloVe (Pennington et al., 2014).

68

to a traditional machine translation task. Our
second baseline (Patterns) is a rule-based sys-
tem that uses the hand-made rules compiled for
TACRED (Zhang et al., 2017). Our third base-
line No Learning consists of directly returning
a rule for trivial cases (e.g. no words or only
on word in between the two entities). When
there is no word, the final rule is empty. When
there is one word, the final rule consists of a
word, lemma, or tag constraint, depending on
which will result in a shorter rule. We present
our results in Table 2.

We note that both variants of our scorer
(static and dynamic) perform better than the
seq2seq and no-scorer baselines (34 F1 vs 28
F1). Of particular relevance for our compar-
ison is the baseline that relies on the hand-
crafted patterns for TACRED. Our contextu-
alized weights model obtains a higher F1 score
(41.4 F1 vs 36.6 F1), although at the cost of
precision, but with much higher recall. Our re-
sults add evidence that it might be possible to
replace the human expert with a neural expert.
When comparing our contextualized-scoring
approach to the supervised baselines, we note
that while we do not match their performance,
there are two important factors to consider.
First, our proposed approach is trained on do-
main agnostic data that we automatically gen-
erated, and then applied on TACRED as is,
without fine-tuning. On the other hand, the
supervised approaches that we compare with
train/fine-tune on the TACRED splits. Sec-
ond, the output of our approach is a set of
human-interpretable rules, while the output of
the other approaches is a statistical model that
produces only the final label. In other words,
previous work is much more opaque and thus
more difficult to interpret, debug, adjust, main-
tain, and protect from hidden biases present
in the training data (e.g., Kurita et al., 2019;
Sheng et al., 2019).

6 Conclusion and Future Work

We introduced a human-machine interface that
lets users synthesize rules from natural lan-
guage examples, and correct them without
necessarily understanding the rule syntax. In
an interactive evaluation, we showed that our
method is capable to rapidly generate high-
precision rules for the extraction of named enti-

Model P R F1
Baselines

Seq2Seq with Transformers 53.0 19.0 28.0
Patterns 86.9 23.2 36.6
No Learning 53.0 19.0 28.0

Supervised Approaches
Joshi et al. (2020) 70.8 70.9 70.8
Zhou and Chen (2021) – – 74.6
Cohen et al. (2020) 74.6 75.2 74.8

Our approach
Static weights 54.9 24.6 34.0
Contextual weights (BERT-Tiny) 57.6 29.6 39.1
Contextual weights (BERT-Mini) 57.2 32.5 41.4
Contextual weights (BERT-Small) 57.3 32.2 41.2
Contextual weights (BERT-Medium) 55.0 31.8 40.3
Contextual weights (BERT-Base) 55.6 32.4 41.0

Table 2: Results of our rule synthesis on the testing
partition of TACRED (given as precision (P), recall
(R), and F1 scores), compared with 3 baselines and
previous supervised approaches. We include variants of
our contextualized method using different transformer
backbones.

ties from a single example in natural language.
We also demonstrated that in a traditional,
non-interactive evaluation on the TACRED
dataset, our method produces rules that out-
perform manually-written rules, despite the
fact that our rule synthesis engine is not re-
trained on the TACRED data.

While these initial results are exciting, there
is plenty of work left to do. First, the rules
generated by the system are “surface” rules,
i.e., they act over sequences of tokens. Adding
support for the generation of rules over syntax
would allow for capturing more complicated re-
lations and over greater distances. Second, the
system is configured to generate a single rule
that captures the whole specification, which
may include multiple (positive or negative) ex-
amples. This may force the system to produce
complicated rules. A better alternative would
be to produce several simpler rules that to-
gether capture the whole specification. Lastly,
the system generates a sequence of rule candi-
dates that are presented to the user one-by-one,
which may bias the user’s perspective and im-
pact usability. For example, the current system
tends to initially propose rules that are overly
general, which yield low-precision results. To
better understand users’ preferences (i.e., do
users prefer high-precision or high-recall rules
initially?) user studies must be carried out.

69

References
Yoshua Bengio, Jérôme Louradour, Ronan Col-

lobert, and Jason Weston. 2009. Curriculum
learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML
’09, page 41–48, New York, NY, USA. Associa-
tion for Computing Machinery.

Amir DN Cohen, Shachar Rosenman, and
Yoav Goldberg. 2020. Relation classification
as two-way span-prediction. arXiv preprint
arXiv:2010.04829.

Lushan Han, Abhay L. Kashyap, Tim Finin,
James Mayfield, and Jonathan Weese. 2013.
UMBC_EBIQUITY-CORE: Semantic textual
similarity systems. In Second Joint Confer-
ence on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Con-
ference and the Shared Task: Semantic Textual
Similarity, pages 44–52, Atlanta, Georgia, USA.
Association for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by represent-
ing and predicting spans. Transactions of the
Association for Computational Linguistics, 8:64–
77.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W
Black, and Yulia Tsvetkov. 2019. Measuring bias
in contextualized word representations. arXiv
preprint arXiv:1906.07337.

Ailsa H. Land and Alison G. Doig. 1960. An auto-
matic method of solving discrete programming
problems. Econometrica, 28(3):497–520.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zheng-
bao Jiang, Hiroaki Hayashi, and Graham Neu-
big. 2021. Pre-train, prompt, and predict: A
systematic survey of prompting methods in
natural language processing. arXiv preprint
arXiv:2107.13586.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543,
Doha, Qatar. Association for Computational Lin-
guistics.

Emmanouil Antonios Platanios, Otilia Stretcu, Gra-
ham Neubig, Barnabás Póczos, and Tom M.
Mitchell. 2019. Competence-based curriculum
learning for neural machine translation. CoRR,
abs/1903.09848.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and
Nanyun Peng. 2019. The woman worked as a
babysitter: On biases in language generation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
3398–3403.

Leslie N. Smith. 2017. Cyclical learning rates for
training neural networks. In 2017 IEEE Winter
Conference on Applications of Computer Vision
(WACV), pages 464–472.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the 27th International
Conference on Neural Information Processing
Systems - Volume 2, NIPS’14, page 3104–3112,
Cambridge, MA, USA. MIT Press.

Robert Vacareanu, Marco A Valenzuela-Escarcega,
George CG Barbosa, Rebecca Sharp, and Mihai
Surdeanu. 2022. From examples to rules: Neural
guided rule synthesis for information extraction.
arXiv preprint arXiv:2202.00475.

Marco A Valenzuela-Escárcega, Gus Hahn-Powell,
and Dane Bell. 2020. Odinson: A fast rule-based
information extraction framework. In Proceed-
ings of the 12th Language Resources and Evalua-
tion Conference, pages 2183–2191.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
undefinedukasz Kaiser, and Illia Polosukhin.
2017. Attention is all you need. In Proceedings
of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page
6000–6010, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Yuhao Zhang, Victor Zhong, Danqi Chen, Ga-
bor Angeli, and Christopher D. Manning. 2017.
Position-aware attention and supervised data
improve slot filling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2017), pages 35–45.

Wenxuan Zhou and Muhao Chen. 2021. An im-
proved baseline for sentence-level relation extrac-
tion. arXiv preprint arXiv:2102.01373.

70

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 71 - 89

July 10-15, 2022 ©2022 Association for Computational Linguistics

SETSUM: Summarization and Visualization
of Student Evaluations of Teaching

♠Yinuo Hu∗ ♠Shiyue Zhang∗ ♣♡Viji Sathy ♣♡A. T. Panter ♠Mohit Bansal
♠Department of Computer Science, UNC Chapel Hill

♣Department of Psychology and Neuroscience, UNC Chapel Hill
♡Office of Undergraduate Education, UNC Chapel Hill
{huyinuo, shiyue, mbansal}@cs.unc.edu;

{viji.sathy, panter}@unc.edu

Abstract
Student Evaluations of Teaching (SETs) are
widely used in colleges and universities. Typ-
ically SET results are summarized for instruc-
tors in a static PDF report. The report often
includes summary statistics for quantitative rat-
ings and an unsorted list of open-ended stu-
dent comments. The lack of organization and
summarization of the raw comments hinders
those interpreting the reports from fully uti-
lizing informative feedback, making accurate
inferences, and designing appropriate instruc-
tional improvements. In this work, we intro-
duce a novel system, SETSUM, that leverages
sentiment analysis, aspect extraction, summa-
rization, and visualization techniques to pro-
vide organized illustrations of SET findings to
instructors and other reviewers. Ten univer-
sity professors from diverse departments serve
as evaluators of the system and all agree that
SETSUM help them interpret SET results more
efficiently; and 6 out of 10 instructors prefer
our system over the standard static PDF report
(while the remaining 4 would like to have both).
This demonstrates that our work holds the po-
tential of reforming the SET reporting conven-
tions in the future.

1 Introduction

Colleges and universities rely on student evalua-
tions of teaching (SETs) to assess students’ per-
ceptions about their courses (Chen and Hoshower,
2003; Zabaleta, 2007). These evaluations about the
course consist of both quantitative ratings using
Likert-type scales and open-ended comments that
describe student experiences. In many universities,
SETs are a standard component of evaluations of
teaching and have multiple functions. First, they
help individual faculty members examine their own
teaching performance in a diagnostic way so they
can work to improve their approach in subsequent
offerings of the course. Second, SETs allow institu-
tion leaders to review and describe the educational

∗ Equal contribution.

quality of course offerings and the performance
of instructors. Third, though controversial, SET
summaries often are used as part of an instructor’s
larger portfolio to demonstrate their teaching his-
tory during high-stakes settings. Finally, in some
colleges and universities, SET summaries are re-
leased to students to help guide them with course
selections. Given this wide range of uses for the
SET summaries, it is important that thoughtful, ac-
curate, and well-designed representations are pro-
vided to draw accurate inferences about teaching
quality, course design, and student learning (see
ethics Sec. 7 for more details).

Usually, at the end of each semester, SET results
are summarized into a PDF report for instructors
or other reviewers. As shown in a sample standard
SET report in Fig. 5 of Appendix, quantitative rat-
ings are summarized using basic statistics, such as
mean and median, while students’ comments from
open-ended questions are simply listed as raw text –
without adequate organization and analyses. When
a college course is particularly large (e.g., with
more than 100 students), the final SET report can
be longer than 10 pages, which is time-consuming
to read and analyze (Alhija and Fresko, 2009). In
addition, instructors’ or other reviewers’ own cog-
nitive biases may lead to inaccurate inferences and
analyses, e.g., people tend to pay more attention
to negative than positive comments (Kanouse and
Hanson Jr, 1987).

Therefore, the goal of our work is to provide a
new dynamic presentation of SET results to facili-
tate more efficient and less biased interpretations
compared to the standard PDF report. After obtain-
ing institutional SET data of four semesters from
the University of North Carolina (UNC) at Chapel
Hill, for demonstration we select two quantitative
and two open-ended questions from the total num-
ber of questions (Sec. 3). We develop a system,
SETSUM, to summarize and visualize the results
of these four questions. For quantitative ratings

71

(Sec. 4.1), we visualize two statistics: response rate
and sentiment distribution. For open-ended com-
ments (Sec. 4.2), we develop a sentiment analysis
model to predict whether each comment sentence
is positive or negative. We use an aspect extraction
approach to help instructors quickly know the popu-
larly discussed topics by students, e.g., assignment,
and the corresponding topic sentiments. Finally, we
propose an unsupervised extractive summarization
method that extracts top sentences with high cen-
trality, low redundancy, and balanced sentiments
as a summary of each aspect.

Automatic evaluations (Sec. 5.1) demonstrate
that our sentiment prediction and aspect extraction
modules achieve good accuracy, and our summa-
rization method produces more diverse and less
biased summaries than simply picking top cen-
tral sentences. More critically, the effectiveness
of SETSUM should be judged by its main users –
instructors. Thus, we begin by conducting human
evaluations (Sec. 5.2) with 10 professors from 8
different academic departments at UNC. Note that
SETSUM is continuously under development, and
our human evaluations were conducted on our very
first version: SETSUM V1.0. After evaluating the
two SET presentation approaches, instructors are
asked to complete a survey comparing the useful-
ness of SETSUM to the standard SET report. Ac-
cording to their responses, most of the new features
introduced on SETSUM are perceived as useful to
very useful by most instructors (on average, 8.8 out
of 10), compared to the standard report. All 10
instructors agree that SETSUM helps them inter-
pret their ratings and comments more efficiently;
while 4 out of 10 think the new system also sup-
ports less biased interpretations. Finally, 6 of 10
favor SETSUM more than the standard approach;
the remaining 4 think both reports could be help-
ful. Overall, for our first evaluation, instructors
hold a positive attitude towards SETSUM and offer
valuable and constructive suggestions to us.

Lastly, in Sec. 7, we discuss if machine-involved
representations of SETs may introduce new errors
or bias and if so, what improvement needs to be
made before the “demonstration” can transition
to an “application”. Our system aims to provide
accurate, efficient, and visualized SET results to
instructors or other reviewers. It does not directly
make any value judgments or evaluations about the
instructor’s skills, the course design, or the amount
of student learning during the term.

To the best of our knowledge, despite its
widespread use, we are among the few researchers
to develop a pilot system that presents student-
reported evaluations of teaching by using natural
language processing (NLP) techniques. In addition,
we are the first to apply the system for a SET instru-
ment and evaluate it using actual SET data from a
large public university. Though more development
work is in progress, our results demonstrate that
our approach is promising to reform the SET report
conventions in the future. Our SETSUM V1.1 web-
site requires credentials to login, please contact us
for an access to the website. We provide a YouTube
video to walk you through SETSUM V1.1. Our
code is hosted at SETSum Github Repo.

2 Background & Related Work

As mentioned, SETs are widely used in higher edu-
cation (Chen and Hoshower, 2003; Zabaleta, 2007).
SET studies have shown that they can capture stu-
dents’ opinions about instruction (Balam and Shan-
non, 2010), enhance course design, can be used as
a tool for assessing teaching performance (Penny
and Coe, 2004; Chen and Hoshower, 2003), and
reflect institutional accountability about teaching
(Spooren et al., 2013). Many instructors view SETs
as valuable feedback to improve their teaching qual-
ity (Griffin, 2001; Kulik, 2001). Many studies fo-
cus on instrument design (i.e., which questions to
ask), reliability and validity of SET results (i.e., are
the scores consistent across contexts; are scores
related to other key constructs), and potential con-
founding variables that affect SETs (e.g., do scores
differ by discipline, instructor race/ethnicity and
gender, student grade) (Simpson and Siguaw, 2000;
Spooren et al., 2013).

Typical SET instruments include quantitative
Likert-scale ratings. They are supplemented by
open-ended comments (Stupans et al., 2016; Mar-
shall, 2021). Therefore, compared to quantitative
ratings, open-ended comments are often under-
analyzed or ignored completely due to labor re-
quired to provide an adequate summary (Alhija
and Fresko, 2009; Hujala et al., 2020), raising the
need for contemporary methods in automated text
analysis. Recent works start to analyze student
comments via text mining and machine learning
methods such as sentiment analysis (Wen et al.,
2014; Azab et al., 2016; Cunningham-Nelson et al.,
2018; Baddam et al., 2019; Sengkey et al., 2019;
Hew et al., 2020), and identify topics, themes, or

72

Figure 1: The distribution of comments across prevalent topics (aspects). On the left, it shows the aspect bubble
chart, and on the right, it shows the summary of the “assignment” aspect.

suggestions from student comments (Ramesh et al.,
2014; Stupans et al., 2016; Gottipati et al., 2018;
Unankard and Nadee, 2019; Hynninen et al., 2019).
The common goal of these works is to answer some
research questions (e.g., what are sentiment differ-
ences across courses and students). In contrast, we
provide a demonstration tool of SET results to help
instructors gain insights on their own and to allow
others have access to organized summaries.

The most relevant works to ours are SUFAT
(Pyasi et al., 2018) and Palaute (Grönberg et al.,
2021) – two analytic tools for student comments.
They both support sentiment analysis and LDA
topic models (Blei et al., 2003), while we use more
advanced RoBERTa-based sentiment analysis and
weakly-supervised aspect extraction models. SU-
FAT requires users to install the tool and load SET
files locally, while our online website directly reads
the data from the SET instrument. More impor-
tantly, none of them conducts human evaluations,
which makes it unclear if their tools are useful from
the actual users’ perspectives. Therefore, we de-
velop the first demonstration system that uses an
actual university SET instrument and is evaluated
by university instructors who are interpreting their
own evaluations.

3 SET Data

We use Student Evaluations of Teaching (SETs)
data of over four academic terms (Fall 2017, Spring
2018, Fall 2018, Spring 2019) collected at UNC

Chapel Hill. We utilize “semester + course number”
as the specific identity of each course. We assume
each course has just one instructor.1 In total, there
are about 5.6K courses and 298K SETs. Each SET
is an evaluation questionnaire assigned to a student
for a specific course they enrolled in, including
both quantitative and open-ended questions.

UNC’s SET instrument includes a series of eval-
uation questions assessing different aspects of the
course and instructor. For demonstration, we select
four representative questions – two quantitative and
two open-ended items. For quantitative items, we
choose Overall, this course was excellent (Course
Rate) and Overall, this instructor was an effective
teacher (Instructor Rate), showing students’ over-
all ratings on the course and instructor performance.
Both items are based on a 5-point Likert scale (1
= Strongly Disagree to 5 = Strongly Agree). For
open-ended items, we choose Comments on overall
assessment of this course (Course Comments) and
Comments on overall assessment of this instructor
(Instructor Comments). Our system can be easily
extended to the full set of SET questions.

Because completing the SET form is not manda-
tory, the average response rates of the two quantita-
tive items we choose are 46% and 43% respectively,
and even lower response rates are observed for the
two open-ended items: 17% and 16%, respectively.

1This is not always true, and we will deal with co-teaching
situations in the next version of our system.

73

4 System Description

After logging in, instructors can select to display
their SET results of which semester and which
course. The dashboard shows two main sections:
Rating Analysis and Comment Analysis. See screen-
shots of our demo in Fig. 6 (SETSUM V1.0) and
Fig. 7 (SETSUM V1.1) in Appendix.

4.1 Rating Analysis
For each of the two quantitative questions, we show
the following statistics.

Response Rate. Since students do not always re-
spond to every SET question, knowing how many
students responded is critical for interpreting the
generalizability and representativeness of the re-
sults. The standard report (Fig. 5) provides the
number of responses for each question. To make
this information stand out, we use a circular pack-
ing chart to describe the proportion of students who
answered the question in comparison to the total
enrollment of the course (Fig. 2).

Sentiment Distribution. The standard SET re-
port summarizes quantitative ratings by mean, me-
dian, standard deviation, and percentages of the 5
rating options. Instead, in SETSUM V1.0, we sim-
plify ratings to be either positive (4 and 5) or nega-
tive (3 or lower). We show the positive vs. negative
ratings via a pie chart (Fig. 3 in Appendix). How-
ever, after conducting human evaluations on SET-
SUM V1.0, we received feedback from instructors
preferring the original 5-point scale distribution.
Thus, in SETSUM V1.1, we include a detailed
breakdown of all scores.

4.2 Comment Analysis
For open-ended questions, besides the option to
view all raw comments as the standard report (by
clicking the “View Raw Comments” button in SET-
SUM V1.0 or the “Table View” button in SETSUM

V1.1), we provide the following new features.

4.2.1 Basic Statistics
We present the Response Rate of open-ended ques-
tions also by a circular packing chart. Student
comments are raw texts without sentiment labels.
Therefore, we develop a sentiment analysis model
(Sec. 4.2.2) and get the sentiment of each comment
sentence. Then, we display the Sentiment Distri-
bution (positive vs. negative ratio) via a pie chart
for instructors to acquire an overview of students’
sentiments expressed in comments.

4.2.2 Sentiment Analysis
As mentioned in Sec. 2, many existing works have
conducted sentiment analysis on SET data (Wen
et al., 2014; Azab et al., 2016; Baddam et al., 2019).
In UNC’s SET instrument, no sentiment labels are
explicitly related to student comments. To train
a sentiment analysis model, we pair Course Com-
ments with the Course Rate since they are both
overall assessment of the course. Similarly, we pair
Instructor Comments with Instructor Rate.

We want to get sentence-level sentiments
to compute the overall sentiment of each as-
pect (Sec. 4.2.3) and conduct summarization
(Sec. 4.2.4). However, ratings are comment-level
sentences. Thus, we first train a comment-level
sentiment analysis model, and then we use it to
predict the sentiments of each comment sentence.

4.2.3 Aspect Extraction
Students usually comment on some common as-
pects of the course, e.g., grade, assignment. Previ-
ous works resort to LDA (Blei et al., 2003) to learn
topics from student comments (Ramesh et al., 2014;
Pyasi et al., 2018; Grönberg et al., 2021). We argue
that each topic learned from LDA is a set of words
that is hard to be assigned a post hoc name, and
topics sometimes lack distinctions (Ramesh et al.,
2014). Therefore, we apply a weakly-supervised
aspect extraction model, MATE (Angelidis and La-
pata, 2018), that can extract aspects from comments
using a set of pre-defined aspects.

MATE. Multi Seed Aspect Extractor (MATE)
(Angelidis and Lapata, 2018) is derived from
Aspect-Based Autoencoder (ABAE) (He et al.,
2017). ABAE learns a sentence-level aspect pre-
dictor without supervision by reconstructing the
sentence embedding as a linear combination of
aspect embeddings. Assume vs is the sentence
embedding and A is a matrix of aspect embed-
dings, ABAE first predicts aspects: paspect

s =
softmax(Wvs + b), and then reconstructs the
sentence vector: rs = A⊤paspect

s . The objective is
a max-margin loss using random sentences ni as
negative examples:

L =
∑

s

∑

i

max(0, 1− rsvs + rsvni)

Similar to LDA, ABAE has to interpret the learned
aspects post hoc. To address this, MATE pre-
defines a set of aspects by humans, and each aspect
is given a set of seed words. Concatenating seed

74

word embeddings together forms an aspect seed
matrix Ai, and the final aspect embedding matrix
A = [A⊤

1 z1, ...,A
⊤
KzK], where zi is a weight vec-

tor of seed words.

Aspect Annotation. To pre-label aspects of stu-
dent comments and get seed words for each aspect,
we randomly sample 100 comments for each of the
two open-ended questions from the entire corpus
and split them into sentences. Two human anno-
tators (two authors) work together, attribute one
or more aspects to each sentence, and label the
corresponding aspect sentiments (positive or nega-
tive). Table 3 in Appendix shows two examples. In
the end, we obtain 14 and 10 aspects of comments
on course and instructor, respectively, and their
terminology is defined in Table 5, 6 in Appendix.
With the annotations, we calculate clarity scores
(Cronen-Townsend et al., 2002) of each word w.r.t.
each aspect (see details in Appendix A). The higher
the clarity score, the more likely the word will ap-
pear in sentences of a specific aspect. We manually
select 5 top-scored words for each aspect while
removing noise (stopwords, names). Their scores
are re-normalized to add up to 1. Table 4 shows the
5 seed words (plus weights) for each aspect.

Visualization. After training the MATE model,
we predict the aspects of each comment sentence.
We select all aspects that have paspects > 0.4. The
threshold (0.4) is tuned on the subset with aspect
annotations. Then, for each open-ended question of
each course, we visualize its aspect distribution via
a bubble chart (Fig. 1). Bubble size represents the
number of sentences of this aspect. While bubble
color denotes the aspect sentiment – the average
of sentence-level sentiments, we chose accessible
color palette (the more blue the more positive, the
more yellow the more negative).

4.2.4 Extractive Summarization
After clustering comments by aspects, we want to
provide a summary of each aspect. We first obtain
the “centrality” of each sentence and then propose
a method to extract summaries with high centrality,
low redundancy, and balanced sentiments.

LexRank. For all the comment sentences under a
certain aspect, we use LexRank (Erkan and Radev,
2004) to get the graph-based “centrality” of each
sentence, where we use the cosine similarity of sen-
tence embeddings from Sentence-BERT (Reimers
and Gurevych, 2019). Intuitively, if a sentence is

Algorithm 1: Summarization
Input: Sa,K
Output: S′

S′ ← ∅, S′
a ← Sa, k ← 1;

while k ≤ K do
s← argmaxs∈S′

a
J(s, S′, Sa);

S′ ← S′ ∪ {s};
S′
a ← S′

a − {s};
k ← k + 1

end

similar to many other sentences, it will be close to
the “center” of the graph and thus it is prominent.

Sentence Extraction Algorithm. Naively, we
could extract the top central sentences as the sum-
mary. However, such summary sometimes includes
redundant information and tends to only select pos-
itive sentences as they are more common. Inspired
by Hsu and Tan (2021), we propose a greedy sen-
tence extraction algorithm that optimizes three ob-
jectives on sentence selection: (1) maximizes cen-
trality; (2) maximizes the difference between the
sentence and other sentences extracted from previ-
ous steps; (3) minimizes the difference between the
summary sentiment and the overall sentiment of
the aspect. Algorithm 1 demonstrates our unsuper-
vised extractive summarization algorithm, in which
Sa represents all sentences under an aspect a, K is
the number of sentences we want to extract (K=5),
and S′ is the target summary. Our learning objec-
tive (we want to maximize it) at each extraction
step is written as:

J(s, S′, Sa) = centralitys − cosine_sim(s, S′)

−senti_diff(S′ ∪ {s}, Sa)

Essentially, we want to extract a summary with
high centrality, low redundancy, and a balanced
sentiment. centralitys is the centrality of sentence
s. Following Hsu and Tan (2021), we define
cosine_sim(s, S′) as follows:

cosine_sim(s, S′) = max
s′∈S′

cosine(vs, vs′)

where vs and vs′ are sentence embeddings from
Sentence-BERT (Reimers and Gurevych, 2019).
And we define senti_diff(S′ ∪ {s}, Sa), as the fol-
lowing:

senti_diff = |
∑

s′∈S′∪{s} p(s
′)

|S′ ∪ {s}| −
∑

s′∈Sa
p(s′)

|Sa|
|

where p is the probability of positive sentiment
predicted by our sentiment analysis model.

75

Visualization. Hovering any bubble in the aspect
bubble chart will display its summary on the right
(Fig. 1). Clicking on the aspect tab will display
listed summary sentences within their the original
comments to provide contextual information. A
table of all sentences is on the bottom.

5 Evaluation & Results

5.1 Automatic Evaluation

Sentiment Analysis. We train two comment-
level sentiment analysis models for Course Com-
ments and Instructor Comments respectively. We
split our data into training (90%) and development
(10%) sets, and about 6.3K and 5.8K examples
are in Course and Instructor development sets re-
spectively. We first report comment-level sentiment
prediction performance on the dev sets. Second, we
use the comment-level sentiment analysis models
to predict sentence-level sentiments during infer-
ence. To evaluate this, we use our aspect annotation
data (Table 3 in Appendix), and we only use sen-
tences with just one sentiment (i.e., all aspects are
positive or negative), resulting in 202 and 230 test-
ing examples for Course and Instructor. We report
micro F1 (=accuracy) and macro F1. Table 1 shows
the results. It can be seen that our models achieve
reasonably good sentiment prediction performance,
though they perform worse on predicting sentence-
level sentiments than the comment level.

Aspect Extraction. Similarly, we also train two
aspect extraction models for Course Comments and
Instructor Comments separately. We evaluate their
performance by comparing to human annotated as-
pects using F1 score. In total, we have 213 and 234
testing examples for course and instructor mod-
els, and the average number of aspects is 1.38
and 1.31, respectively. We achieve F1 score of
48.6 for the course model and 48.9 for the instruc-
tor model, which are similar to the results of the
MATE paper (Angelidis and Lapata, 2018). We
also explore another approach by treating aspect
extraction as a multi-label aspect classification task.
We use half of the annotated data to finetune a
RoBERTa-base (Liu et al., 2019) model and test
on the other half annotated aspects. Our exper-
iment shows improved F1 scores of 62.6 for the
course model and 64.9 for the instructor model. We
plan to combine RoBERTa and MATE to deploy a
weakly-supervised RoBERTa-based MATE in our
next version of website.

Sentiment Analysis Course Instructor

Comment-level micro F1 0.87 0.94
Comment-level macro F1 0.83 0.86

Sentence-level micro F1 0.83 0.90
Sentence-level macro F1 0.84 0.85

Table 1: Sentiment analysis results.

Summarization Course Instructor

Base. Ours Base. Ours

Centrality↑ 1.13 1.09 1.14 1.10
Redundancy↓ 0.05 0.03 0.05 0.02
Sentiment Diff↓ 0.41 0.34 0.43 0.36

Table 2: Summarization results.

Summarization. Due to the lack of gold sum-
maries, we use three metrics (Centrality, Redun-
dancy, and Sentiment Difference) to evaluate our
summarization approach and compare it to the base-
line of extracting the top 5 central sentences. Please
refer to Appendix C for detailed definitions of these
three metircs. We randomly sampled 100 courses
as the testing set to report the performance. Table 2
shows the results. As expected, our method leads
to lower redundancy and sentiment difference than
the baseline, though it scarifies some centrality.

5.2 Human Evaluation
It is critical to evaluate how our demonstration sys-
tem is perceived by its primary users: instructors.

5.2.1 Evaluation Setup
Design a Survey. We design an evaluation survey
using Qualtrics. Our complete survey can be found
at SETSum Github Repo. In the survey, we first
introduce the background and purpose. We define
the standard PDF report Usual Approach and our
SETSUM V1.0 as Comparison Approach, and then
we ask instructors to compare the two approaches.
The main survey body contains 5 parts of questions:

(1) Rate the Usual Approach: Without compar-
ing to SETSUM, we ask how they rate the useful-
ness of standard SET reports in a 5-point scale:
not at all, slightly, moderately, very, or extremely
useful;

(2) Rate SETSUM (Rating Analysis): Compared
to the usual approach, instructors rate our new fea-
tures of summarizing ratings in a slightly different
5-point scale: not at all useful, not useful, equally
useful, useful, or very useful;

(3) Rate SETSUM (Comments Analysis): Com-
pared to the usual approach, we ask how useful
each of our new features of summarizing comments
is (using the same response anchors as (2)).

76

(4) Rate the overall experience with SETSUM:
We ask if our website helps them interpret SET
results more efficiently and/or with less bias (defi-
nitely not, probably not, might or might not, proba-
bly yes, definitely yes) as well as if they prefer the
standard SET report or our website or both.

(5) Comments: Instructors may leave additional
comments on the website under development.

Invite Instructors. We invited 15 professors at
UNC, who taught large introductory courses within
the studied period (4 semesters). We estimated the
survey to take 20-30 minutes, and each participant
was offered a $25 gift card to a campus coffee
shop. In the end, 10 instructors from 8 different
departments completed the survey successfully.

5.2.2 Results Analysis
Fig. 4 shows the survey results, and the Qualtrics
report can be found at SETSum Github Repo. Here,
we summarize some main takeaways.

Instructors have positive opinions about the
standard SET report. 8 out of 10 (and 6 out
of 10) instructors think the PDF report is moder-
ately to extremely useful in summarizing students’
ratings (and comments), respectively. This demon-
strates the well-perceived usefulness of existing
SET reports by instructors, though they are less
satisfied with the comment summarization.

New features introduced on SETSUM are per-
ceived to be useful or very useful. On average,
for rating analysis, 7 out of 10 instructors think
each of the 2 new features (response rate and sen-
timent distribution) is useful or very useful, and
for comments analysis, 8.8 out of 10 instructors
on avg. think each of the 5 new features (response
rate, sentiment distribution, topic bubbles, sum-
mary sentences, showing original comments for
each summary sentence) is useful or very useful,
while fewer instructors (5.5 out of 10 on avg.) think
the scatter plot2 and the table showing all comment
sentences are useful or very useful. Overall, most
instructors perceive our SETSUM as being useful.

SETSUM helps all instructors interpret SET re-
sults more efficiently, and it helps some instruc-
tors interpret SET results with less bias. All in-
structors agree that SETSUM helps them interpret
SETs more efficiently (i.e., probably to definitely

2We had a scatter plot showing all comment sentences in
SETSUM V1.0, which was removed from SETSUM V1.1.

yes). 4 out of 10 instructors think it helps them
understand SETs with less bias.

Instructors prefer SETSUM than the standard
report or would like to have both. Lastly, 6 out
of 10 instructors prefer SETSUM compared to the
usual approach, while 4 instructors would like to
have both approaches.

Constructive suggestions. We identify the fol-
lowing suggestions from instructors’ comments for
improving our future version: (1) The accuracy of
the sentiment analysis and aspect extraction models
can still be improved. (2) Many instructors prefer
the complete display of ratings in the 5-point scale,
rather than presenting only a positive v.s. negative
ratio. (3) Instructors without a computer science
background had difficulty understanding concepts
like “centrality”. So far, we addressed (2) and (3)
in SETSUM V1.1 by providing the 5-point scale
rating distribution and adding detailed explanations
for each Machine Learning related modules.

Overall, instructors show a very positive attitude
towards our SETSUM demonstration system and
provided important suggestions and direction for
our future work.

6 Conclusion

In this work, we propose SETSUM, a system to
summarize and visualize results from student eval-
uations of teaching. We integrate NLP, statistical,
visualization, and web service techniques. We are
among the few researchers to build a tool for in-
structor use and are the first to evaluate the tool
by university professors. Our results demonstrate
that our system is promising at improving the SET
report paradigm and helps instructors gain insights
from their SETs more efficiently. In the future, we
will keep improving the sentiment analysis and as-
pect extraction models to provide more accurate
summarization of SET results. The instructor eval-
uation offered key recommendations for the next
iterations of the system. We will incorporate more
functions to our system, including allowing instruc-
tors to compare different courses and track their
own teaching history of their courses as well as
developing a separate administrator dashboard to
identify themes across academic courses, depart-
ments, and programs.

77

7 Ethical Considerations

As mentioned earlier, SETs have multiple functions
such as (1) faculty members examining their teach-
ing performance in a diagnostic way, (2) allow-
ing institution leaders to review and describe the
quality of course offerings, (3) part of an instruc-
tor’s larger portfolio to demonstrate their teaching
history during high-stakes settings, and (4) sum-
maries being released to students to guide them
with course selections. Given this wide range of
uses for the SET summaries, our work’s purpose
is to take initial steps towards developing thought-
ful, accurate, and well-designed representations
that can be provided to draw accurate inferences
about teaching quality, course design, and student
learning. However, it is also critical to examine all
aspects of SETs through an ethical lens. Errors in
NLP-based analysis could lead to misinterpretation
and inaccurate judgments in high-stakes settings.
Therefore in the following, we discuss how each
module of our SETSum website affects the inter-
pretation of SET results.

For quantitative items, we provide visualizations
of two statistics that are directly computed from
SET data. Therefore, no errors or biases should be
introduced compared to the standard PDF report.
In fact, some instructors who participated in our
evaluations say that the response rate feature for
each individual question helps them understand the
results with less bias.

For open-ended items, to obtain their sentiment
distributions, we develop sentiment analysis mod-
els to obtain sentence-level sentiments. Though
we obtain good sentiment prediction performance
(Table 1), errors are inevitable. We use these fea-
tures to demonstrate the relative number of positive
to negative comments (ratio). In general, unless
very few students evaluate a course (low response
rate for comments), the system can still convey
the information fairly well. Another important fea-
ture that we develop as part of this system is to
group comment sentences by aspects. Although we
achieve similar aspect prediction F1 scores consis-
tent with past research, we find that the results are
not precise enough yet for widespread use. Our hu-
man evaluators notice that some sentences from the
open-ended comments are inaccurately clustered.
Therefore, in future iterations of this system, we be-
lieve it is very important to develop a more accurate
aspect extraction model. The final important fea-
ture is the unsupervised extraction summarization

module. We choose an extraction method because
it does not suffer from faithfulness (not staying
true to the source) issues as abstractive methods
(Cao et al., 2018). Meanwhile, our algorithm ex-
tracts summaries with more balanced sentiments
(Table 2). Nonetheless, we hope to find a summa-
rization approach that aligns more closely with the
sentiments underlying the students’ comments.

Though instructors express positive attitudes to-
wards our system and 4 instructors think it help
them understand SETs with less bias, we believe
that additional thorough evaluations need to be con-
ducted in the future. Outside of SETs, our work
recognizes the different ways, reporters, and meth-
ods that could be used to assess teaching effec-
tiveness, including but not limited to peer reports,
analysis of classroom sound, student learning, and
an instructor’s own teaching portfolio.

Finally, at this time our system is designed to
be used and reviewed by instructors or other re-
viewers, and it does not directly make any broad
judgments or decisions (e.g., whether the instructor
is qualified for promotion). The primary end-users
of the system should be instructors who wish to
analyze their SET findings more thoroughly and
acquire the main takeaways more efficiently. Other
reviewers and administrators can use the system
to view the SET findings in a broader scope, such
as reading the report summary per department or
per division. Overall, the goal of SETSUM is to
help instructors and other reviewers to understand
more of students’ needs and make improvements
to future course design.

Acknowledgments

We thank the reviewers for their helpful comments.
We thank the UNC instructors who participated in
our human evaluations. We would also like to thank
Heather Thompson from the Office of Undergradu-
ate Curricula for providing the data and Rob Ricks
from the Office of Institutional Research and As-
sessment for additional data preparation activities.
This work was supported by NSF-CAREER Award
1846185, NSF-AI Engage Institute DRL-2112635,
a Bloomberg Data Science Ph.D. Fellowship, and
the Howard Hughes Medical Institute Inclusive Ex-
cellence 3 Grant.

References
Fadia Nasser-Abu Alhija and Barbara Fresko. 2009. Stu-

dent evaluation of instruction: What can be learned

78

from students’ written comments? Studies in Educa-
tional evaluation, 35(1):37–44.

Stefanos Angelidis and Mirella Lapata. 2018. Sum-
marizing opinions: Aspect extraction meets senti-
ment prediction and they are both weakly supervised.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3675–3686, Brussels, Belgium. Association for Com-
putational Linguistics.

Mahmoud Azab, Rada Mihalcea, and Jacob Abernethy.
2016. Analysing ratemyprofessors evaluations across
institutions, disciplines, and cultures: The tell-tale
signs of a good professor. In International Confer-
ence on Social Informatics, pages 438–453. Springer.

Swathi Baddam, Prasad Bingi, and Syed Shuva. 2019.
Student evaluation of teaching in business education:
Discovering student sentiments using text mining
techniques. e-Journal of Business Education and
Scholarship of Teaching, 13(3):1–13.

Esenc M Balam and David M Shannon. 2010. Student
ratings of college teaching: A comparison of fac-
ulty and their students. Assessment & Evaluation in
Higher Education, 35(2):209–221.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the original: Fact aware neural abstractive
summarization. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32.

Yining Chen and Leon B Hoshower. 2003. Student
evaluation of teaching effectiveness: An assessment
of student perception and motivation. Assessment &
evaluation in higher education, 28(1):71–88.

Steve Cronen-Townsend, Yun Zhou, and W Bruce Croft.
2002. Predicting query performance. In Proceedings
of the 25th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 299–306.

Sam Cunningham-Nelson, Mahsa Baktashmotlagh, and
Wageeh Boles. 2018. Visually exploring sentiment
and keywords for analysing student satisfaction data.
Proceedings of the 29th Australasian Association of
Engineering Education (AAEE 2018), pages 1–7.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-
marization. Journal of artificial intelligence research,
22:457–479.

Swapna Gottipati, Venky Shankararaman, and
Jeff Rongsheng Lin. 2018. Text analytics approach
to extract course improvement suggestions from
students’ feedback. Research and Practice in
Technology Enhanced Learning, 13(1):1–19.

Bryan W Griffin. 2001. Instructor reputation and stu-
dent ratings of instruction. Contemporary educa-
tional psychology, 26(4):534–552.

Niku Grönberg, Antti Knutas, Timo Hynninen, and
Maija Hujala. 2021. Palaute: An online text mining
tool for analyzing written student course feedback.
IEEE Access, 9:134518–134529.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2017. An unsupervised neural attention
model for aspect extraction. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
388–397.

Khe Foon Hew, Xiang Hu, Chen Qiao, and Ying Tang.
2020. What predicts student satisfaction with moocs:
A gradient boosting trees supervised machine learn-
ing and sentiment analysis approach. Computers &
Education, 145:103724.

Chao-Chun Hsu and Chenhao Tan. 2021. Decision-
focused summarization. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 117–132.

Maija Hujala, Antti Knutas, Timo Hynninen, and Heli
Arminen. 2020. Improving the quality of teaching
by utilising written student feedback: A streamlined
process. Computers & Education, 157:103965.

Timo Hynninen, Antti Knutas, Maija Hujala, and Heli
Arminen. 2019. Distinguishing the themes emerg-
ing from masses of open student feedback. In 2019
42nd International Convention on Information and
Communication Technology, Electronics and Micro-
electronics (MIPRO), pages 557–561. IEEE.

David E Kanouse and L Reid Hanson Jr. 1987. Neg-
ativity in evaluations. In Preparation of this paper
grew out of a workshop on attribution theory held
at University of California, Los Angeles, Aug 1969.
Lawrence Erlbaum Associates, Inc.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

James A Kulik. 2001. Student ratings: Validity, utility,
and controversy. New directions for institutional
research, 2001(109):9–25.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Pablo Marshall. 2021. Contribution of open-ended ques-
tions in student evaluation of teaching. Higher Edu-
cation Research & Development, pages 1–14.

79

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Angela R Penny and Robert Coe. 2004. Effectiveness
of consultation on student ratings feedback: A meta-
analysis. Review of educational research, 74(2):215–
253.

Siddhant Pyasi, Swapna Gottipati, and Venky
Shankararaman. 2018. Sufat-an analytics tool for
gaining insights from student feedback comments. In
2018 IEEE Frontiers in Education Conference (FIE),
pages 1–9. IEEE.

Arti Ramesh, Dan Goldwasser, Bert Huang, Hal
Daumé III, and Lise Getoor. 2014. Understanding
mooc discussion forums using seeded lda. In Pro-
ceedings of the ninth workshop on innovative use
of NLP for building educational applications, pages
28–33.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Daniel Febrian Sengkey, Agustinus Jacobus, and
Fabian Johanes Manoppo. 2019. Implementing sup-
port vector machine sentiment analysis to students’
opinion toward lecturer in an indonesian public uni-
versity. Journal of Sustainable Engineering: Pro-
ceedings Series, 1(2):194–198.

Penny M Simpson and Judy A Siguaw. 2000. Student
evaluations of teaching: An exploratory study of the
faculty response. Journal of Marketing Education,
22(3):199–213.

Pieter Spooren, Bert Brockx, and Dimitri Mortelmans.
2013. On the validity of student evaluation of teach-
ing: The state of the art. Review of Educational
Research, 83(4):598–642.

Ieva Stupans, Therese McGuren, and Anna Marie Babey.
2016. Student evaluation of teaching: A study ex-
ploring student rating instrument free-form text com-
ments. Innovative Higher Education, 41(1):33–42.

Sayan Unankard and Wanvimol Nadee. 2019. Topic
detection for online course feedback using lda. In
International Symposium on Emerging Technologies
for Education, pages 133–142. Springer.

Miaomiao Wen, Diyi Yang, and Carolyn Rose. 2014.
Sentiment analysis in mooc discussion forums: What
does it tell us? In Educational data mining 2014.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,

Figure 2: A circular packing chart describes the re-
sponse rate.

Figure 3: A pie chart describes the sentiment distribu-
tion.

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Francisco Zabaleta. 2007. The use and misuse of stu-
dent evaluations of teaching. Teaching in higher
education, 12(1):55–76.

Appendix

A Clarity Score

To identify seed words for each aspect. We com-
pute the clarity score (Cronen-Townsend et al.,
2002; Angelidis and Lapata, 2018) of each word
with respect to each aspect. The score measures
how likely it is to observe word w in comments
of aspect a: scorea(w) = ta(w)log

ta(w)
t(w) , where

ta(w) is the tf-idf score ofw in comments of aspect
a and t(w) is that in all comments.

B Implementation Details

Sentiment Analysis. We finetuned a RoBERT-
large model (Liu et al., 2019) using HuggingFace’s
Transformers (Wolf et al., 2020) for 5 epochs and
chose the best performed checkpoint on the de-
velopment set. We used the AdamW optimizer

80

(Loshchilov and Hutter, 2018) with learning rate
1e-5 and batch size 16.

Aspect Extraction. We used NLTK to conduct
sentence and word segmentation. We initialized
the MATE model using GloVe embeddings (Pen-
nington et al., 2014). During the training, the word
embeddings, seed word matrices, and seed weight
vectors were fixed and we trained the model for
10 epochs using Adam optimizer (Kingma and Ba,
2015) with learning rate 10−1 and batch size 50.
We also experimented the multi-label classification
approach by finetuning a RoBERTa-base model
(Liu et al., 2019) for 10 epochs using AdamW opti-
mizer (Loshchilov and Hutter, 2018) with learning
rate 2e-5 and batch size 16.

Website. We developed the website using the
React framework for the front-end interface. For
the back-end, we set up a database with Firebase
and created a RESTful API with Firebase Cloud
Functions. Our website is deployed to Netlify.com
for an online demonstration.

C Summarization Evaluation Metrics

We define the Centrality metric as the average cen-
trality of summary sentences. The higher the metric
is, the better. Assume the summary to evaluate is
S′.

Centrality(S′) =

∑
s∈S′ centralitys
|S′|

We compute the information Redundancy within
a summary S′ by taking the average of cosine
similarity among sentences. We use sentence
embeddings from Sentence-BERT (Reimers and
Gurevych, 2019) to compute cosine similarities.
The lower the metric is, the better.

Redun(S′) =

∑
s∈S′ max

s′∈S′−{s}
cosine(vs, vs′)

|S′|

We first compute the average sentiments for the
summary S′ and all sentences under the aspect Sa,
respectively. Then, we take their absolute differ-
ence as the final score of Sentiment Difference. The
lower the metric is, the better.

Senti_diff = |
∑

s∈S′ p(s)

|S′| −
∑

s∈Sa
p(s)

|Sa|
|

where p is the probability of positive sentiment
predicted by our sentiment analysis model.

81

0 1 2 3 4 5 6 7 8 9 10

Number of Evaluators

Rate the Usual Approach - Quantitative ratings of
your course and teaching?

Rate the Usual Approach - Open-ended comments
about your course and teaching?

Moderately useful
3

Moderately useful
5

Extremely useful
2

Slightly useful
3

Slightly useful
2

Very useful
3

Not at all useful Slightly useful Moderately useful Very useful Extremely useful

(a) How useful is the Usual Approach in summarizing students’ quantitative ratings and open-ended comments of your course
and teaching?

0 1 2 3 4 5 6 7 8 9 10

Number of Evaluators

Rate the Comparison Approach - The response
rate for each quantitative question is displayed.

Rate the Comparison Approach - The ratio of
positive to negative comments is shown.
(quantitative)

Equally useful and not useful
3

Very useful
3

Very useful
3

Not useful
1

Useful
4

Useful
4

Not at all useful Not useful Equally useful and not useful Useful Very useful

(b) How useful is the Comparison Approach in summarizing students’ quantitative comments about your course and teaching?

0 1 2 3 4 5 6 7 8 9 10

Number of Evaluators

Rate the Comparison Approach - The response rate for the
open-ended comments is displayed.

Rate the Comparison Approach - The ratio of positive to
negative comments is shown (open-ended)

Rate the Comparison Approach - Comments are clustered
into bubbles by topic areas.

Rate the Comparison Approach - Hovering over topic
bubbles shows the top comment sentences

Rate the Comparison Approach - When you click into the
bubbles, you can see original comments of the top
sentences related to topic bubbles by clicking the
dropdown.

Rate the Comparison Approach - You can see a scatterplot
and table with all comment sentences related to the
specific topics when you click into the bubbles

Rate the Comparison Approach - You can choose to rank
the comments from most positive to most negative or
from negative to positive in the list of all comments

Equally useful and not useful
4

Very useful
4

Very useful
5

Very useful
4

Not useful
2

Useful
8

Useful
8

Useful
5

Useful
3

Useful
5

Useful
6

Useful
5

Not at all useful Not useful Equally useful and not useful Useful Very useful

(c) How useful is the Comparison Approach in summarizing students’ open-ended comments about your course and teaching?

0 1 2 3 4 5 6 7 8 9 10

Number of Evaluators

Rate the Comparison Approach - interpret my SET results
more efficiently.

Rate the Comparison Approach - interpret my SET results
with less bias.

Might or might not
5

Definitely yes
2

Probably yes
8

Probably yes
4

Definitely not Probably not Might or might not Probably yes Definitely yes

(d) Overall, how useful is the Comparison Approach in summarizing students’ opinions about your course and teaching?

0 1 2 3 4 5 6 7 8 9 10

Number of Evaluators

Please select your initial
preferences about how you
receive your SET findings.

I will like to have both approaches I prefer the Comparison Approach

I will like to have both approaches I prefer to use the Usual Approach I prefer the Comparison Approach

(e) Overall, please select your initial preference about how you receive your SET findings.

Figure 4: Results of human evaluation comparing the standard SET report (the Usual Approach) and the SETSUM
V1.0 website (the Comparison Approach).

82

SET Question Comment Sentence (Aspect, Sentiment)

Comments on overall assess-
ment of this course

Because, even though the lecture was fine the exams were brutal
or was just wrong because of the answer key being wrong.

(content, positive); (exam,
negative)

Comments on overall assess-
ment of this instructor

The instructor was clear at explaining information and fairly
evaluating all assignments.

(delivery, positive);
(grade, positive)

Table 3: Two examples of Aspect Annotation.

University of North Carolina at Chapel Hill, [College]

[COURSE] - [NAME] - Report Issue Date [DATE] 1

Student Evaluation of Teaching, [TERM]

[NAME], [COURSE]

Raters Students

Responded 120

Invited 169

Response Ratio 71.0%

Overall

Mean Median SD N
Strongly

Disagree Neutral Agree
Strongly

Comments on Overall Assessment of This Course.

Comments

I did not think I would take what I learned from this class and be able to apply it to any of my other studies or interests in

school/life/career, but I am very surprised and happy that I've learned so much and feel way more comfortable and proficient with

numbers and data. These are important skills that I am happy to have now.

I think it could have been structured better. We spent so much time on the relatively easy stuff in the beginning and then spent hardly

any time working through the harder topics in the end.

Everything was great about this course, however I felt very overwhelmed by the group project at the end of the semester and felt like it

had been thrown in as an afterthought. If we would have been given more time to complete it, it wouldn't have been as bad. Given the

timing in the semester was at the very end and my motivation was already lacking, the project just seemed like a little too much in a

short span of time.

This course, while very challenging, was taught well. While i think the flipped classroom technique is not the most beneficial, Dr.

[NAME] was really passionate about the class and tried to make information understood by all.

Comments on Overall Assessment of This Instructor.

Comments

She did an excellent job. You can see how passionate she is about the subject which made it more entertaining in class

Professor [NAME] was incredible. She worked hard to help her students succeed, and took into account our opinions as students in

order to better design the course. Professor [NAME] made herself available to help her students, and showed interest in our

success in the class, as well as outside of the class.

One of the best instructors I have had at UN

Dr. [NAME] cares so much about her students and at it made students want to learn more in the course.

Ms. [NAME] is a great instructor. She really loves what she is teaching, and tries to create a close community between the students.

I really felt seen and heard by Dr. [NAME]. I appreciate the format of the class and the personalized feed back she gave me at office

hours. I like how she encouraged us to share events on campus that are going on, and how she shared about her life as well.

Dr. [NAME] is obviously very passionate about her work and it shows every day. She does all that she can to cater to the needs of

her students individually and as a whole. She goes out of her way to provide ample resources to everyone to make sure we all learn

course materials to the best of our ability. I specifically appreciated the videos she provided and the notes and tables. I don't believe

there is anything I would change as everything worked ideally for me.

I enjoyed the polleverywhere questions we did in class; although I would like to see more questions similar to exam questions.

Disagree Agree

1. Overall, this course was excellent. 4.09 4.00 0.97 120 3.3 % 3.3 % 12.5 % 42.5 % 38.3 %

2. Overall, this instructor was an effective teacher. 4.52 5.00 0.78 117 1.7 % 1.7 % 2.6 % 30.8 % 63.2 %

I think she is an intelligent woman who clearly cares a great deal about her students, but I think she made the course too

complicated. There were too many resources, and I didn't find the assignments to be a great help. I also found that "review" before

exams was a waste of time and didn't help me at all.

One of the best professors I have had at UNC. She was very understanding and so excited to share her knowledge with us. The

videos were so so helpful –– I knew/understand almost everything we did in class because of watching the videos beforehand.

Figure 5: The standard PDF SET report.

83

(a) A page shows the Rating Analysis (Quantitative Questions) part.

Figure 6: Screenshots of SETSUM v1.0 (Part1, see Part2 in the next page).

84

(b) A page shows the Comments Analysis (Open-ended Questions) part.

Figure 6: Screenshots of SETSUM v1.0 (Part2).
85

(a) A page shows the Rating Analysis (Quantitative Questions) part.

Figure 7: Screenshots of SETSUM v1.1 (Part1, see Part2 in the next page).

86

(b) A page shows the Comments Analysis (Open-ended Questions) part.

Figure 7: Screenshots of SETSUM v1.1 (Part2).

87

Aspect Top words (normalized weight)

assignment assignment (0.33), homework (0.31), concept (0.17), reading (0.13), exercise (0.07)

content material (0.42), lecture (0.17), reading (0.15), subject (0.13), content (0.13)

course design syllabus (0.21), requirement (0.20), communicated (0.20), wish (0.20), discussion (0.19)

exam exam (0.31), test (0.24), question (0.20), answer (0.13), problem (0.13),

general feeling course (0.33), enjoyed (0.25), favorite (0.19), challenging (0.12), hard (0.11)

grade grading (0.39), feedback (0.19), harsh (0.16), midterm (0.16), easy (0.11)

group work group (0.30), project (0.24), recitation (0.20), work (0.06), team (0.20)

instructor professor (0.50), instructor (0.21), passionate (0.11), teach (0.11), condescending (0.06)

lab lab (0.32), hand (0.20), report(0.20), grading (0.10), experiment (0.18)

lessons learned learned (0.23), real (0.22), life (0.22), skill (0.19), understanding (0.14)

participation discussion(0.30), speak(0.23), comfortable (0.18), participation (0.16), stressful (0.13)

project project (0.30), instance (0.23), expectation (0.18), clearly (0.16), explained (0.13)

recitation recitation (0.57), content (0.18), project (0.10), review (0.09), group (0.05)

resources peer (0.20), mentor (0.20), book (0.20), software (0.20), reference (0.20)

teaching assistant (TA) TA (0.42), job (0.20), helping (0.12), explained (0.06). available (0.20)

(a) Highest ranked words list for each aspect of Comments on overall assessment of this course.

Aspect Top words (normalized weight)

course design lecture (0.28), assignment (0.21), topic (0.18), activity (0.17), structured (0.17)

delivery engaged (0.26), clear (0.22), lecture (0.22), example (0.16), explain (0.14)

exam unfair (0.25), fair (0.25), exam (0.23), guide (0.20), question (0.08)

general feeling professor (0.37), great (0.27), instructor (0.25), bad (0.05), overall (0.05)

grade grade (0.36), passing (0.20), average (0.20), exam (0.13), comment (0.11)

lessons learned conceptual (0.27), intellectual (0.27), learned (0.20), knowledge (0.16), understanding (0.11)

office hour office (0.38), hour (0.38), time (0.09), comment (0.08), meet (0.08)

personality enthusiastic (0.30), passionate (0.22), person (0.19), care (0.18), funny (0.12)

recitation recitation (0.26), time (0.14), project (0.20), group (0.20), organized (0.20)

skills knowledgeable (0.40), experience (0.26), information (0.14), quality (0.10), deep (0.10)

teaching assistant (TA) TA (0.41), interactive (0.15), supportive (0.15), constructive (0.15), feedback (0.15)

(b) Highest ranked words list for each aspect of Comments on overall assessment of this instructor.

Table 4: Highest ranked words and normalized weight for each aspect.

88

Terminology Description Example

general feeling General high-level comments or over-
all feelings about the course

The course is really interesting for me as a CS major and I
learned a lot form it.

instructor Any comments towards the instructor Professor [NAME] is a joy, and is incredibly understanding,
passionate, and enjoyable to simply listen to in class!

teaching assistant
(TA)

Any comments related to TA Resources are always available, the instructors and TAs were
easily accessible and always friendly, the material was challeng-
ing, and examples were always fun and engaging.

lab Any comments related to lab I thought this course was very engaging and I liked that it was
very hands on, like a lab should be.

recitation Any comments related to recitation This recitation was a bit odd.

course design Any comments on the organization and
structure of the course

I thought this course was excellently structured and formatted.

assignment Any comments related to home-
work/assignments

The assignment is really, really well designed that it builds upon
each other from assignment 2 through assignment 9 and it helped
me exercise various topics/concepts that I learned from class.

exam Any comments related to exam/test This class is extremely hard and the second test is expected to
be failed by most students, which is ridiculous.

content Any comments related to course mate-
rials or specific contents of the course

The material was very useful for our course although the profes-
sors could have made a better connection with the techniques
learned in the lab.

participation Talk about the participation / atten-
dance / engagement / discussion

Needs more class participation and discussion.

grade Comments on the grading of the course Harsh grading on lab reports.

group work Any comments related to group work All of the recitations consisted of group work towards a final
project, though the early recitations seemed largely irrelevant to
the project.

resources Resources provided by course such as
readings, textbooks, peer tutors etc.

I did however get all the help I needed from the peer mentors.

lessons learned Learning outcomes or skills acquired
from the course

The professor is really good, I learned a lot of interesting and
classic dramas this semester.

Table 5: Aspect Annotation Terminology for Comments on overall assessment of this course.

Terminology Description Example

general feeling General high-level comments or over-
all feelings about the instructor

Awesome Professor.

teaching assistant
(TA)

Any comments related to TA One of the best TAs I have had so far at UNC

recitation Any comments related to recitation Recitation felt like a waste of time.

office hour Any comments related to office hour She was great during her office hours and was always concerned
that we understood the material.

personality Describe personality of the instructor She cares a lot about the subject material and her students.

skills Describe the skill sets or experiences
of the instructor

The instructor had a deep understanding of the course material
and provided many real world examples built from her own
experience and previous work.

grade Comments on the grading style The instructor was clear at explaining information and fairly
evaluating all assignments.

delivery How the instructor delivers the infor-
mation and explains concepts

I really enjoyed her teaching style, she helped us through tough
topics by breaking them down into more digestible chunks and
was really positive overall, which helped for class moral.

course design Comments on the organization and
structure of the course

I didn’t really get to know the TA because we didn’t have a lot
of recitations.

lessons learned Learning outcomes or skills acquired
from the course

I now have a greater understanding of the German language and
of Swiss;German literature and culture.

Table 6: Aspect Annotation Terminology for Comments on overall assessment of this instructor.

89

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 90 - 98

July 10-15, 2022 ©2022 Association for Computational Linguistics

Towards Open-Domain Topic Classification

Hantian Ding1, Jinrui Yang1,2, Yuqian Deng1, Hongming Zhang1, Dan Roth1

1University of Pennsylvania, 2University of Melbourne
{hantian2, jinruiy, yuqiand, hzhangal, danroth}@seas.upenn.edu

Abstract

We introduce an open-domain topic classifica-
tion system that accepts user-defined taxonomy
in real time. Users will be able to classify a
text snippet with respect to any candidate la-
bels they want, and get instant response from
our web interface. To obtain such flexibility,
we build the backend model in a zero-shot way.
By training on a new dataset constructed from
Wikipedia, our label-aware text classifier can
effectively utilize implicit knowledge in the
pretrained language model to handle labels it
has never seen before. We evaluate our model
across four datasets from various domains with
different label sets. Experiments show that
the model significantly improves over exist-
ing zero-shot baselines in open-domain scenar-
ios, and performs competitively with weakly-
supervised models trained on in-domain data.12

1 Introduction

Text classification is a fundamental natural lan-
guage processing problem, with one of its major ap-
plications in topic labeling (Lang, 1995; Wang and
Manning, 2012). Over the past decades, supervised
classification models have achieved great success
in closed-domain tasks with large-scale annotated
datasets (Zhang et al., 2015; Tang et al., 2015; Yang
et al., 2016). However, they are no longer effective
in open-domain scenarios where the taxonomy is
unbounded. Retraining the model for every new
label set often incurs prohibitively high cost in the
sense of both annotation and computation. By con-
trast, having one classifier that is flexible with un-
limited labels can save such tremendous efforts
while keeping the solution simple. Therefore, in
this work, we build a system for open-domain topic
classification that can classify a given text snippet
into any categories defined by users.

1Interactive online demo at https://cogcomp.seas.
upenn.edu/page/demo_view/ZeroShotTC

2Code and data available at http://cogcomp.org/
page/publication_view/980

At the core of our system is a zero-shot text
classification model. While supervised models are
typically insensitive to class names, a zero-shot
model is usually label-aware, meaning that it can
understand label semantics directly from the name
or definition of the label, without accessing any
annotated examples. Our model TE-Wiki com-
bines a Textual Entailment (TE) formulation with
Wikipedia finetuning. Specifically, we construct
a new dataset that contains three million article-
category pairs from Wikipedia’s subcategory graph,
and finetune a pretrained language model (e.g.
BERT) to predict the entailment relations between
articles and their associated categories. We simu-
late the diversity in open-domain classification with
the wide coverage of Wikipedia, while preserving
label-awareness through an entailment framework.

In our benchmarking experiments, TE-Wiki out-
performs all previous zero-shot methods on four
benchmarks from different domains. It also
shows competitive performance against weakly-
supervised models trained on in-domain data. By
learning from Wikipedia, our method does not re-
quire any data that is specifically collected from
the evaluation domains. On the other hand, since
our model is label-aware, it can flexibly classify
text pieces into any labels outside Wikipedia.

Finally, we compare our system against humans
for further insights. We show that even humans are
sometimes confused by ambiguous labels through
a crowdsourcing study, which explains the perfor-
mance gap between open-domain and supervised
classification. The gap is reduced significantly
when label meanings are clear and well aligned
with the semantics of text. We also use an exam-
ple to illustrate the negative effect of a bad label
name. Through the analysis, we demonstrate the
importance of choosing proper label names in open-
domain classification.

90

Figure 1: An overview of our open-domain topic classification system. Users can choose multiple models (top), and
define their own text input and candidate labels (middle). Prediction results from different models are displayed in
the bar chart and the table (bottom).

2 Related Work

Open-domain zero-shot text classification was first
studied in the NLP domain in (Chang et al., 2008)
(under the name “dataless classification") as a
method that classifies solely based on a general
knowledge source and does not require any in-
domain data, whether labeled or not. It was pro-
posed to embed both the text and labels into the
same semantic space, via Explicit Semantic Anal-
ysis, or ESA (Gabrilovich and Markovitch, 2007),
and pick the label with the highest relevance score.
This idea was further extended to hierarchical
(Song and Roth, 2014) and cross-lingual (Song
et al., 2016) text classification. Later on, (Yin et al.,
2019) called this protocol “label fully unseen" and
proposed an entailment approach to transfer knowl-
edge from textual entailment to text classification.
It formulates an n-class classification problem as
n binary entailment problems by converting labels
into hypotheses and the text into the premise, and
selects the premise-hypothesis pair with highest
entailment score. More recently, another concur-
rent work (Chu et al., 2021) proposed to explore
resources from Wikipedia for zero-shot text classi-
fication, but with a different formulation.

There are many other methods that also require
less labeling than supervised classification, though
in slightly different settings. For example, previ-
ous works have explored to generalize from a set
of known classes (with annotation) to unknown
classes (without annotation) using word embed-

dings of label names (Pushp and Srivastava, 2017;
Xia et al., 2018; Liu et al., 2019), class correlation
on knowledge graphs (Rios and Kavuluru, 2018;
Zhang et al., 2019), or joint embeddings of doc-
uments and labels (Nam et al., 2016). Besides,
Weakly supervised approaches (Mekala and Shang,
2020; Meng et al., 2020) learn from an unlabeled,
but in-domain training set. Given a set of pre-
defined labels, a label-aware knowledge mining
step is first applied to find class-specific indicators
from the corpus, followed by another self training
step to further enhance the model by propagating
the knowledge to the whole corpus. However, none
of these approaches are suitable for building an
open-domain classification system. They either re-
quire domain-specific annotation or knowing test
labels beforehand.

3 System Description

We present details about our open-domain topic
classification system, starting with an overview of
our web interface, followed by the backend model.

3.1 User Interface

Figure 1 is a snapshot of our online demo. The sys-
tem is supported by multiple backend models for
test and comparison. Among them, “Bert-Wiki",
corresponding to TE-Wiki in this paper, is the best-
performing one in our evaluation. After selecting
the model(s), users can create their own taxonomy
in the “Labels" column, and input the text snippet.

91

Figure 2: An overview of our proposed TE-Wiki. Left: the data collection process. For each of the top-level
categories, we run DFS to find its descendant categories as well as their member articles. These articles are paired
with the root category for model input. Right: the model architecture. We use BERT for sequence classification.
The article text is concatenated with the category name to feed into a BERT encoder. The classification head takes
the output embedding of the "[CLS]" token to classify the input text-category pair.

The system will then classify the text with the user-
defined taxonomy. Results are presented in two
formats: a bar chart and a ranking table. The table
on the right provides a clear view of rankings by
each model, while the bar chart on the left is useful
to compare the scale of the scores from different
models for different labels. These scores, ranging
from 0 to 1, are probabilities of the label being
relevant to the text, which we will explain further
in the next section.

Consider the example in Figure 1. The input text
is most relevant to lifestyle, somewhat relevant to
technology, and irrelevant to children, which aligns
with the prediction of our “Bert-Wiki" model.

3.2 TE-Wiki
We now describe our best performing model TE-
Wiki. Previous work (Yin et al., 2019) has demon-
strated that an n-way classification problem can
be converted into n binary entailment problems.
Specifically, we can use the text as the premise,
and candidate labels as the hypotheses, to generate
n statements “[Text] Entails [Labeli]" for i ∈ [n].
The motivation is that classification is essentially
a special kind of entailment. Suppose we want to
classify a document into 3 classes: politics, busi-
ness, sports. We can ask three binary questions:
“Is it about politics?”, “Is it about business?”, “Is it
about sports?”. By doing so, the model is no longer
constrained to a fixed label set, as we can always
ask more questions to handle new labels.

With the above framework, it is straightforward
to train a model on an entailment dataset (e.g.
MNLI (Williams et al., 2018), FEVER (Thorne

et al., 2018), RTE (Dagan et al., 2005; Wang et al.,
2019).) and use it for classification. However, this
may not be the optimal choice as topic classifi-
cation only focuses on high-level concepts, while
textual entailment has a much wider scope and in-
volves many other aspects (e.g., see (Dagan et al.,
2013)). Therefore, we propose to construct a new
dataset from Wikipedia with articles as premises,
and categories as hypotheses. Our desired training
pair should meet the following two criteria:

1. The hypothesis is consistent with the premise,
i.e. the categorization is correct.

2. The hypothesis should be abstract and concise to
reflect the high-level idea of the premise, rather
than focus on certain details.

Directly using all the categories associated with an
article satisfies the first criterion, but fails with the
second, as some of them do not represent the article
well. For example, the page Bill Gates is assigned
Category:Cornell family, which is correct about
the person but probably not a suitable label for the
whole article. To resolve the issue, we instead use
higher-level categories on Wikipedia’s subcategory
graph to yield better hypotheses.

The overview of TE-Wiki is illustrated in Fig-
ure 2. Specifically, we start with a set of 700 top-
level categories from Wikipedia’s overview page3

as roots. For each of them, we run a depth-first
search (DFS) to find its subcategories. In our ex-
periment, we set the max depth to 2 to ensure the
subcategories found are strongly affiliated with the

3https://en.wikipedia.org/wiki/
Wikipedia:Contents/Categories

92

Algorithm 1: Collect training data
Input :Top-level category set S,

Wikipedia subcategory graph G,
max search depth r = 2;

Initialize d(x, c) =∞ for any article x ∈ X and
c ∈ S. M = {};

for c in S do
T = DFS(c,G, r);
for t in T .nodes do

for x in t.articles do
d(x, c) = min{d(x, c), 1 + depth(t)};

end
end

end
for x in X do

if minc∈S d(x, c) <∞ then
P = argminc∈Sd(x, c);
for c in P do

Add (x, c, 1) to M ;
end
Sample c′ from S − P ;
Add (x, c′,−1) to M ;

end
end
Output :M

root. We collect all member articles of categories
in the DFS tree, including both leaves and internal
nodes, and pair them with the root to construct pos-
itive examples. In case an article can be reached
from multiple root categories, we only pair it with
the root(s) that has the smallest tree distance to
the article to ensure supervision quality. Then for
each article, we randomly choose a different cat-
egory to construct a negative example. While we
have tried more sophisticated negative sampling
strategies with the aim to confuse the model, none
of them makes a significant improvement. Thus,
we keep to this simple version. The final training
set D = {(xi, ci, pi)ni=1} consists of 3-tuples such
that xi is a Wikipedia article, ci is the correspond-
ing high-level category name, and pi ∈ {+1,−1}
is the label. The procedure for constructing the
training set is summarized in Algorithm 1.

We then fine-tune the pre-trained BERT model
(Devlin et al., 2019) with the collected dataset.
Given a tuple (xi, ci, pi), the concatenation of xi
and ci is passed to a BERT encoder, followed by a
classification head to predict whether the article xi
belongs to the category ci. During test, (i) for the
single-labeled case, we pick the label with the high-
est predicted probability, (ii) for the multi-labeled
case, we pick all labels predicted as positive (i.e.
probability > 0.5). We do not use any hypothesis
template to convert label names into sentences as
in (Yin et al., 2019), for consistency with training.

Dataset #Classes #samples
Yahoo (Zhang et al., 2015) 10 100,000
Situation (Mayhew et al., 2019) 12 3525
AG News (Zhang et al., 2015) 4 7,600
DBPedia (Lehmann et al., 2015) 14 70,000

Table 1: Dataset Statistics.

4 Evaluation

We evaluate all the backend models of our sys-
tem on four classification benchmarks to compare
their performance. We also compare them against
weakly-supervised and supervised models to quan-
tify how much we can achieve without any domain-
specific training data.

4.1 Experiment setup
Datasets: We summarize all test datasets in Table
1. For Yahoo! Answers, we use the reorganized
train/test split by (Yin et al., 2019). All datasets are
in English. Among the four, Situation Typing is a
multi-labeled dataset with imbalanced classes, for
which we report the weighted average of per-class
F1 score. We refer readers to (Yin et al., 2019) for
the class distribution statistics. The other three are
single-labeled and class-balanced, and we report
the classification accuracy.
Models: Apart from TE-Wiki, we run five zero-
shot models for open-domain evaluation, as well
as a weakly-supervised and a supervised model for
close-domain comparison.

• Word2Vec (Mikolov et al., 2013): To measure
cosine similarity between the embedding vectors
of text and label.

• ESA (Chang et al., 2008): Same as above, except
using embeddings in Wikipedia title space

• TE-MNLI, TE-FEVER, TE-RTE (Yin et al.,
2019): Textual entailment models by finetuning
BERT on MNLI, FEVER, and RTE respectively.4

• LOTClass (Meng et al., 2020): A weakly-
supervised method that learns label information
from unlabeled, but in-domain training data.

• BERT (Devlin et al., 2019): We finetune a su-
pervised BERT on training data for each dataset.

Implementation: We finetune the bert-base-
uncased model on the Wikipedia article-category
dataset to train TE-Wiki. We removed 26 cate-
gories whose name starts with "List of" from the
700 top-level categories, resulting in 674 categories

4In experiments, we always use bert-base-uncased.

93

Supervision Type Methods Yahoo Situation AG News DBPedia

Zero-shot

Word2Vec (Mikolov et al., 2013) 35.7 15.6 71.1 69.7
ESA (Chang et al., 2008) 40.4 30.2 71.1 64.7
TE-MNLI (Yin et al., 2019) 37.9 15.4 68.8 55.3
TE-FEVER (Yin et al., 2019) 40.1 21.0 78.0 73.0
TE-RTE (Yin et al., 2019) 43.8 37.2 60.5 65.9
TE-Wiki 57.3 41.7 79.6 90.2

Weakly-supervised LOTClass (Meng et al., 2020) 54.7 N/A 86.4 91.1
Supervised BERT (Devlin et al., 2019) 75.3 58.0 94.4 99.3

Table 2: Test results of all methods on four datasets. Compared with Word2Vec and ESA, ESA-WikiCate is overall
the best among the three embedding-based methods. TE-WikiCate outperforms all other zero-shot methods across
all four datasets, and performs competitively against the weakly-supervised LOTClass.

as hypotheses and 1,367,784 articles as premises.
The final training set contains 3,387,028 article-
category pairs. We set the max sequence length to
be 128 tokens and the training batch size to be 64.
The model is optimized with AdamW (Loshchilov
and Hutter, 2019) with initial learning rate as 5e-
5. Since we do not have a development set in the
zero-shot setting, we train the model for 1500 steps
to prevent overfitting. For all zero-shot methods,
we train once and evaluate the model on all test
datasets. For supervised and weakly-supervised
methods, we train a different model for each differ-
ent dataset.

4.2 Result Analysis

The main results are presented in Table 2. We ob-
serve that TE-Wiki performs the best among all
zero-shot methods on all four datasets with differ-
ent labels and from different domains, demonstrat-
ing its effectiveness as an open-domain classifier. It
also performs closely with the weakly-supervised
LOTClass which is trained on in-domain data with
known taxonomy, showing that an open-domain
zero-shot model can achieve similar accuracy as
those domain-specific classifiers. In particular, TE-
Wiki outperforms LOTClass on Yahoo, whose
training set contains quite a few ambiguous ex-
amples. These examples can have negative impact
on self-training. On the other hand, our zero-shot
model does not rely on any domain-specific data,
making it more robust against imperfect data.

It is possible that some of the testing labels also
appear in the Wikipedia categories used for train-
ing.5 To ensure the quality and fairness of our
zero-shot evaluation, we remove the overlapping
categories from Wikipedia training data, and retrain
the TE-Wiki model for each test set. Specifically,
we normalize labels and categories by their lower-
cased, lemmatized names, and perform a token-

5Throughout this subsection, we use the word "category"
for the training set and "label" for the testing sets.

based matching. We report in Table 3 the perfor-
mance before and after deduplication. We find that
deduplication has little or even positive influence
on performance, which shows that TE-Wiki does
not rely on seeing test labels during training. In par-
ticular, the performance on Yahoo gets improved
with deduplication. We suspect that exact match
between training and testing labels can lead to over-
fitting, since the same label may have different
meanings under different context. Notice that this
study is only for justifying our zero-shot evaluation.
For real-word applications, excluding overlapping
categories is neither necessary nor feasible as users
do not know the test labels beforehand in zero-shot
scenarios.

4.3 Early stopping and knowledge transfer
To study the convergence of our model, we sam-
ple a small dev set of 1000 examples from Yahoo’s
original validation set. During training, we find that
with 25 steps the TE-Wiki model already achieves
a reasonably good performance on the dev set. Fur-
ther training for longer steps yields some, but not
significant gains. Since the model has only seen
25 × 64 = 1600 examples at that point, there is
little chance for the model to acquire label spe-
cific knowledge with such a small amount of data.
Hence, we believe that during the early steps, the
model actually learns “what topic classification
is about", while the knowledge specific to differ-
ent labels has already been implicitly stored in the
pretrained BERT encoder. The category predic-
tion task takes a minor role in transferring world
knowledge. Rather, it teaches the model how to use
existing knowledge to make a good inference.

5 Importance of label names

Since zero-shot classifiers understand a label by its
name, the quality of label names can be a important
performance bottleneck in designing open-domain
text classification systems. To study this, We con-

94

Yahoo Situation AG News DBPedia
TE-Wiki 57.3 41.7 79.6 90.2
- Overlapping categories 59.4(+2.1) 38.8(-2.9) 79.7(+0.1) 88.9(-1.3)
Removed training categories 15 2 4 10
Overlapping test examples (%) 100.0 24.0 100.0 50.0

Table 3: Performance before and after removing the overlapping categories, as well as their difference. We also
show the number of removed categories, and the percentage of test documents that belong to the overlapping labels.

TE-Wiki Human Supervised
Yahoo 58.9 64.8 77.4

Yahoo-5 82.1(+23.2) 88.1(+23.3) 89.4(+12.0)
AG News 79.0 80.2 94.7

AG News-5 86.4(+7.4) 90.8(+10.6) 96.4(+1.7)

Table 4: Classification accuracy on crowdsourcing
datasets. Yahoo-5 and AG News-5 count only examples
for which all five workers choose the same label.

duct crowdsourcing surveys on subsets of Yahoo
and AG News. For each dataset, we randomly sam-
ple 1,000 documents while preserving class bal-
ance. Every document is independently annotated
by five workers. In the survey question, we only
provide the document to be classified and names
of candidate labels, without giving workers exam-
ples for each class. We consider an example to be
correctly classified by humans only if at least three
workers choose the gold label. Details about the
survey are in Appendix.

We summarize the results in Table 4. Row 1&3
are classification accuracy on the whole crowd-
sourcing datasets, and row 2&4 are on subsets of ex-
amples where all 5 workers choose the same label.
We observe that when including all examples, both
TE-Wiki and humans perform much worse than
the supervised method. The supervised approach
has the advantage that it learns data-specific fea-
tures to resolve ambiguity among different classes.
On the other hand, humans only make judgements
based on their understanding of the labels and a
stand-alone test document, and so does our zero-
shot algorithm. Ideally, this task should not be
difficult for humans as long as the labels properly
describe the text topics. However, in some cases the
labels could be ambiguous and confusing. Figure
3 shows an example of a bad label name leading
to a mistake. The word “Reference" in the cor-
rect label actually means “quoting other people’s
words". However, it is hard for an ordinary person
to understand the meaning without any example
as illustration. 4 out of 5 annotators instead chose
“Entertainment & Music" due to the movie “Star
Wars". By contrast, the supervised model has no
difficulty in making the correct decision because
it has seen plenty of quotation examples during

Figure 3: An example with a bad label name. Annota-
tors are confused by the word “Reference".

training and can easily capture the useful pattern
like “Who said XXX". The main reason for hu-
mans’ confusion here is that the label name does
not directly reflect the semantics of the text. A bet-
ter description of the class should be provided for
classification without examples.

We also calculate the accuracy on examples
where all 5 workers agree, as in row 2&4 in Ta-
ble 4. We believe the high inter-annotator agree-
ment here indicates a better alignment between
the semantics of text and label. We find a signifi-
cant improvement of human performance on these
less ambiguous cases. The same happens to our
zero-shot model, but the supervised method bene-
fits much less. Consequently, the performance gap
between humans and the supervised model is also
getting closer, which demonstrates that ambiguous
labels have a strongly negative impact on classifi-
cation. Therefore, we believe picking good labels
is crucial for open-domain topic classification.

6 Conclusion

We introduce a system for open-domain topic clas-
sification. The system allows users to define cus-
tomized taxonomy and classify text with respect to
that taxonomy at real time, without changing the
underlying model. To build a powerful model, we
propose to utilize Wikipedia articles and categories
and adopt an entailment framework for zero-shot
learning. The resulting TE-Wiki outperforms all
existing zero-shot baselines in open-domain evalu-
ations. Finally, we demonstrate the importance of
choosing proper label names in open-domain topic
classification through a crowdsourcing study.

95

Acknowledgements

This work was supported by Contracts FA8750-
19-2-1004 and FA8750-19-2-0201 with the US
Defense Advanced Research Projects Agency
(DARPA). Approved for Public Release, Distribu-
tion Unlimited. The views expressed are those of
the authors and do not reflect the official policy or
position of the Department of Defense or the U.S.
Government.

References
Ming-Wei Chang, Lev Ratinov, Dan Roth, and Vivek

Srikumar. 2008. Importance of Semantic Representa-
tion: Dataless Classification. In Proc. of the Confer-
ence on Artificial Intelligence (AAAI).

Zewei Chu, Karl Stratos, and Kevin Gimpel. 2021. NAT-
CAT: Weakly supervised text classification with nat-
urally annotated resources. In 3rd Conference on
Automated Knowledge Base Construction.

I. Dagan, O. Glickman, and B. Magnini. 2005. The
pascal recognising textual entailment challenge. In
Proceedings of PASCAL first Workshop on Recognis-
ing Textual Entailment.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzoto. 2013. Recognizing Textual Entail-
ment: Models and Applications.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

E. Gabrilovich and S. Markovitch. 2007. Computing
semantic relatedness using wikipeida-based explicit
semantic analysis. In Proc. of the International Joint
Conference on Artificial Intelligence (IJCAI).

Ken Lang. 1995. NewsWeeder: learning to filter net-
news. In Proc. of the International Conference on
Machine Learning (ICML).

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. Dbpedia -
A large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195.

Han Liu, Xiaotong Zhang, Lu Fan, Xuandi Fu, Qimai
Li, Xiao-Ming Wu, and Albert Y.S. Lam. 2019. Re-
constructing capsule networks for zero-shot intent

classification. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4799–4809, Hong Kong, China. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Stephen Mayhew, Tatiana Tsygankova, Francesca
Marini, Zihan Wang, Jane Lee, Xiaodong Yu,
Xingyu Fu, Weijia Shi, Zian Zhao, Wenpeng Yin,
Karthikeyan K, Jamaal Hay, Michael Shur, Jennifer
Sheffield, and Dan Roth. 2019. University of Penn-
sylvania LoReHLT 2019 Submission. Technical re-
port.

Dheeraj Mekala and Jingbo Shang. 2020. Contextu-
alized weak supervision for text classification. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 323–333,
Online. Association for Computational Linguistics.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Chenyan Xiong,
Heng Ji, Chao Zhang, and Jiawei Han. 2020. Text
classification using label names only: A language
model self-training approach. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9006–9017,
Online. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States.

Jinseok Nam, Eneldo Loza Mencía, and Johannes
Fürnkranz. 2016. All-in text: Learning document, la-
bel, and word representations jointly. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intel-
ligence, February 12-17, 2016, Phoenix, Arizona,
USA, pages 1948–1954. AAAI Press.

Pushpankar Kumar Pushp and Muktabh Mayank
Srivastava. 2017. Train once, test anywhere:
Zero-shot learning for text classification. CoRR,
abs/1712.05972.

Anthony Rios and Ramakanth Kavuluru. 2018. Few-
shot and zero-shot multi-label learning for structured
label spaces. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 3132–3142, Brussels, Belgium.
Association for Computational Linguistics.

Yangqiu Song and Dan Roth. 2014. On Dataless Hierar-
chical Text Classification. In Proc. of the Conference
on Artificial Intelligence (AAAI).

96

Yangqiu Song, Shyam Upadhyay, Haoruo Peng, and
Dan Roth. 2016. Cross-lingual Dataless Classifi-
cation for Many Languages. In Proc. of the Inter-
national Joint Conference on Artificial Intelligence
(IJCAI).

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1422–1432, Lisbon, Portu-
gal. Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Sida Wang and Christopher Manning. 2012. Baselines
and bigrams: Simple, good sentiment and topic clas-
sification. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 90–94, Jeju Island,
Korea. Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Congying Xia, Chenwei Zhang, Xiaohui Yan, Yi Chang,
and Philip Yu. 2018. Zero-shot user intent detection
via capsule neural networks. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3090–3099, Brussels,
Belgium. Association for Computational Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking Zero-shot Text Classification: Datasets,

Evaluation, and Entailment Approach. In Proc. of
the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Jingqing Zhang, Piyawat Lertvittayakumjorn, and Yike
Guo. 2019. Integrating semantic knowledge to tackle
zero-shot text classification. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 1031–1040, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 649–657.

97

A Crowdsourcing Setup

We conduct crowdsourcing annotations for 1000
documents sampled from the Yahoo! Answers
dataset and another 1000 from the AG News on
Amazon Mechanical Turk (AMTurk). Both crowd-
sourcing subsets preserve the class-balance as in
the original datasets. We avoid using long doc-
uments so that each document contains no more
than 512 characters. The 1000 samples are split
into 40 assignments, each containing 25 examples.
We request 5 AMTurk workers for multiple-choice
questions on each assignment. In order to ensure
the response quality, we use anchor examples and
gold annotations from the original datasets to filter
out low-quality answers. Specifically, in each as-
signment we insert two anchor examples that we
believe are easy enough for workers to choose the
correct answer as long as they pay attention. We
reject a submission if a worker’s classification ac-
curacy against gold annotations is below 30%, or
both anchor examples are wrongly classified. With
a small initial pilot, we estimate the average work-
ing time for labeling 25 examples to be 22 minutes,
and we set the pay rate to be $1.5 per assignment
for each valid submission. The overall cost is $300
for 200 valid submissions for each dataset.

98

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 99 - 113

July 10-15, 2022 ©2022 Association for Computational Linguistics

| SentSpace: Large-Scale Benchmarking and Evaluation of Text using
Cognitively Motivated Lexical, Syntactic, and Semantic Features

Greta Tuckute∗ Aalok Sathe∗ Mingye Wang♢ Harley Yoder♢
Cory Shain Evelina Fedorenko

{gretatu,asathe,mingyew,hyoder,cshain,evelina9} @ mit.edu

Dept. of Brain and Cognitive Sciences McGovern Institute for Brain Research
Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

SentSpace is a modular framework for
streamlined evaluation of text. SentSpace
characterizes textual input using diverse lexi-
cal, syntactic, and semantic features derived
from corpora and psycholinguistic experiments.
Core sentence features fall into three primary
feature spaces: 1) Lexical, 2) Contextual, and
3) Embeddings. To aid in the analysis of com-
puted features, SentSpace provides a web
interface for interactive visualization and com-
parison with text from large corpora. The mod-
ular design of SentSpace allows researchers
to easily integrate their own feature computa-
tion into the pipeline while benefiting from a
common framework for evaluation and visual-
ization. In this manuscript we will describe the
design of SentSpace, its core feature spaces,
and demonstrate an example use case by com-
paring human-written and machine-generated
(GPT2-XL) sentences to each other. We find
that while GPT2-XL-generated text appears flu-
ent at the surface level, psycholinguistic norms
and measures of syntactic processing reveal key
differences between text produced by humans
and machines. Thus, SentSpace provides
a broad set of cognitively motivated linguistic
features for evaluation of text within natural
language processing, cognitive science, as well
as the social sciences.

1 Introduction

Natural Language Processing (NLP) researchers
and language scientists alike rely heavily on nu-
meric representations of text in order to better un-
derstand how machines and humans process lan-
guage. Consider the following text generated by a
large pre-trained language model, GPT2:

The scientist named the population, af-
ter their distinctive horn, Ovid’s Unicorn.
These four-horned, silver-white unicorns
were previously unknown to science.

∗Equal contribution ♢Equal contribution

The passage demonstrates a remarkable facility
with language, but also some potentially non-
human aspects, both syntactic (e.g., an unnatu-
ral forward shifting of the phrase “after their dis-
tinctive horn”) and semantic (describing a four-
horned animal as a unicorn). It is of growing
interest to researchers to be able to characterize
how any text compares to that from another source,
be it generated by humans or artificial language
models. For example, NLP practitioners are in-
terested in understanding and improving language
model output, and bringing it closer to human gen-
erated text e.g., Ettinger (2020); Hollenstein et al.
(2021); Meister et al. (2022); similarly, language
scientists are highly interested in using large-scale
language models to develop and test hypotheses
about language processing in the mind and brain,
e.g., Schrimpf et al. (2021); Caucheteux and King
(2022); Goldstein et al. (2022).

To support these shared goals, we developed
SentSpace, an open source application for char-
acterizing textual input using diverse lexical, syn-
tactic, and semantic features. These features are
derived from sources such as large, constructed
corpora, behavioral psycholinguistic experiments,
human judgment norms, and models based on theo-
ries of human sentence processing. We also devel-
oped functionality to compare textual inputs to one
another and to large normative distributions based
on natural language corpora. We envision the use
cases of SentSpace to be diverse: (i) comparison
of machine-generated text to human-generated text;
(ii) comparison of text produced by different human
populations (e.g., native and non-native speakers,
neurotypical individuals and individuals with devel-
opmental or acquired communication disorders);
(iii) comparison of different genres of text; (iv)
evaluation of the normativity of stimuli/datasets to
be used in psycholinguistic experiments or experi-
ments with language models; and (v) investigation
of sentences that present particular comprehension

99

Figure 1: An overview of SentSpace data flow: users
can supply text in a number of formats. The text is batch-
processed in each selected module containing various
features. The features computed from each module are
then outputted in the specified output file format. These
results can be readily plugged into the visualization
module out of the box.

difficulties for humans and/or language models,
e.g., eliciting a strong neural response in an electro-
physiological or neuroimaging study, or producing
non-typical or undesired behavior in the case of
language models.

We make SentSpace publicly available via
https://sentspace.github.io/sentspace in the follow-
ing two forms: (i) an open source API implemented
in Python (Figure 1), installable via the Python
package index (PyPI) or as a self-contained Docker
image; (ii) a hosted web interface for computing
and visualizing features, thus making SentSpace
accessible without running locally (Figures 2, 3, 4).

2 Structure and Design

At the core of SentSpace there are features asso-
ciated with a sentence: f : sentence → Rd

where Rd can be any feature or representation
space. The core features are organized into three
core modules based on the nature of their char-
acterization of a sentence. (1) The Lexical mod-
ule acts at the individual lexical item (token) level.
Sentence-level lexical features are computed by
aggregating over the tokens of a sentence. (2) Con-
textual features are sentence-level features and are
obtained as a result of some computation at the sen-
tence level, such as, constructing and then process-
ing a syntax parse tree. Finally, (3) Embeddings
computes pooled vector representations from one
of many popular embedding models, from GloVE
(Pennington et al., 2014) to Transformer architec-

tures (Radford et al., 2019; Devlin et al., 2019;
Wolf et al., 2020). These three modules cover a
wide range of features—derived from text corpora
or behavioral experiments—that have some demon-
strated relevance to language processing.

Figure 2: Public-facing hosted interface where users
can input text and obtain features by downloading them
from the same website. Each request gets a correspond-
ing ID which is temporarily cached to enable repeated
downloading and visualization of the same data.

The Lexical module consists of features that per-
tain to individual lexical items, words, regardless
of the context in which they appear. These fea-
tures include, for example, lexical frequency, con-
creteness, and valence. Because SentSpace is
built to work with sentences, lexical-level features
are aggregated across the sentence (cf. Gao et al.
(2021)). As a default, SentSpace aggregates
over all words with available norms in the sentence
by computing the arithmetic mean across words.

The Contextual module consists of features that
quantify contextual and combinatorial inter-word
relations that are not captured by individual lexical
items. This module encompasses features that re-
late to the syntactic structure of the sentence (Con-
textual_syntax features) and features that apply to
the sentence context but are not (exclusively) re-
lated to syntactic structure (Contextual_misc fea-
tures). Contextual_syntax include features related
to syntactic complexity, instantiated as e.g., sur-
prisal or integration cost, based on leading theoret-
ical proposals (Gibson, 2000; Shain et al., 2016;
Rasmussen and Schuler, 2018). Some syntactic fea-
tures are computed for each word in the sentence
and then subsequently aggregated; other features
are computed for multi-word sequences or the en-
tire sentence. Contextual_misc include features

100

Figure 3: An example of multiple corpora visualized alongside each other for the feature “Age of Acquisition”.
Sentences from the Wall Street Journal and the Colossal Cleaned Common Crawl (C4) show a tendency of higher
age of acquisition on average than other sources. Mouseover on dots enables users to see example sentences and
their corresponding values. The ‘x axis value’ dropdown allows users to pick the feature to plot. The ‘y’ and ‘z’
axis values are used for a 3D scatter plot, which can be enabled using the ‘Plot type’ selector.

like lexical density or sentence sentiment.
The Embedding module consists of high-

dimensional vectors derived from pre-trained lan-
guage models.
SentSpace also provides functionality that al-

lows users to contribute novel features and mod-
ules. A user may design their own features and
plug-and-play into SentSpace to achieve a more
streamlined analysis pipeline and integrated bench-
marking and visualization (Figure 1). In order to
contribute a module, users must adhere to the mod-
ule call API, accepting a sentence batch and return-
ing a dataframe whose columns consist of features.
Users may make use of parallelism and other utils
provided as a part of SentSpace. Users may also
plug in their computed features in the visualization
module and use the web interface.

2.1 Feature Modules

2.1.1 Lexical

Lexical features have been shown to affect lan-
guage comprehension at the level of individual
words. For instance, lexical features affect how

people recognize and recall words, such as word
frequency (e.g., Gorman (1961); Kinsbourne and
George (1974)), concreteness/imageability (e.g.,
Gorman (1961); Rubin and Friendly (1986)), and
valence/arousal (e.g., (Rubin and Friendly, 1986;
Danion et al., 1995; Kensinger and Corkin, 2003).
Moreover, lexical features have been shown to af-
fect language processing when words are presented
in context as measured by eye tracking and self-
paced reading, such as surprisal (e.g., Levy (2015);
Demberg and Keller (2008); Singh et al. (2016)),
polysemy (e.g., Pickering and Frisson (2001)), am-
biguity (e.g., Frazier and Rayner (1987); Rayner
and Duffy (1986)), word frequency (e.g., Rayner
and Duffy (1986)), and age of acquisition (e.g.,
Singh et al. (2016)). We implement these features
using lookup tables for each token. In case the fea-
ture is unavailable for a token, we use a lemmatizer
to obtain the feature corresponding to the word’s
lemma. We observe the various features are only
moderately correlated with one another, thus each
adding new information to the analysis (Figure 5).
See Appendix A.1 for supported lexical features.

101

Figure 4: A zoomed-in view of a 3D scatterplot shows
mouseover on a point in space revealing the sentence
at that location and its features being plotted. A top
bar (not displayed) allows the users to change the fea-
tures to plot. A side bar (not displayed) enables se-
lecting/deselecting corpora and files uploaded by the
user to the visualization module. (Abbreviations are
‘num_morpheme_poly’: Number of Morphemes; ‘aoa’:
Age of Acquisition.)

2.1.2 Contextual

Several properties of a sentence cannot be at-
tributed to its individual lexical items (words).
These features broadly fall into two categories: syn-
tactic (denoted by Contextual_syntax) and miscella-
neous (denoted by Contextual_misc). The syntactic
features include measures of storage and integra-
tion cost as predicted by both the Dependency Lo-
cality Theory (DLT; Gibson (2000)) and left-corner
theories of sentence processing (Rasmussen and
Schuler, 2018). In brief, the Dependency Locality
Theory is an influential theory of word-by-word
comprehension difficulty during human language
processing, with difficulty hypothesized to arise
from working memory demand related to storing
items in working memory (storage cost) and retriev-
ing items from working memory (integration cost)
as required by the dependency structure of the sen-
tence. Memory costs derived from the DLT have
been associated with self-paced reading (Grodner
and Gibson, 2005), eye-tracking (Demberg and
Keller, 2008), and fMRI (Shain et al., 2021b) mea-
sures of comprehension difficulty. Left-corner pars-
ing models also posit storage and integration costs,
but these costs are thought to derive not from depen-
dency locality but from the number of unconnected
fragments of phrase structure trees that must be
maintained and combined in memory throughout

Figure 5: Pearson correlation among features from
the Lexical and Contextual modules obtained from
SentSpace for text written by humans and GPT2-
XL (described in Section 4).

parsing, word-by-word. Probabilistic left-corner
parsers can also be used to define a probability dis-
tribution over the next word that conditions solely
on hypotheses about the syntactic structure of the
sentence, providing a critical tool for evaluating
the degree to which syntax might influence both
human and language model predictions of future
words (Shain et al., 2020). See Appendix A.2.1 for
supported contextual features.

2.1.3 Embeddings
Embeddings provide representations of words
or sentences in high-dimensional, learned vector
spaces. The information contained in these spaces
depend on the objective function of the algorithm
used to derive the vectors, but could be of seman-
tic nature (e.g., Grand et al. (2022)). We provide
a decontextualized embedding space (words have
the same vector representation independent of con-
text), GloVe (Pennington et al., 2014), as well as
several commonly used contextualized embedding
spaces (words have different vector representations
based on the context in which they appear) from the
HuggingFace framework (Wolf et al., 2020). See
Appendix A.3 for supported embedding models.

3 Benchmarking Against Large Corpora

To understand where a sentence stands relative to
other text, we facilitate comparison with sentences

102

Figure 6: We use SentSpace to visualize sentences from two sources of interest. In one case, humans generated
paragraphs, and in the other, a GPT2-XL language model did. We find several points of differences between
the two sources, verified using statistical tests comparing the two distributions. p-values were obtained using
two-tailed independent samples t-tests: Concreteness (t = 4.24, p≪0.001), Polysemy (t = −0.27, p = n.s.),
Lexical Frequency (t = −2.91, p < 0.005), N-gram Surprisal (3-gram) (t = 2.91, p < 0.005), Syntactic Integration
Cost (t = 2.34, p < 0.05), Syntactic Embedding Depth (t = 1.81, p = n.s.). *p < .05, **p < .01, ***p < .005.

from large corpora of human-generated text (both
written and spoken). We allow this by subsampling
from large corpora to include an approximately
equal number (≈ 500) of sentences from each cor-
pus. We pre-computed and cached SentSpace
features for each of 8 corpora (≈ 4000 sentences
in total), enabling quick and streamlined compar-
ison with sentences from existing corpora. In the
SentSpace[.vis] module, these corpora are
loaded by default in addition to user-supplied input.
Corpora benchmarking can be disabled to allow
visualizing user input in isolation. We provide a
list of corpora used in Appendix C.

4 System Demonstration and Results

In this section we provide an example of how
SentSpace can be used to compare and visu-
alize sets of sentences to one another using features
from the Lexical (n = 13 features) and Contex-
tual (n = 13 features) modules of SentSpace1.
For this example demonstration, we compare two
sets of materials: Human-generated text versus
GPT2-XL-generated text. The texts consisted of

1The code for analyses in this paper is available at
http://github.com/sentspace/NAACL-HLT-2022

52 unique paragraphs written by multiple human
writers. The first 10 words of each paragraph were
used as a prompt to a pretrained GPT2-XL au-
toregressive language model (Radford et al., 2019;
Wolf et al., 2020). Prompt completions were ex-
tracted across multiple random seeds using top-
p sampling (Holtzman et al., 2020) with genera-
tion parameters p = 0.9 and temperature = 1.
We selected 5 completions per prompt that most
closely matched the human-generated prompt in
word length (within ±5 words) to control for any
length-driven correlations. As a result, we had
one human-generated and 5 GPT2-XL-generated
paragraphs per prompt, yielding a total of n = 52
human-generated paragraphs and n = 260 GPT2-
XL-generated paragraphs (for examples, see Ap-
pendix B). Features were averaged across sentences
within each paragraph. For statistical tests, features
for the n = 5 GPT2-XL-generated paragraphs for
the same prompt were averaged to yield a matched
sample of paragraphs with the human-generated
paragraphs (n = 52). In Figure 6, we demonstrate
that our feature measures can reveal subtle quantita-
tive differences between machine-generated (blue)
and human-generated (red) texts that may not be

103

subjectively apparent.

Figure 6A demonstrates three features from the
Lexical module: i) Concreteness (Brysbaert et al.,
2014); a behavioral measure of the extent to which
the concept denoted by the word refers to a per-
ceptible entity, ii) Polysemy (Miller, 1992), and
iii) Log lexical frequency from the SUBTLEX-us
database (Brysbaert and New, 2009). As evident,
GPT2-XL produces sentences that on average have
less concrete words compared to human sentences
(p≪.001). Lexical frequency reflects how often
a given word is used in language. Lexical fre-
quency is known to affect language comprehen-
sion, for instance more frequent words are read
faster (e.g., Rayner and Duffy (1986); Singh et al.
(2016) and articulated faster (e.g., Jescheniak and
Levelt (1994)). We can see this as being a trend
towards GPT2-XL’s use of more frequent wording
compared to humans (p≪.001).

Figure 6B demonstrates three Contextual fea-
tures: i) N-gram surprisal (3-gram), ii) Average syn-
tactic integration cost according to the Dependency
Locality Theory (DLT, (Gibson, 2000); integration
cost is roughly proportional to dependency length),
and iii) Average syntactic center-embedding depth
in a left-corner phrase-structure parser (van Schi-
jndel et al., 2013). Although GPT2-XL usually
generates sentences that are syntactically well-
formed, their syntactic features differ on average
from human-generated text. As shown, texts gen-
erated by GPT2-XL show lower 3-gram surprisal
(t=2.91, p≪.001), tend to be less syntactically com-
plex on average than human-generated ones, with
shorter syntactic dependencies (t=2.33, p=0.02)
and numerically shallower center-embedded tree
structures (t=1.8, p=0.09, n.s.). So, these findings
might suggest GPT2-XL makes use of ‘simpler’
wording compared to humans.

The remaining SentSpace features obtained
for the comparison between human- and GPT2-XL-
generated text (n = 26 features in total) are summa-
rized in the Appendix, Table 2. More features are
in the progress of being added to the SentSpace
framework (see Appendix A.1, A.2).

The comparison between human- and machine-
generated text is a demonstration of one of the
use cases of SentSpace: comparing and visu-
alizing texts to one another. The SentSpace
framework streamlines the process of obtaining
corpora-backed features, parsing and syntactically
analyzing texts, simplifying and accelerating such

analyses for natural language generation.

5 Related work

Related work include Balota et al. (2007) who
collected behavioral visual lexical decision and
speeded naming reaction times and provided these
along with a set of word-level, psycholinguistic
features (The English Lexicon Project). Gao et al.
(2021) provide a meta-base of word-level, psy-
cholinguistic features. A different alley of re-
lated work includes visualization tools for high-
dimensional embeddings obtained from pre-trained
language models (e.g., van Aken et al. (2020); Ope-
nAI).

A large body of work focuses on characterizing
bias in text, particularly that either used in training
language models, or that generated by language
models (Sun et al., 2019). Related work also fo-
cuses on methods to mitigate bias in existing lan-
guage models using debiasing methods. In the
future we hope to include norms that character-
ize bias as one of the many features that will be
added to SentSpace. We also hope that outputs
from SentSpace will inform what data goes into
training large language models to make them more
human-like.

6 Conclusion

SentSpace is a system for obtaining numeri-
cal representations of sentences. Our core feature
modules span lexical, semantic, and syntactic fea-
tures from corpora and behavioral experiments. We
provide an interface for comparing textual inputs
to one another or to large normative distributions
based on natural language corpora.

Within the last few years, contextualized em-
beddings obtained from large pre-trained language
models have revolutionized and dominated the field
of natural language processing. However, despite
these embeddings being useful for diverse applica-
tions, it is unclear precisely which information is
embedded in these high-dimensional feature repre-
sentations. We view SentSpace as a complemen-
tary resource that can provide interpretability and
grounding to these pre-trained high-dimensional
embeddings.

A major limitation of SentSpace is that we
currently only support English. Part of the lim-
iting factor is the relative lack of behavioral and
psycholinguistic experimental data for other lan-
guages, as well as mature linguistic features tai-

104

lored to other languages.
We envision SentSpace as a dynamic plat-

form with continuous collaboration across research
labs for the addition of new features and we hope
to make this framework valuable for a number of
applications within natural language processing,
cognitive science, psychology, linguistics, and so-
cial sciences.

Acknowledgements

We thank the authors of publicly available datasets
that we have been able to use in SentSpace.
We thank Adil Amirov, Alvincé Le Arnz Pon-
gos, Benjamin Lipkin, and Josef Affourtit for
their assistance towards developing the software
for SentSpace. We thank Hannah Small and
Matthew Siegelman for their assistance with the
human- and GPT-generated texts.

References
David A. Balota, Melvin J. Yap, Keith A. Hutchi-

son, Michael J. Cortese, Brett Kessler, Bjorn Loftis,
James H. Neely, Douglas L. Nelson, Greg B. Simp-
son, and Rebecca Treiman. 2007. The English Lexi-
con Project. Behavior Research Methods, 39(3):445–
459.

Thorsten Brants and Alexander Franz. 2009. Web 1t
5-gram, 10 european languages version 1. Philadel-
phia, Pa.: Linguistic Data Consortium, Computer
file.

Marc Brysbaert, Paweł Mandera, Samantha F. Mc-
Cormick, and Emmanuel Keuleers. 2019. Word
prevalence norms for 62,000 English lemmas. Be-
havior Research Methods, 51(2):467–479.

Marc Brysbaert and Boris New. 2009. Moving beyond
Kučera and Francis: A critical evaluation of current
word frequency norms and the introduction of a new
and improved word frequency measure for American
English. Behavior Research Methods, 41(4):977–
990.

Marc Brysbaert, Boris New, and Emmanuel Keuleers.
2012. Adding part-of-speech information to the
SUBTLEX-US word frequencies. Behavior Re-
search Methods, 44(4):991–997.

Marc Brysbaert, Amy Beth Warriner, and Victor Ku-
perman. 2014. Concreteness ratings for 40 thousand
generally known English word lemmas. Behavior
Research Methods, 46(3):904–911.

Charlotte Caucheteux and J. R. King. 2022. Brains
and algorithms partially converge in natural language
processing. Communications Biology, 5.

J.-M. Danion, Françoise Kauffmann-Muller, Daniel
le Grange, M A Zimmermann, and Ph. Greth. 1995.
Affective valence of words, explicit and implicit
memory in clinical depression. Journal of affective
disorders, 34 3:227–34.

Mark Davies. 2009. The 385+ million word corpus of
contemporary american english (1990–2008+): De-
sign, architecture, and linguistic insights. Interna-
tional journal of corpus linguistics, 14(2):159–190.

Simon De Deyne, Danielle J. Navarro, Amy Perfors,
Marc Brysbaert, and Gert Storms. 2019. The “Small
World of Words” English word association norms for
over 12,000 cue words. Behavior Research Methods,
51(3):987–1006.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193–210.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

W Nelson Francis and Henry Kucera. 1979. Brown
corpus manual. Letters to the Editor, 5(2):7.

Lyn Frazier and Keith Rayner. 1987. Resolution of
syntactic category ambiguities: Eye movements in
parsing lexically ambiguous sentences. Journal of
Memory and Language, 26(5):505–526.

Chuanji Gao, Svetlana V. Shinkareva, and Rutvik H.
Desai. 2021. Scope: The south carolina psycholin-
guistic metabase.

Edward Gibson. 2000. The dependency locality theory:
A distance-based theory of linguistic complexity. In
Image, Language, Brain, pages 95–106. MIT Press.

Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano
Schain, Amy Rose Price, Bobbi Aubrey, Samuel A.
Nastase, Amir Feder, Dotan Emanuel, Alon Co-
hen, Aren Jansen, Harshvardhan Gazula, Gina Choe,
Aditi Rao, Catherine Kim, Colton Casto, Lora Fanda,
Werner K. Doyle, Daniel Friedman, Patricia Dugan,
Lucia Melloni, Roi Reichart, Sasha Devore, Adeen
Flinker, Liat Hasenfratz, Omer Levy, Avinatan Has-
sidim, Michael Brenner, Y. Matias, Kenneth A. Nor-
man, Orrin Devinsky, and Uri Hasson. 2022. Shared
computational principles for language processing in
humans and deep language models. Nature Neuro-
science, 25:369 – 380.

Anna M. Gorman. 1961. Recognition memory for
nouns as a function of abstractness and frequency.
Journal of experimental psychology, 61:23–9.

105

Gabriel Grand, Idan Asher Blank, Francisco Pereira,
and Evelina Fedorenko. 2022. Semantic projection
recovers rich human knowledge of multiple object
features from word embeddings. Nature human be-
haviour.

Daniel Grodner and Edward Gibson. 2005. Conse-
quences of the serial nature of linguistic input for
sentenial complexity. Cognitive science, 29 2:261–
90.

Paul Hoffman, Matthew A. Lambon Ralph, and Timo-
thy T. Rogers. 2013. Semantic diversity: A measure
of semantic ambiguity based on variability in the con-
textual usage of words. Behavior Research Methods,
45(3):718–730.

Nora Hollenstein, Federico Pirovano, Ce Zhang, Lena A.
Jäger, and Lisa Beinborn. 2021. Multilingual lan-
guage models predict human reading behavior. In
NAACL.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. ArXiv, abs/1904.09751.

Jörg D. Jescheniak and Willem J. M. Levelt. 1994.
Word frequency effects in speech production: Re-
trieval of syntactic information and of phonological
form. Journal of Experimental Psychology: Learn-
ing, Memory and Cognition, 20:824–843.

Elizabeth A. Kensinger and Suzanne Corkin. 2003.
Memory enhancement for emotional words: Are emo-
tional words more vividly remembered than neutral
words? Memory & Cognition, 31:1169–1180.

Marcel Kinsbourne and James W. George. 1974. The
mechanism of the word-frequency effect on recogni-
tion memory. Journal of Verbal Learning and Verbal
Behavior, 13:63–69.

Victor Kuperman, Hans Stadthagen-Gonzalez, and
Marc Brysbaert. 2012. Age-of-acquisition ratings
for 30 thousand English words. page 39.

Roger Levy. 2015. Memory and surprisal in human
sentence comprehension. page 36.

Matthew H. C. Mak and Hope Twitchell. 2020. Ev-
idence for preferential attachment: Words that are
more well connected in semantic networks are better
at acquiring new links in paired-associate learning.
Psychonomic Bulletin & Review, 27(5):1059–1069.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guistics, 19:313–330.

Marco Marelli and Simona Amenta. 2018. A database
of orthography-semantics consistency (OSC) esti-
mates for 15,017 English words. Behavior Research
Methods, 50(4):1482–1495.

D.A. Medler and J.R. Binder. 2005. Mcword: An on-
line orthographic database of the english language.
volume http://www.neuro.mcw.edu/mcword/.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan
Cotterell. 2022. Typical decoding for natural lan-
guage generation. ArXiv, abs/2202.00666.

George A. Miller. 1992. Wordnet: A lexical database
for english. Commun. ACM, 38:39–41.

Saif Mohammad. 2018. Obtaining Reliable Human Rat-
ings of Valence, Arousal, and Dominance for 20,000
English Words. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 174–184,
Melbourne, Australia. Association for Computational
Linguistics.

Luan Nguyen, Marten van Schijndel, and William
Schuler. 2012. Accurate unbounded dependency re-
covery using generalized categorial grammars. In
COLING.

OpenAI. Openai embeddings. https://beta.
openai.com/docs/guides/embeddings.
Accessed: 2022-02-11.

Douglas B Paul and Janet Baker. 1992. The design for
the wall street journal-based csr corpus. In Speech
and Natural Language: Proceedings of a Workshop
Held at Harriman, New York, February 23-26, 1992.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Penny M. Pexman, Emiko Muraki, David M. Sidhu,
Paul D. Siakaluk, and Melvin J. Yap. 2019. Quan-
tifying sensorimotor experience: Body–object inter-
action ratings for more than 9,000 English words.
Behavior Research Methods, 51(2):453–466.

Steven T. Piantadosi, Harry Tily, and Edward Gibson.
2011. Word lengths are optimized for efficient com-
munication. Proceedings of the National Academy of
Sciences, 108(9):3526–3529.

Martin J. Pickering and Steven Frisson. 2001. Pro-
cessing ambiguous verbs: Evidence from eye move-
ments. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 27(2):556–573.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

106

Nathan Rasmussen and William Schuler. 2018. Left-
corner parsing with distributed associative memory
produces surprisal and locality effects. Cognitive
science, 42 Suppl 4:1009–1042.

Keith Rayner and Susan A. Duffy. 1986. Lexical com-
plexity and fixation times in reading: Effects of word
frequency, verb complexity, and lexical ambiguity.
Memory & Cognition, 14(3):191–201.

David C. Rubin and Michael Friendly. 1986. Predicting
which words get recalled: Measures of free recall,
availability, goodness, emotionality, and pronuncia-
bility for 925 nouns. Memory & Cognition, 14:79–
94.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Ca-
rina Kauf, Eghbal A. Hosseini, Nancy Kanwisher,
Joshua B. Tenenbaum, and Evelina Fedorenko. 2021.
The neural architecture of language: Integrative
modeling converges on predictive processing. Pro-
ceedings of the National Academy of Sciences,
118(45):e2105646118.

Cory Shain, Idan A Blank, Evelina Fedorenko, Edward
Gibson, and William Schuler. 2021a. Robust effects
of working memory demand during naturalistic lan-
guage comprehension in language-selective cortex.
bioRxiv.

Cory Shain, Idan Asher Blank, Evelina Fedorenko, Ed-
ward Gibson, and William Schuler. 2021b. Robust
effects of working memory demand during natural-
istic language comprehension in language-selective
cortex. bioRxiv.

Cory Shain, Idan Asher Blank, Marten van Schijndel,
Evelina Fedorenko, and William Schuler. 2020. fmri
reveals language-specific predictive coding during
naturalistic sentence comprehension. Neuropsycholo-
gia, 138.

Cory Shain, Marten van Schijndel, Richard Futrell, Ed-
ward Gibson, and William Schuler. 2016. Memory
access during incremental sentence processing causes
reading time latency. In CL4LC@COLING 2016.

Abhinav Singh, Poojan Mehta, Samar Husain, and Ra-
jkumar Rajakrishnan. 2016. Quantifying sentence
complexity based on eye-tracking measures. In
CL4LC@COLING 2016.

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang,
Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth
Belding, Kai-Wei Chang, and William Yang Wang.
2019. Mitigating gender bias in natural language
processing: Literature review. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1630–1640, Florence, Italy.
Association for Computational Linguistics.

Betty van Aken, Benjamin Winter, Alexander Löser,
and Felix A. Gers. 2020. Visbert: Hidden-state visu-
alizations for transformers. Companion Proceedings
of the Web Conference 2020.

Walter J. B. van Heuven, Pawel Mandera, Emmanuel
Keuleers, and Marc Brysbaert. 2014. Subtlex-UK:
A New and Improved Word Frequency Database for
British English. Quarterly Journal of Experimental
Psychology, 67(6):1176–1190.

Marten van Schijndel, Andrew Exley, and William
Schuler. 2013. A model of language processing as
hierarchic sequential prediction. Topics in cognitive
science, 5 3:522–40.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, and
Mikko Kurimo. 2013. Morfessor 2.0: Python imple-
mentation and extensions for morfessor baseline.

WordNet Wikipedia. Wordnet. https://en.
wikipedia.org/wiki/WordNet. Accessed:
2022-02-11.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

107

A Feature Descriptions

A.1 Lexical Features

Lexical features are ordered alphabetically.
Age of Acquisition Age of acquisition is a met-

ric that estimates when a person acquired (i.e., un-
derstood) a given word. Participants were asked for
each word to enter the age at which they thought
they had learned the word even if they could not
use, read, or write it at the time. The norms were
collected by (Kuperman et al., 2012).

Norms were available for 30,124 unique words.
Obtained from: http://crr.ugent.be/

archives/806.
Arousal Arousal quantifies each word on a scale

of active–passive. The norms were collected based
on human ratings by (Mohammad, 2018) using
Best-Worst scaling, where participants are pre-
sented with four words at a time and asked to select
the word with the highest arousal. The two ends of
the arousal dimension were: MOST arousal, active-
ness, stimulation, frenzy, jitteriness, alertness OR
LEAST unarousal, passiveness, relaxation, calm-
ness, sluggishness, dullness, sleepiness.

Norms were available for 20,007 unique words.
Obtained from: https://saifmohammad.

com/WebPages/nrc-vad.html.
Concreteness Concreteness quantifies the extent

to which the concept denoted by the word refers to
a perceptible entity. Concrete words were defined
as something that exists in reality and can be expe-
rienced directly through the five senses or actions.
Conversely, abstract words refer to something one
cannot experience directly through your senses or
actions. The norms were collected based on human
ratings by (Brysbaert et al., 2014).

Norms were available for 37,058 unique words.
Obtained from http://crr.ugent.be/

archives/1330.
Log Contextual Diversity Contextual diversity

(CD) is the number of contexts in which a word
has been seen [cite Adelman 2005]. The metric
available here was computed based on the SUB-
TLEXus database based on American subtitles (51
million words in total) (Brysbaert and New, 2009)
and thus denotes the number of films in which
the word appears. The CD metric is computed as
log10(CDcount+1).

Norms were available for 74,286 unique words.
Obtained from the SUBTLEXus

database: https://www.ugent.be/pp/

experimentele-psychologie/en/
research/documents/subtlexus).

Log Lexical Frequency Lexical frequency de-
notes how frequent a word occurs in a given cor-
pus/sets of corpora. The frequency metric available
here was computed as log10(FREQcount+1) based
on American subtitles (51 million words in total)
from the SUBTLEXus database (Brysbaert and
New, 2009).

Norms were available for 74,286 unique words.
Obtained from the SUBTLEXus

database: https://www.ugent.be/pp/
experimentele-psychologie/en/
research/documents/subtlexus).

Lexical Connectivity Lexical connectivity is a
metric for how connected a given word is to other
words based on association judgments. The metric
views the mental lexicon as a semantic network
where words are linked together by semantic relat-
edness. Lexical connectivity is computed as the
total degree centrality of a given word node in the
semantic graph. Norms were obtained from (Mak
and Twitchell, 2020) who computed the total de-
gree centrality based on free association norms
collected by (De Deyne et al., 2019) (specifically,
the first recalled word).

Norms were available for 12,215 unique words.
Obtained from: https://osf.io/

7942s/.
Lexical Decision Reaction Time (RT) Lexical

decision latency measures how quickly people clas-
sify strings as words or non-words. The lexical
decision latency provides a proxy for how quickly
a given word is extracted from the mental lexi-
con/semantic memory. The norms were collected
by (Balota et al., 2007).

Norms were available for 40,482 unique words.
Obtained from the English Lexicon Project:

https://elexicon.wustl.edu/.
Number of Morphemes A morpheme denotes

the smallest meaningful lexical unit in a language.
The number of morphemes quantifies how many
morphemes a given word has. The primary mor-
pheme counter available here is Morfessor (Vir-
pioja et al., 2013) which uses machine learning
to find morphological segmentations of words. If
dependency issues arise with Morfessor, the mor-
pheme count is obtained from the English Lexicon
Project Database (Balota et al., 2007).

Orthographic Neighbor Frequency Ortho-
graphic neighbor frequency is a metric that quan-

108

tifies the number of orthographic neighbors that a
string has. The metric was computed by (Medler
and Binder, 2005) and an orthographic neighbor
was defined as a word of the same length that dif-
fers from the original string by only one letter. The
frequency metric denotes the averaged frequency
(per million) of orthographic neighbors.

Norms were available for 66,371 unique words.
Obtained from http://www.neuro.mcw.

edu/mcword/.
Orthography-Semantics Consistency (OSC)

Orthography–semantics consistency is a metric that
quantifies the degree of semantic relatedness be-
tween a word and other words that are orthographi-
cally similar. The metric was computed by (Marelli
and Amenta, 2018) as the frequency-weighted av-
erage semantic similarity between the meaning of
a given word and the meanings of all the words
containing that very same orthographic string.

Norms were available for 15,017 unique words.
Obtained from: http://www.

marcomarelli.net/resources/osc.
Polysemy Polysemy provides a metric of how

many distinct meanings a word has. Polysemy
was measured by the number of definitions of
a word in WordNet (Miller, 1992). Polysemy
was implemented using NLTK’s word_net library
(synsets() function) which accepts a word and a
part-of-speech tag as input and returns a list of
synonyms. Parts-of-speech tags were taken from
NLTK’s pos_tag, then mapped to the four POS tags
accepted by word_net. If a POS tag could not be
mapped to one of word_net’s ADJ, VERB, NOUN,
or ADV then the tag given was an empty string.
The number of synonyms for a given word were
counted.

Norms were available for 155,327 words orga-
nized in 175,979 synsets for a total of 207,016
word-sense pairs (Wikipedia).

Obtained from the NLTK interface: https://
www.nltk.org/howto/wordnet.html.

Prevalence Word prevalence is a metric that
quantifies the number of people who know a given
word. The norms were collected by (Brysbaert
et al., 2019) based on human ratings of whether or
not they knew the word.

Norms were available for 61,855 unique words.
Obtained from: https://osf.io/

g4xrt/.
Valence Valence quantifies each word on a scale

of positiveness–negativeness. The norms were col-

lected based on human ratings by (Mohammad,
2018) using Best-Worst scaling, where participants
are presented with four words at a time and asked
to select the word with the highest valence. The
two ends of the valence dimension were: MOST
happiness, pleasure, positiveness, satisfaction, con-
tentedness, hopefulness OR LEAST unhappiness,
annoyance, negativeness, dissatisfaction, melan-
choly, despair.

Norms were available for 20,007 unique words.
Obtained from: https://saifmohammad.

com/WebPages/nrc-vad.html.

The following features were not analyzed in the
current work, but in the future we plan to add sup-
port for these features in the SentSpace frame-
work:

Body-Object Interaction Body-object interac-
tion quantifies the ease with which the human body
can interact with what a word represents. The
norms were collected using behavioral ratings on a
scale from 1 to 7 with a value of 7 indicating a high
body-object interaction rating by (Pexman et al.,
2019).

The norms were available for 9,349 unique
words.

Obtained from: https://link.
springer.com/article/10.3758%
2Fs13428-018-1171-z#Sec9.

Dominance Dominance quantifies each word
on a scale of dominant–submissive. The norms
were collected based on human ratings by (Mo-
hammad, 2018) using Best-Worst scaling, where
participants are presented with four words at a time
and asked to select the word with the highest domi-
nance. The two ends of the dominance dimension
were: MOST dominant, in control of the situation,
powerful, influential, important, autonomous OR
LEAST submissive, controlled by outside factors,
weak, influenced, cared-for, guided.

Norms were available for 20,007 unique words.
Obtained from: https://saifmohammad.

com/WebPages/nrc-vad.html.
Part-of-Speech Ambiguity Parts-of-speech

(POS) ambiguity is a metric to quantify how fre-
quent the dominant POS of a given word is given all
possible POS a word has. The value is a fraction be-
tween 0 and 1 where 1 denotes that the word always
occurs in its most dominant POS form. POS val-
ues were obtained from the SUBTLEXus database
(Brysbaert et al., 2012).

Norms were available for 74,286 unique words.

109

Obtained from the SUBTLEXus
database: https://www.ugent.be/pp/
experimentele-psychologie/en/
research/documents/subtlexus).

Semantic Diversity Semantic diversity is a met-
ric that quantifies semantic ambiguity based on
variability in the contextual usage of words. The
metric was computed by (Hoffman et al., 2013) and
takes a step beyond simply summing the number
of definitions that a word has. The underlying as-
sumption is that words that appear in a wide range
of contexts on diverse topics are more variable in
meaning than those that appear in a restricted set of
similar contexts. Hoffman et al. thus quantify the
degree to which the different contexts associated
with a given word vary in their meanings.

Norms were available for 31,739 English words.
Obtained from: https://link.

springer.com/article/10.3758/
s13428-012-0278-x#SecESM1.

Word Length Word length as measured by char-
acters.

Zipf Lexical Frequency The Zipf lexical fre-
quency is a metric of word frequency, but on a
different scale than standard frequency. The Zipf
scale was proposed by (van Heuven et al., 2014) as
a scale that is easier to interpret than the usual
frequency scales. Zipf values range from 1 to
7, with the values 1-3 indicating low-frequency
words (with frequencies of 1 per million words and
lower) and the values 4-7 indicating high-frequency
words (with frequencies of 10 per million words
and higher). Norms were based on American sub-
titles (51 million words in total) from the SUB-
TLEXus database (Brysbaert and New, 2009).

Norms were available for 74,286 unique words.
Obtained from the SUBTLEXus

database: https://www.ugent.be/pp/
experimentele-psychologie/en/
research/documents/subtlexus).

A.2 Contextual Features

The contextual features broadly fall into two cate-
gories: syntactic (denoted by Contextual_syntax)
and miscellaneous (denoted by Contextual_misc).
Contextual features are ordered alphabetically.

A.2.1 Contextual Features — Syntax
Content Word Ratio — Misc Lexical density is
the proportion of content words to function words
in a sentence. It is a proxy for how much infor-
mation a sentence contains. Content words were

defined as nouns, verbs, adjectives, and adverbs
and were defined using the NLTK part-of-speech
tagger.

Dependency Locality Theory (DLT) Variants
The Dependency Locality Theory (DLT) (Gibson,
2000) features are measures of storage and integra-
tion costs during sentence processing. The DLT is
a theory of word-by-word comprehension difficulty
during human language processing, with difficulty
hypothesized to arise from working memory de-
mand related to storing items in working memory
(storage cost) and retrieving items from working
memory (integration cost) as required by the de-
pendency structure of the sentence. We include the
traditional DLT metrics, as well as modifications
as described in (Shain et al., 2016).

Left-Corner Features — Syntax The left-
corner features are based on left-corner theories
of sentence processing as described in (Rasmussen
and Schuler, 2018). Similar to DLT, left-corner
parsing models also posit storage and integration
costs, but these costs are thought to derive not
from dependency locality but from the number of
unconnected fragments of phrase structure trees
that must be maintained and combined in mem-
ory throughout parsing, word-by-word. See (Shain
et al., 2021a) for detailed description of these fea-
tures, but in brief they include: end of constituent,
length of constituent (3 variants), end of center em-
bedding, start of multi-word center-embedding, end
of multi-word center embedding, length of multi-
word center embedding (3 variants), and syntactic
embedding depth. Features are derived from auto-
matic parse trees generated by the van Schijndel
et al. (2013) parser trained on a generalized catego-
rial grammar reannotation (Nguyen et al., 2012) of
the Penn Treebank corpus (Marcus et al., 1993).

N-gram Surprisal — Misc N-gram surprisal
provides a metric of how surprising a word is given
its context. The norms were computed by (Pianta-
dosi et al., 2011) based on Google (Brants and
Franz, 2009) using a standard probabilistic N-gram
model which treats the context as consisting only
of the local linguistic context containing the pre-
vious N − 1 words. The norms are available for
N = 2, 3, 4, i.e. 2-grams, 3-grams and 4-grams.

Norms were available for 3,297,629 (2-grams),
2,133,709 (3-grams) and 1,600,987 (4-grams)
unique words. Obtained from colala.berkeley.edu/
data/PiantadosiTilyGibson2011/Google10L-1T.

Pronoun Ratio — Misc The pronoun ratio is

110

the proportion of pronoun words to all words in
a sentence. It is a proxy for how much discourse
is assumed in a sentence. Pronoun words were
defined using the NLTK part-of-speech tagger.

The following features were not analyzed in the
current work, but are in the process of being added
to the SentSpace framework:

Language Model Surprisal Language model
surprisal provides a metric for how surprising (i.e.,
likely) a given sentence is by using the probability
distribution obtained from pre-trained state-of-the-
art language models. The default probability is
computed as the product of individual tokens’ log
probabilities.

The language models were obtained using the
HuggingFace Transformers framework (Wolf et al.,
2020).

Sentence-Level Sentiment — Misc Sentence-
level sentiment provides a metric for how positive
or negative a given sentence is. The feature was
derived using a pre-trained transformer model fine-
tuned to perform sentiment prediction from a large
dataset of human-annotated sentiment norms. The
code framework used to compute the feature was
by HuggingFace (Wolf et al., 2020).

Syntactic Rule Frequency — Syntax The syn-
tactic rule frequencies consist of counts of n-ary
and binary syntactic rules. For both n-ary (n is an
arbitrary number larger than two) and binary rules,
the sentence is dependency parsed (CoNLL format).
The n-ary version gets all heads, along with its part
of speech and its dependency relations. So if there
is a verb with a subject and object, an n-ary rule
would be: nsubj-V-dobj. The binary version is sim-
ilar, but takes each head/dependency relationship
separately. So the rules would be nsubj-V, V-dobj,
etc. Thus, the syntactic rule frequency features
consists of the number of times each n-ary and bi-
nary rules occur. The code framework to compute
the features was obtained from Kyle Mahowald
(preprint to appear).

A.3 Embeddings
Embeddings provide representations of sentences
in high-dimensional, learned vector spaces. We
provide a context-independent embedding space
(words have the same vector representation in-
dependent of context), GloVe (Pennington et al.,
2014), as well as several commonly used contextu-
alized embedding spaces (words have different vec-
tor representations based on the context in which

they appear) from the HuggingFace framework
(Wolf et al., 2020). These can be invoked using
the corresponding model identifier from Hugging-
Face model hub as an argument to SentSpace.

B Materials Used in Demonstration

B.1 Example human-written paragraph
Montreal has a unique bagel tradition
that dates back to at least 1919. The Mon-
treal bagel is chewier, smaller, and less
dense, but has a much bigger hole than
its American cousin. Boiled in honey
water and then baked in a wood-burning
oven, it’s a little sweet and has a harder
exterior. It is hand-rolled in the shape of
an oval hoop; you can wear one around
your wrist like a bracelet.

B.2 Examples of GPT2-XL generated text
1 Montreal has a unique bagel tradi-
tion that dates back to the mid-nineteenth
century. In the early days of the morn-
ing, tourists would arrive in Montreal in
large numbers for a morning sandwich
and coffee. You could be guaranteed to
find several dozen different varieties in
a pastry case. When the “Cappuccino”
was introduced in 1894, the bagels came
with it. You had to order your espresso
and and your bagel separately.

2 Montreal has a unique bagel tradition
that dates back to 1766, when an English-
man named J.D. Bagel opened the first
of what would become five bakeries. To-
day, there are more than 70 Bagel East St.
Laurent and 15 Bagel Central St. Lau-
rent. It’s not just the flavors of bagels
that separate Montreal bagel restaurants
from the rest of Canada. What also sets
them apart are the quality ingredients.

3 Montreal has a unique bagel tradition
that dates back to 1876, when the city
hosted the Olympic Games. The tradi-
tion is still alive today. Because the bagel
is such an American food, you won’t find
bagels being served in many Chinese
restaurants, as French food in France
is considered food that originated from
the Americas. Desserts Although bagels
have many tastes, you don’t need to try

111

every flavor to enjoy bagel ice cream or
bagel sandwiches.

4 Montreal has a unique bagel tradi-
tion that dates back to 1917. In 2017,
the Bagel Corner will open its doors
again to celebrate Montreal’s unique
bagel heritage. This May, the Bagel
Corner will offer a variety of bagels,
bagel sandwiches and doughnuts, sold in
Montreal and Montreal-area food trucks.
With bags of fresh fruit, grapes, pickled
veggies and other delicious bagels, this
year’s sale will be a great opportunity to
indulge your taste buds.

5 Montreal has a unique bagel tradition
that dates back to the early 1900’s. The
bagels that we now associate with Mon-
treal are greatly influenced by the place
that spawned them the Sea Route Bagel.
This famous bagel began its long journey
to Montreal with a group of Jewish im-
migrants arriving from Eastern Europe
in the early 1900’s. To say that they were
fortunate would be an understatement.

C Corpora Benchmarks

As mentioned in the manuscript, we subsam-
ple a collection of corpora for use as bench-
marks to compare against. We list these
corpora in Table 1. These include: the
Brown Corpus (Francis and Kucera, 1979),
the Toronto Books Corpus Adventure genre
(Zhu et al., 2015), Wall Street Journal corpus
(Paul and Baker, 1992), Universal Dependen-
cies https://universaldependencies.
org/#download, Colossal Cleaned Common
Crawl (C4) (Raffel et al., 2020), Corpus of Contem-
porary American English (Spoken) — 1991, 2001,
2012 (Davies, 2009).

112

Corpus name Volume/Genre No. of sentences Duplicates Sentence Length

Mean Median Std. deviation

(Total) 63,350,596 615,672
Brown 26,954 3 12.681 13 4.462
Toronto Books Adventure 1,040,936 0 14.519 13 7.632
UD 19,543 2 16.89 15 8.664
WSJ 541,790 960 22.351 21 8.734
COCA Spoken 1991 121,351 0 17.051 15 10.048
COCA Spoken 2001 113,330 3 15.734 13 9.269
COCA Spoken 2012 97,512 2 14.41 12 8.65
C4 10 random parts 49,772,404 614,602 17.481 16 8.905

Table 1: A list of Corpora used as Benchmarks

Feature Mean Standard Deviation
GPT2-XL Human GPT2-XL Human

2-gram Surprisal*** 7.86 8.13 0.46 0.40
3-gram Surprisal*** 5.64 5.78 0.32 0.28
4-gram Surprisal 3.57 3.58 0.22 0.20
Age of Acquisition 5.28 5.26 0.53 0.46
Arousal 0.42 0.42 0.04 0.04
Concreteness*** 2.58 2.69 0.16 0.15
Content Word Ratio* 0.50 0.53 0.11 0.08
End of Constituent* 0.23 0.24 0.03 0.03
End of Center-Embedding 0.65 0.64 0.04 0.04
End of Multi-Word Center-embedding 0.12 0.13 0.03 0.02
Length of Constituent* 1.33 1.38 0.18 0.12
Length of Multi-Word Center-Embedding 0.47 0.52 0.17 0.13
Lexical Connectivity 45.12 43.85 7.54 7.48
Lexical Decision RT 626.59 629.34 11.02 9.30
Log Contextual Diversity* 3.46 3.40 0.17 0.14
Log Lexical Frequency*** 4.48 4.36 0.27 0.20
Number of Morphemes 1.52 1.54 0.09 0.08
Orthographic Neighbor Frequency 690.82 655.06 228.56 196.97
Orthography-Semantics Consistency 0.77 0.76 0.04 0.04
Polysemy 5.49 5.46 0.86 0.69
Prevalence 2.30 2.31 0.04 0.03
Pronoun Ratio 0.07 0.07 0.07 0.07
Sentence Length 104.59 102.63 12.50 9.59
Syntactic Integration Cost* 0.62 0.68 0.17 0.14
Syntactic Embedding Depth 1.23 1.27 0.17 0.14
Valence 0.62 0.62 0.05 0.04

Table 2: Mean values of SentSpace features for human- and GPT2-XL-generated text. Statistically significant
differences (after a two-tailed t-test) are indicated by *p < .05, **p < .01, ***p < .005.

113

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 114 - 123

July 10-15, 2022 ©2022 Association for Computational Linguistics

PaddleSpeech: An Easy-to-Use All-in-One Speech Toolkit
Hui Zhang1, Tian Yuan1, Junkun Chen3, Xintong Li2, Renjie Zheng2,

Yuxin Huang1, Xiaojie Chen1, Enlei Gong1, Zeyu Chen1, Xiaoguang Hu1,
Dianhai Yu1, Yanjun Ma1, Liang Huang2,3

1Baidu Inc., Beijing, China
2Baidu Research, Sunnyvale, CA, USA

3Oregon State University, Corvallis, OR, USA
{zhanghui41, yuantian01, xintongli, renjiezheng,

huangyuxin, chenxiaojie06, gongenlei, chenzeyu01}baidu.com

Abstract
PaddleSpeech is an open-source all-in-one
speech toolkit. It aims at facilitating the devel-
opment and research of speech processing tech-
nologies by providing an easy-to-use command-
line interface and a simple code structure. This
paper describes the design philosophy and core
architecture of PaddleSpeech to support sev-
eral essential speech-to-text and text-to-speech
tasks. PaddleSpeech achieves competitive or
state-of-the-art performance on various speech
datasets and implements the most popular meth-
ods. It also provides recipes and pretrained
models to quickly reproduce the experimental
results in this paper. PaddleSpeech is publicly
avaiable at https://github.com/PaddlePaddle/
PaddleSpeech.1

1 Introduction

Speech processing technology enables humans to
directly communicate with computers, which is
an essential part of enormous applications such
as smart home devices (Hoy, 2018), autonomous
driving, and simultaneous translation (Zheng et al.,
2020). Open-source toolkits boost the develop-
ment of speech processing technology by lower-
ing the barrier of application and research in this
area (Young et al., 2002; Lee et al., 2001; Huggins-
Daines et al., 2006; Rybach et al., 2011; Povey
et al., 2011; Watanabe et al., 2018; Han et al., 2019;
Wang et al., 2020; Ravanelli et al., 2021; Zhao et al.,
2021).

However, the current prevailing speech process-
ing toolkits presume that their users are experi-
enced practitioners or researchers, so beginners
might feel baffled when developing their exciting
applications. For example, to prototype new speech
applications with Kaldi (Povey et al., 2011), the
users have to be comfortable reading and revis-
ing the provided recipes written in Bash, Perl, and
1Demo video: https://paddlespeech.readthedocs.io/en

/latest/demo_video.html

Python scripts and be proficient at C++ to hack its
implementation. The more recent toolkits, such
as Fairseq S2T (Wang et al., 2020) and NeurST
(Zhao et al., 2021), become more flexible by build-
ing on general-purpose deep learning libraries. But
their complicated code styles also make it time-
consuming to learn and hard to migrate from one to
another. So, we have developed PaddleSpeech, pro-
viding a command-line interface and portable func-
tions to make the development of speech-related
applications accessible to everyone.

Notably, the Chinese community has many de-
velopers eager to contribute to the community.
However, nearly all deep learning libraries, such
as Pytorch (Paszke et al., 2019) and Tensorflow
(Abadi et al., 2016), target the English commu-
nity mainly, so it significantly increases the dif-
ficulty for Chinese developers. PaddlePaddle, as
the only fully-functioning open-source deep learn-
ing platform targeting both the English and Chi-
nese community, has accumulated more than 500k
commits, 476k models, and is used by 157k en-
terprises. So, we expect PaddleSpeech, developed
with PaddlePaddle can remove the barriers between
the English and Chinese communities to boost the
development of speech technologies and applica-
tions.

Developing speech applications for the industry
is not the same scenario as conducting research in
academia. The research papers mainly focus on de-
veloping novel models to perform better on specific
datasets. However, a clean dataset usually does not
exist when applying a speech product. So, Paddle-
Speech provides on-the-fly preprocessing for the
raw audios to make PaddleSpeech directly usable in
product-oriented applications. Notably, some pre-
processing methods are exclusive in PaddleSpeech,
such as rule-based Chinese text-to-speech frontend,
which can significantly benefit the performance of
synthesized speech.

Performance is the cornerstone of all applica-

114

Task Description Techniques Datasets

Sound
Classification Label sound class Finetuned PANN (Kong et al., 2020b) ESC-50 dataset (Piczak, 2015)

Speech
Recognition

Transcribe speech
to text

Deepspeech2 (Amodei et al., 2016)
Conformer (Zhang et al., 2020)
Transformer (Zhang et al., 2020)

Librispeech (Panayotov et al., 2015)
AISHELL-1 (Bu et al., 2017)

Punctuation
Restoration

Post-add punctuation
to transcribed text Finetuned ERNIE (Sun et al., 2019) IWSLT2012-zh (Federico et al., 2012)

Speech
Translation

Translate speech
to text Transformer (Vaswani et al., 2017) MuST-C (Di Gangi et al., 2019)

Text
To Speech

Synthesis speech
from text

Acoustic Model
Tacotron 2 (Shen et al., 2018)
Transformer TTS (Li et al., 2019)
SpeedySpeech (Vainer and Dušek, 2020)
FastPitch (Łańcucki, 2021)
FastSpeech 2 (Ren et al., 2020)

Vocoder
WaveFlow(Ping et al., 2020)
Parallel WaveGAN (Yamamoto et al., 2020)
MelGAN (Kumar et al., 2019)
Style MelGAN (Mustafa et al., 2021)
Multi Band MelGAN (Yang et al., 2021)
HiFi GAN (Kong et al., 2020a)

CSMS (DataBaker)
AISHELL-3 (Shi et al., 2020)
LJSpeech (Ito and Johnson, 2017)
VCTK (Yamagishi et al., 2019)

Table 1: List of speech tasks and corpora that are currently supported by PaddleSpeech.

tions. PaddleSpeech achieves state-of-the-art or
competitive performers on various commonly used
benchmarks, as shown in Table 1.

Our main contributions in this paper are two-
folds.

• We introduce how we designed PaddleSpeech
and what features it supports.

• We provide the implementation and repro-
ducible experimental details that result in
state-of-the-art or competitive performance
on various tasks.

2 Design of PaddleSpeech

Figure 1 shows the software architecture of Pad-
dleSpeech. As an easy-to-use speech processing
toolkit, PaddleSpeech provides many complete
recipes to perform various speech-related tasks and
demo usage of the command line interface. Getting
familiar with the top level should be enough for
building speech-related applications.

The second level faces researchers in speech
and language processing. The design philosophy
of PaddleSpeech is model-centric to simplify the
learning and development of speech processing
methods. For a specific method, all computations
of a specific model are included in two files under

Fundamental Platforms

Common Modules

Models & Updaters & Datasets

Recipes

PaddlePaddle
Other Libraries

Kaldi, Sclite, Sox, Openblas

PaddleAudio
paddleaudio.features.Spectrogram
paddleaudio.features.LogMelSpectrogram

Utils
utils/build_vocab.py
utils/parse_options.sh

PaddleSpeech
cli/asr/infer.py
t2s/exps/fastspeech2/train.py
t2s/models/fastspeech2/fastspeech2.py
t2s/models/fastspeech2/fastspeech2_updater.py

Datasets

dataset/aishell/aishell.py
dataset/librispeech/librispeech.py

Examples/Demos
examples/aishell/run.sh
demos/metaverse/run.sh

Figure 1: Software architecture of PaddleSpeech.

PaddleSpeech/<task>/models/<model>.2

PaddleSpeech has implemented most of the com-
monly used and well-performing models. A model
architecture is implemented in a standalone file
named by the method. Its corresponding train-
ing step and evaluation step are implemented
in another updater file. Generally, reading or
hacking these two files is enough to understand
or design a model. More advanced hacking
on more fine data processing or more compli-
2<task> includes s2t and t2s which stands for speech-to-
text and text-to-speech respectively.

115

cated training/evaluation loop is also available at
PaddleSpeech/<task>/exps/<model>. The orig-
inal datasets can be obtained by scripts in cor-
responding dataset/<dataset>/. PaddleSpeech
supports distributed multi-GPU training with good
efficiency.

The standard modules, such as audio and text
feature transformation and utility scripts, are imple-
mented as libraries in the third level . The backend
of PaddleSpeech is mainly PaddlePaddle with some
functions from third-party libraries as shown in
the fourth level . PaddleSpeech provides multiple

ways to extract multiple types of speech features
from raw audios using PaddleAudio and Kaldi,
such as spectrogram and filterbanks, which can
be varied according to the needs of the tasks.

3 Experiments

In this section, we compare the performance of
models in PaddleSpeech with other popular imple-
mentations in five speech-related tasks, including
sound classification, speech recognition, punctua-
tion, speech translation, and speech synthesizing.
The toolkit can reach SOTA on most tasks. All
experiments in this section include details on data
preparation, evaluation metrics, and implementa-
tion to enhance reproducibility.3

3.1 Sound Classification

Sound Classification is a task to recognize particu-
lar sounds, including speech commands (Warden,
2018), environment sounds (Piczak, 2015), iden-
tifying musical instruments (Engel et al., 2017),
finding birdsongs (Stowell et al., 2018), emotion
recognition (Xu et al., 2019) and speaker verifica-
tion (Liu et al., 2018).

Datasets In this section, we analyze the perfor-
mance of PaddleSpeech in Sound Classification
on ESC-50 dataset (Piczak, 2015). The ESC-50
dataset is a labeled collection of 2000 environ-
mental 5-second audio recordings consisting of 50
sound events, such as "Dog", "Cat", "Breathing"
and "Fireworks", with 40 recordings per event.

Data Preprocessing First, we resample all audio
recordings to 32 kHz, and convert them to mono-
phonic to be consistent with the PANNs trained on
AudioSet (Kong et al., 2020b). And then, we trans-
form the recordings into log mel spectrograms by
3
https://github.com/PaddlePaddle/PaddleSpeech/tree/

develop/examples

Model Accuracy

AST-P (Gong et al., 2021) 95.6± 0.4

PANNs-CNN14 95.00
PANNs-CNN10 89.75
PANNs-CNN6 88.25

Table 2: 5-fold cross validation accuracy of ESC-50.

applying short-time Fourier transform on the wave-
forms with a Hamming window of size 1024 and a
hop size of 320 samples. This configuration leads
to 100 frames per second. Following Kong et al.
(2019), we apply 64 mel filter banks to calculate
the log mel spectrogram.

Implementation PANNs (Kong et al., 2020b)
is one of the pre-trained CNN models for audio-
related tasks, which is characterized in terms of
being trained with the AudioSet (Gemmeke et al.,
2017). PANNs are helpful for tasks where only a
limited number of training clips are provided. In
this case, we fine-tune all parameters of a PANN for
the environment sounds classification task. All pa-
rameters are initialized from the PANN, except the
final fully-connected layer which is randomly ini-
tialized. Specifically, we implement CNNs with 6,
10 and 14 layers, respectively (Kong et al., 2020b).

Results We report 5-fold cross validation accu-
racy values on ESC-50 dataset. As shown in Table
2, PANNs-CNN14 achieves 0.9500 5-fold cross
validation accuracy that is comparable to the cur-
rent state-of-the-art method (Gong et al., 2021).

3.2 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is a task to
transcribe the audio content to text in the same
language.

Datasets We conduct the ASR experiments on
two major datasets including Librispeech4 (Panay-
otov et al., 2015) and Aishell-15 (Bu et al., 2017).
Librispeech contains 1000 hours speech data. The
whole dataset is divided into 3 training sets (100h
clean, 360h clean, 500h other), 2 validation sets
(clean, other), and 2 test sets (clean, other). Aishell
contains 178 hours speech data. 400 speakers from
different accent areas in China participate in the
recording. The dataset is divided into the training

4
http://www.openslr.org/12/

5
http://www.aishelltech.com/kysjcp

116

Data Model Streaming Test Data Language Model CER WER
A

is
he

ll
WeNet Conformer†∗ (Yao et al., 2021) ✓ 5.45 -
WeNet Conformer† (Yao et al., 2021) 4.61 -
WeNet Transformer† (Yao et al., 2021) 5.30 -
ESPnet Conformer† (Inaguma et al., 2020) 5.10 -
ESPnet Transformer† (Inaguma et al., 2020) 6.70 -
SpeechBrain Transformer† (Ravanelli et al., 2021) 5.58 -

Deepspeech 2 ✓ char 5-gram 6.66 -
Deepspeech 2 char 5-gram 6.40 -
Transformer 5.23 -
Conformer∗ ✓ 5.44 -
Conformer 4.64 -

L
ib

ri
sp

ee
ch

WeNet Conformer† (Yao et al., 2021) test-clean - 2.85
SpeechBrain Transformer† (Ravanelli et al., 2021) test-clean TransformerLM - 2.46
ESPnet Transformer† (Inaguma et al., 2020) test-clean TransformerLM - 2.60

Deepspeech 2 test-clean word 5-gram - 7.25
Conformer test-clean - 3.37
Transformer test-clean TransformerLM - 2.40

†
denotes the results are reported in their public repositories.

∗
denotes the results are streaming with chunk size 16.

Table 3: WER/CER on Aishell, Librispeech for ASR Tasks.

set (340 speakers), validation set, (40 speakers) and
test set (20 speakers).

Data Preprocessing Deepspeech 2 takes
character-level vocabularies for both English
and Mandarin tasks. For other models, we use
character-level vocabulary for Mandarin. And
English text is preprocessed with SentencePiece
(Kudo and Richardson, 2018). Both two kinds
of datasets are added four additional characters,
which are <’>, <space>, <blank> and <eos>.
For cepstral mean and variance normalization
(CMVN), a subset of or full of the training set
is selected and be used to compute the feature
mean and standard error. For feature extraction,
we have several methods implemented, such as
linear spectrogram, filterbank, and mfcc. Currently,
the Deepspeech 2 model uses linear spectrogram
or filterbank, but Transformer and Conformer
models use filterbank. For a fair comparison, we
take additional 3 dimensional pitch features into
Transformer to be consistent with ESPnet.

Implementation We implement both streaming
and non-streaming Deepspeech 2 (Amodei et al.,
2016). The non-streaming model has 2 convolu-
tion layers and 3 LSTM layers. The streaming
model has 2 convolution layers and 5 LSTM lay-
ers. The Conformer and Transformer models are
implemented following Zhang et al. (2020) with 12
encoder layers and 6 decoder layers.

Results We report word error rate (WER) and
character error rate (CER) for Librispeech (En-
glish) and Aishell (Mandarin) speech recognition,
respectively. As shown in Table 3, Conformer and
Transformer are better than Deepspeech 2. Our
best models achieve comparable performance on
both datasets compared with related works.

3.3 Punctuation Restoration
Punctuation restoration is a post-processing prob-
lem for ASR systems. It is crucial to improve the
readability of the transcribed text for the human
reader and facilitate down-streaming NLP tasks.

Datasets We conduct experiments on
IWSLT2012-zh6 dataset, which contains 150k
Chinese sentences with punctuation. We select
comma, period, and question marks as restore
targets in this task, so we replace other punctuation
with these three marks before training a model. We
split the data into training, validation and testing
sets with 147k, 2k, and 1k samples, respectively.

Implementation We formulate the problem of
punctuation restoration as a sequence labeling task
with four target classes including EMPTY, COMMA,
PERIOD, and QUESTION (Nagy et al., 2021b).
ERNIE (Sun et al., 2019), as a pretrained language
model, achieves new state-of-the-art results on five
Chinese natural language processing tasks, includ-
ing natural language inference, semantic similarity,
6
https://hltc.cs.ust.hk/iwslt/

117

Frameworks De Es Fr It Nl Pt Ro Ru

ESPnet-ST (Inaguma et al., 2020) 22.9 28.0 32.8 23.8 27.4 28.0 21.9 15.8
fairseq-ST (Wang et al., 2020) 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3
NeurST (Zhao et al., 2021) 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1

PaddleSpeech 23.0 27.4 32.9 22.9 26.7 28.8 22.2 15.4

Table 4: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON.

model COMMA PERIOD QUESTION Overall

BERTLinear† 0.4646 0.4227 0.7400 0.5424
BERTBiLSTM† 0.5190 0.5707 0.8095 0.6330

ERNIELinear 0.5142 0.5447 0.8406 0.6331
†

denotes the results come from our reproduced models.

Table 5: F1-score values on IWSLT2012-zh dataset.

named entity recognition, sentiment analysis, and
question answering. So, we finetune an ERNIE
model for this task. More specifically, all param-
eters are initialized from the ERNIE pretrained
model, except the final shared fully-connected
layer, which is randomly initialized.

Results We report F1-score values on
IWSLT2012-zh dataset. As shown in Table
5, our ERNIELinear model achieves 0.6331 overall
F1-score, which is comparable with the previous
work (Nagy et al., 2021a).

3.4 Speech Translation

Speech translation, where translating speech in a
source language to text in another language, is ben-
eficial in human communications.

Datasets In this section, we analyze the perfor-
mance of speech-to-text translation with Paddle-
Speech on MuST-C dataset (Di Gangi et al., 2019)
with 8 different language translation pairs, which
take the English speech as the source input.

Implementation We process the raw audios
with Kaldi (Povey et al., 2011) and extract 80-
dimensional log-mel filterbanks stacked with 3-
dimensional pitch feature using a 25ms window
size and a 10ms step size. Text is firstly tokenized
with Moses tokenizer7 and then processed by Sen-
tencePiece (Kudo and Richardson, 2018) with a
joint vocabulary whose size is 8K for each language
pair. We employ Transformer (Vaswani et al., 2017)
as the base architecture for the speech translation
experiments. In detail, the Transformer model has
7
https://github.com/moses-smt/mosesdecoder

12 encoder layers that follow 2 layers of 2D convo-
lution with kernel size of 3 and stride size of 2, and
6 decoder layers. Each layer contains 4 attention
heads with a size of 256. The encoder is initialized
from a pretrained ASR model.

Results We report detokenized case-sensitive
BLEU8. As shown in Table 4, PaddleSpeech can
achieve competitive results compared with other
frameworks.

3.5 Text-To-Speech

A Text-To-Speech (TTS) system converts given
language text into speech. PaddleSpeech’s TTS
pipeline includes three steps. We first convert the
original text into the characters/phonemes through
the text frontend module. Then, through an Acous-
tic model, we convert the characters or phonemes
into acoustic features, such as mel spectrogram, Fi-
nally, we generate waveform from the acoustic fea-
tures through a Vocoder. In PaddleSpeech, the text
frontend is a rule-based model inspired by expert
knowledge. The Acoustic models and Vocoders are
trainable.

Datasets In PaddleSpeech, we mainly focus on
Mandarin and English speech synthesis. We
have benchmarks on CSMSC9, AISHELL-310,
LJSpeech11, VCTK12. Due to the limit of space,
we only list the experimental results on CSMSC,
which includes 12 hours speech audio correspond-
ing to 10k sentences.

Text Frontend A text frontend module is used to
extract linguistic features, characters and phonemes
from given text. It mainly includes: Text Segmenta-
tion, Text Normalization (TN), Word Segmentation
(WS), Part-of-Speech Tagging, Prosody Prediction
and Grapheme-to-Phoneme (G2P) (see Table 6).

8
https://github.com/mjpost/sacrebleu

9
https://www.data-baker.com/open_source.html

10
http://www.aishelltech.com/aishell_3

11
https://keithito.com/LJ-Speech-Dataset/

12
https://datashare.ed.ac.uk/handle/10283/3443

118

Module Result
Pa

dd
le

Sp
ee

ch

jı̄n tiān shì zuì dı̄ wēn dù shì
Text 今天 是 2020/10/29 ， 最低 温度 是 -3°C 。

today is lowest temperature is

èr líng èr líng nían shí yùe èr shí jǐu rì líng xià sān dù
TN 今天 是 二零 二 零 年 十 月 二十九 日 ， 最低 温度 是 零下 三 度 。

2 0 0 2 year 10 month 29 day negative three degree

WS 今天 / 是 / 二零二零年 /十月 /二十九日 ， /最低 温度 / 是 / 零下 /三度 。

G2P jin1 tian1 shi4 er4 ling2 er4 ling2 nian2 shi4 yue4 er4 shi2 jiu3 ri4 zui4 di1 wen1 du4 shi4 ling2 xia4 san1 du4

ESPnet jin1 tian1 shi4 2020/10/29 zui4 di1 wen1 du4 shi4 -3°C

Table 6: An example of the text preprocessing pipeline for Mandarin TTS of PaddleSpeech and ESPnet. TN
stands for the text normalization module, WS stands for the word segmentation module, G2P stands for the
grapheme-to-phoneme module. The text normalization module for mandarin of ESPnet is not able to correctly
handle dates (2020/10/29) and temperatures (-3°C).

For Mandarin, our G2P system consists of a poly-
phone module, which uses pypinyin and g2pM, and
a tone sandhi module which uses rules based on
chinese word segmentations. To the best of our
knowledge, our Mandarin text frontend system is
the most complete one compared with other pub-
licly released works.

Data Preprocessing PaddleSpeech TTS uses the
following modules for data preprocessing13: First,
we use Montreal-Forced-Aligner to get the duration
for corresponding phonemes. Second, we extract
mel spectrograms as the features (additional pitch
and energy features for Fastspeech 2). Last, we
conduct the statistical normalization for each fea-
ture.

Acoustic Model Acoustic models can be
mainly classified into autoregressive and non-
autoregressive models. The decoding of the au-
toregressive model relies on previous predictions
at each step, which leads to longer inference
time but relatively better quality. While the non-
autoregressive model generates the outputs in par-
allel, so the inference speed is faster, but the quality
of generated result is relatively poor.

As shown in Table 1, PaddleSpeech has im-
plemented the following commonly used autore-
gressive acoustic models: Tacotron 2 and Trans-
former TTS, and non-autoregressive acoustic mod-
els: SpeedySpeech, FastPitch and FastSpeech 2.

Vocoder As shown in Table 1, PaddleSpeech
has implemented the following vocoders: Wave-
Flow, Parallel WaveGAN, MelGAN, Style Mel-

13
https://github.com/PaddlePaddle/PaddleSpeech/blob/

develop/examples/csmsc/tts3/local/preprocess.sh

Acoustic Model Vocoder MOS ↑
ESPnet Fastspeech 2 PWGAN 2.55 ± 0.19

Tacotron 2 PWGAN 3.69 ± 0.11
Speedyspeech PWGAN 3.79 ± 0.09
Fastspeech 2 PWGAN 4.25 ± 0.09

PaddleSpeech Fastspeech 2 Style MelGAN 4.32 ± 0.10
Fastspeech 2 MB MelGAN 4.43 ± 0.09
Fastspeech 2 HiFi GAN 4.72 ± 0.08

Table 7: The MOS evaluation with 95% confidence
intervals for TTS models trained using CSMSC dataset.
PWGAN stands for Parallel WaveGan, MB MelGAN
stands for Multi-Band MelGAN.

GAN, Multi Band MelGAN, and HiFi GAN.

Implementation The PadddleSpeech TTS imple-
mentation of FastSpeech 2 adopts some improve-
ment from FastPitch and uses MFA to obtain the
forced alignment (the original FastSpeech paper
uses Tacotron 2). Notably, the speech feature pa-
rameters of the acoustic model and the vocoder of
one TTS pipeline should be the same. Detailed
settings can be found in the sample config file14 on
CSMSC dataset.

Results We report the mean opinion score (MOS)
for naturalness evaluation in Table 7. We use the
crowdMOS toolkit (Ribeiro et al., 2011), where 14
Mandarin samples (see Appendix A) from these
7 different models were presented to 14 workers
on Mechanical Turk. As shown in Table 7, Pad-
dleSpeech can largely outperform ESPnet on Man-
darin TTS. The main reason is that PaddleSpeech
TTS has a better text frontend as shown in Table
6. Compared with other models, Fastspeech 2 with

14
https://github.com/PaddlePaddle/PaddleSpeech/blob/

develop/examples/csmsc/tts2/conf/default.yaml

119

HiFi GAN can achieve the best results.

4 Conclusion

This paper introduces PaddleSpeech, an open-
source, easy-to-use, all-in-one speech processing
toolkit. We illustrated the main design philosophy
behind this toolkit to conduct development and re-
search on various speech-related tasks accessible.
A number of reproducible experiments and com-
parisons show that PaddleSpeech achieves state-of-
the-art or competitive performance with the most
popular models on standard benchmarks.

5 Acknowledgment

We sincerely thank the anonymous reviewers
for their valuable comments and suggestions.
This work was supported by the National Key
Research and Development Project of China
(2020AAA0103503).

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale ma-
chine learning. In 12th {USENIX} symposium on op-
erating systems design and implementation ({OSDI}
16), pages 265–283.

Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guo-
liang Chen, et al. 2016. Deep speech 2: End-to-end
speech recognition in english and mandarin. In In-
ternational conference on machine learning, pages
173–182. PMLR.

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao
Zheng. 2017. Aishell-1: An open-source mandarin
speech corpus and a speech recognition baseline. In
2017 20th Conference of the Oriental Chapter of
the International Coordinating Committee on Speech
Databases and Speech I/O Systems and Assessment
(O-COCOSDA), pages 1–5. IEEE.

Mattia A Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019. Must-c: a
multilingual speech translation corpus. In 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2012–2017. Association
for Computational Linguistics.

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander
Dieleman, Mohammad Norouzi, Douglas Eck, and
Karen Simonyan. 2017. Neural audio synthesis of
musical notes with wavenet autoencoders. In ICML.

Marcello Federico, Mauro Cettolo, Luisa Bentivogli,
Paul Michael, and Stüker Sebastian. 2012. Overview
of the iwslt 2012 evaluation campaign. In IWSLT-
International Workshop on Spoken Language Trans-
lation, pages 12–33.

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman,
Aren Jansen, Wade Lawrence, R. Channing Moore,
Manoj Plakal, and Marvin Ritter. 2017. Audio set:
An ontology and human-labeled dataset for audio
events. 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 776–780.

Yuan Gong, Yu-An Chung, and James R. Glass.
2021. Ast: Audio spectrogram transformer. ArXiv,
abs/2104.01778.

Kun Han, Junwen Chen, Hui Zhang, Haiyang Xu, Yip-
ing Peng, Yun Wang, Ning Ding, Hui Deng, Yonghu
Gao, Tingwei Guo, Yi Zhang, Yahao He, Baochang
Ma, Yulong Zhou, Kangli Zhang, Chao Liu, Ying
Lyu, Chenxi Wang, Cheng Gong, Yunbo Wang, Wei
Zou, Hui Song, and Xiangang Li. 2019. DELTA:
A DEep learning based Language Technology plAt-
form. arXiv e-prints.

Matthew B Hoy. 2018. Alexa, siri, cortana, and more:
an introduction to voice assistants. Medical reference
services quarterly, 37(1):81–88.

David Huggins-Daines, Mohit Kumar, Arthur Chan,
Alan W Black, Mosur Ravishankar, and Alexander I
Rudnicky. 2006. Pocketsphinx: A free, real-time
continuous speech recognition system for hand-held
devices. In 2006 IEEE International Conference on
Acoustics Speech and Signal Processing Proceedings,
volume 1, pages I–I. IEEE.

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki
Karita, Nelson Yalta, Tomoki Hayashi, and Shinji
Watanabe. 2020. Espnet-st: All-in-one speech trans-
lation toolkit. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 302–311.

Keith Ito and Linda Johnson. 2017. The lj speech
dataset. https://keithito.com/LJ-Speech-Dataset/.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020a.
Hifi-gan: Generative adversarial networks for ef-
ficient and high fidelity speech synthesis. arXiv
preprint arXiv:2010.05646.

Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang,
Wenwu Wang, and Mark D. Plumbley. 2020b. Panns:
Large-scale pretrained audio neural networks for au-
dio pattern recognition. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 28:2880–
2894.

Qiuqiang Kong, Yin Cao, Turab Iqbal, Yong Xu, Wenwu
Wang, and Mark D. Plumbley. 2019. Cross-task
learning for audio tagging, sound event detection and
spatial localization: Dcase 2019 baseline systems.
ArXiv, abs/1904.05635.

120

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71.

Kundan Kumar, Rithesh Kumar, Thibault de Boissiere,
Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre
de Brébisson, Yoshua Bengio, and Aaron Courville.
2019. Melgan: Generative adversarial networks
for conditional waveform synthesis. arXiv preprint
arXiv:1910.06711.

Adrian Łańcucki. 2021. Fastpitch: Parallel text-to-
speech with pitch prediction. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6588–6592.
IEEE.

Akinobu Lee, Tatsuya Kawahara, and Kiyohiro Shikano.
2001. Julius—an open source real-time large vocab-
ulary recognition engine. EUROSPEECH2001: the
7th European Conference on Speech Communication
and Technology.

Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and
Ming Liu. 2019. Neural speech synthesis with trans-
former network. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6706–6713.

Bin Liu, Shuai Nie, Yaping Zhang, Shan Liang, and
Wenju Liu. 2018. Deep segment attentive embedding
for duration robust speaker verification.

Ahmed Mustafa, Nicola Pia, and Guillaume Fuchs.
2021. Stylemelgan: An efficient high-fidelity adver-
sarial vocoder with temporal adaptive normalization.
In ICASSP 2021-2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6034–6038. IEEE.

Attila Nagy, Bence Bial, and Judit Ács. 2021a. Au-
tomatic punctuation restoration with bert models.
arXiv preprint arXiv:2101.07343.

Attila Matyas Nagy, Bence Bial, and Judit Ács. 2021b.
Automatic punctuation restoration with bert models.
ArXiv, abs/2101.07343.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206–5210.
IEEE.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32:8026–
8037.

Karol J. Piczak. 2015. Esc: Dataset for environmental
sound classification. Proceedings of the 23rd ACM
international conference on Multimedia.

Wei Ping, Kainan Peng, Kexin Zhao, and Zhao Song.
2020. Waveflow: A compact flow-based model for
raw audio. In International Conference on Machine
Learning, pages 7706–7716. PMLR.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The kaldi speech recognition
toolkit. In IEEE 2011 workshop on automatic speech
recognition and understanding, CONF. IEEE Signal
Processing Society.

Mirco Ravanelli, Titouan Parcollet, Peter Plantinga,
Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem
Subakan, Nauman Dawalatabad, Abdelwahab Heba,
Jianyuan Zhong, et al. 2021. Speechbrain: A
general-purpose speech toolkit. arXiv preprint
arXiv:2106.04624.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2020. Fastspeech
2: Fast and high-quality end-to-end text to speech.
arXiv preprint arXiv:2006.04558.

Flávio Ribeiro, Dinei Florêncio, Cha Zhang, and
Michael Seltzer. 2011. Crowdmos: An approach for
crowdsourcing mean opinion score studies. In 2011
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 2416–2419.
IEEE.

David Rybach, Stefan Hahn, Patrick Lehnen, David
Nolden, Martin Sundermeyer, Zoltan Tüske, Simon
Wiesler, Ralf Schlüter, and Hermann Ney. 2011.
Rasr-the rwth aachen university open source speech
recognition toolkit. In Proc. ieee automatic speech
recognition and understanding workshop.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan,
et al. 2018. Natural tts synthesis by conditioning
wavenet on mel spectrogram predictions. In 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4779–4783.
IEEE.

Yao Shi, Hui Bu, Xin Xu, Shaoji Zhang, and Ming
Li. 2020. Aishell-3: A multi-speaker mandarin
tts corpus and the baselines. arXiv preprint
arXiv:2010.11567.

Dan Stowell, Yannis Stylianou, Mike Wood, Hanna
Pamula, and Hervé Glotin. 2018. Automatic acoustic
detection of birds through deep learning: the first bird
audio detection challenge. ArXiv, abs/1807.05812.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced rep-
resentation through knowledge integration. ArXiv,
abs/1904.09223.

121

Jan Vainer and Ondřej Dušek. 2020. Speedyspeech:
Efficient neural speech synthesis. arXiv preprint
arXiv:2008.03802.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 33–39, Suzhou, China. Association
for Computational Linguistics.

Pete Warden. 2018. Speech commands: A dataset
for limited-vocabulary speech recognition. ArXiv,
abs/1804.03209.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson En-
rique Yalta Soplin, Jahn Heymann, Matthew Wiesner,
Nanxin Chen, et al. 2018. Espnet: End-to-end speech
processing toolkit. arXiv preprint arXiv:1804.00015.

Haiyang Xu, Hui Zhang, Kun Han, Yun Wang, Yiping
Peng, and Xiangang Li. 2019. Learning alignment
for multimodal emotion recognition from speech.
CoRR, abs/1909.05645.

Junichi Yamagishi, Christophe Veaux, Kirsten MacDon-
ald, et al. 2019. Cstr vctk corpus: English multi-
speaker corpus for cstr voice cloning toolkit (ver-
sion 0.92). University of Edinburgh. The Centre for
Speech Technology Research (CSTR).

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim.
2020. Parallel wavegan: A fast waveform generation
model based on generative adversarial networks with
multi-resolution spectrogram. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6199–6203.
IEEE.

Geng Yang, Shan Yang, Kai Liu, Peng Fang, Wei Chen,
and Lei Xie. 2021. Multi-band melgan: Faster wave-
form generation for high-quality text-to-speech. In
2021 IEEE Spoken Language Technology Workshop
(SLT), pages 492–498. IEEE.

Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang,
Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu Chen,
Lei Xie, and Xin Lei. 2021. Wenet: Produc-
tion oriented streaming and non-streaming end-to-
end speech recognition toolkit. arXiv preprint
arXiv:2102.01547.

Steve Young, Gunnar Evermann, Mark Gales, Thomas
Hain, Dan Kershaw, Xunying Liu, Gareth Moore,
Julian Odell, Dave Ollason, Dan Povey, et al. 2002.
The htk book. Cambridge university engineering
department, 3(175):12.

Binbin Zhang, Di Wu, Zhuoyuan Yao, Xiong Wang,
Fan Yu, Chao Yang, Liyong Guo, Yaguang Hu, Lei
Xie, and Xin Lei. 2020. Unified streaming and
non-streaming two-pass end-to-end model for speech
recognition. arXiv preprint arXiv:2012.05481.

Chengqi Zhao, Mingxuan Wang, Qianqian Dong, Rong
Ye, and Lei Li. 2021. NeurST: Neural speech transla-
tion toolkit. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 55–62, Online. Association for Computational
Linguistics.

Renjie Zheng, Mingbo Ma, Baigong Zheng, Kaibo Liu,
Jiahong Yuan, Kenneth Church, and Liang Huang.
2020. Fluent and low-latency simultaneous speech-
to-speech translation with self-adaptive training. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3928–3937.

122

A TTS Examples

We use the following sentences as the MOS evalua-
tion test set in Table 7.

• 早上好，今天是2020/10/29，最低温度是-
3°C。

• 你好，我的编号是37249，很高兴为您服
务。

• 我们公司有37249个人。

• 我出生于2005年10月8日。

• 我们习惯在12:30吃中午饭。

• 只要有超过3/4的人投票同意，你就会成
为我们的新班长。

• 我要买一只价值999.9元的手表。

• 我的手机号是18544139121，欢迎来电。

• 明天有62%的概率降雨。

• 手表厂有五种好产品。

• 跑马场有五百匹很勇敢的千里马。

• 有一天，我看到了一栋楼，我顿感不妙，
因为我看不清里面有没有人。

• 史小姐拿着小雨伞去找她的老保姆了。

• 不要相信这个老奶奶说的话，她一点儿也
不好。

123

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 124 - 130

July 10-15, 2022 ©2022 Association for Computational Linguistics

DadmaTools: a Natural Language Processing Toolkit
for the Persian Language

Romina Etezadi, Mohammad Karrabi, Najmeh Zare Maduyieh,
Mohammad Bagher Sajadi, and Mohammad Taher Pilehvar

Dadmatech, Tehran, Iran
{roetezadi,karrabi,n zare,sajadi}@dadmatech.ir

Abstract

We introduce DadmaTools, an open-source
Python Natural Language Processing toolkit
for the Persian language. The toolkit is a neu-
ral pipeline based on spaCy for several text
processing tasks, including normalization, to-
kenization, lemmatization, part-of-speech, de-
pendency parsing, constituency parsing, chunk-
ing, and ezafe detecting. DadmaTools relies
on fine-tuning of ParsBERT using the PerDT
dataset for most of the tasks. Dataset module
and embedding module are included in Dad-
maTools that support different Persian datasets,
embeddings, and commonly used functions for
them. Our evaluations show that DadmaTools
can attain state-of-the-art performance on mul-
tiple NLP tasks. The source code is freely avail-
able at https://github.com/Dadmatech/
DadmaTools.

1 Introduction

With the increased accessibility of open-source nat-
ural language processing toolkits, users are now
able to more easily develop tools that perform so-
phisticated linguistic tasks. There are several Per-
sian NLP toolkits, such as Stanza (Qi et al., 2020),
Hazm1, Parsivar2, and jPTDP (Nguyen and Ver-
spoor, 2018). However, they suffer from several
limitations. First, most Persian toolkits are based
on conventional non-neural models which prevents
them from taking full advantage of the recent de-
velopments in the filed. Examples include Parsi-
var (Mohtaj et al., 2018), STeP1 (Shamsfard et al.,
2010), Virastar3, Virastyar4, and ParsiAnalyzer5.

1https://github.com/sobhe/hazm
2https://github.com/ICTRC/Parsivar
3https://github.com/aziz/virastar
4https://github.com/alishakiba/

virastyar
5https://github.com/NarimanN2/

ParsiAnalyzer

Second, most Persian toolkits either do not cover
all the basic processing tools (e.g., Perstem6 and
farsiNLPTools) or are not open-source (e.g., Farsi-
Yar7). Third, there is no single toolkit that provides
state-of-the-art results across different basic tasks.
Table 1 lists the toolkits available for Persian NLP
along with their task coverage.

We introduce DadmaTools, an open-source
Python Natural Language Processing toolkit for
Persian. DadmaTools provides the following ad-
vantages compared to existing toolkits:

• Using the DadmaTools framework, users can
easily download various standard Persian
datasets and perform a variety of operations
on them.

• Several pre-trained static word embeddings
exits for the Persian language. Many of these
embeddings are integrated in the DadmaTools
toolkit.

• We evaluated DadmaTools on different Per-
sian datasets, reporting state-of-the-art or
competitive performance at each step of the
pipeline.

Moreover, DadmaTools is based on the spaCy
framework which allows users to integrate our
toolkit with other piplelines implemented in spaCy.
We note that Stanza is a widely used Persian toolkit.
Hence, we mainly compare DadmaTools to Stanza.
Many of the standard tasks, such as constituency
parsing, chunking, and ezafe detection8, are not
supported by Stanza for Persian. In addition to cov-
ering these tasks, our toolkit also provides support
for datasets and word embeddings. DadmaTools is

6https://github.com/jonsafari/perstem
7https://www.text-mining.ir/
8Ezafe is a grammatical particle in Pesrsian language that

links two words together

124

Toolkit Normalizer Lemma POS dependency Constintuency Chunker Ezafe

Stanza ✗ ✓ ✓ ✓ ✗ ✗ ✗

spaCy ✗ ✓ ✓ ✓ ✗ ✗ ✗

Hazm ✓ ✓ ✓ ✓ ✗ ✓ ✗

farsiNLPTools (Feely et al., 2014) ✗ ✗ ✓ ✓ ✗ ✗ ✗

Perstem ✗ ✗ ✓ ✗ ✗ ✗ ✗

persianp Toolbox ✗ ✗ ✓ ✗ ✗ ✗ ✗

UM-wtlab pos tagger ✗ ✗ ✓ ✗ ✗ ✗ ✗

RDRPOSTagger ✗ ✗ ✓ ✗ ✗ ✗ ✗

jPTDP ✗ ✗ ✓ ✓ ✗ ✗ ✗

Parsivar ✓ ✗ ✓ ✓ ✗ ✓ ✗

text mining ✓ ✓ ✓ ✗ ✗ ✗ ✗

DadmaTools ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Persian NLP toolkits and the corresponding tasks they support.

fully open-source. We hope it can facilitate NLP
research and application for the Persian language.

2 System Design

DadmaTools is a neural NLP pipeline, but it also
includes modules for embeddings and datasets. In
this section, we first describe these modules, fol-
lowed by the main pipeline.

2.1 Dataset Module

Popular text processing libraries such as Transform-
ers9, NLTK (Bird and Loper, 2004), and PyTorch-
text have poor support for low-resource language
datasets such as Persian. The dataset module of
DadmaTools provides a convenient solution for au-
tomatic downloading and utilizing of some popular
Persian NLP datasets. Each available dataset can be
called by a function of the same name and loaded
as a generator object. For instance, the Arman
(Poostchi et al., 2018) dataset can be loaded with
the following lines of code:

import dadmatools

load dataset
arman = dadmatools.datasets.ARMAN()

working with dataset
len_train = len(arman.train)
test_sample = next(arman.test)

DadmaTools allows users to load different
sets (e.g., train, test, or dev), if there are
any, by using the <DATASET>.<SET> for-
mat (e.g., arman.train). Moreover, the
details of the selected dataset can be viewed
by using <DATASET>.info. DadmaTools

9https://github.com/huggingface/
transformers

comes with a set containing the most commonly
used Persian datasets for various tasks, such
as text summarization, named entity recogni-
tion (NER), spell checking, textual entailment,
text classification, sentiment classification, text
translation, and universal dependency. There
is also a search operation in DadmaTools for
finding datasets that belong to specific tasks
by using get all datasets info(tasks=
[’<task1>’, ’<task2>’,...]). The list
of datasets that are currently included in Dadma-
Tools is shown in Table 2. We will keep integrating
new datasets to the toolkit.

2.2 Embedding Module

One of the challenges in developing NLP tools for
the Persian language is the lack of a library to sup-
port different pre-trained embedding models. In
order to overcome this challenge, we have devel-
oped an embedding module in DadmaTools which
provides a variety of public Persian embeddings.
For any given embedding space, an object is cre-
ated which provides a wide range of functions.

download and load embedding
em_name = ’glove-wiki’
embedding = get_embedding(em_name)

word embedding
vec = embedding(<your_word>)

sentence embedding
text = <your_text>
t_vec = embedding.embedding_text(text)

embedding functions
w1 = <word_1>
w2 = <word_2>
similarity_rateembedding.similarity(w1,w2)
top = embedding.top_nearest(10, w1)

125

Dataset Task

PersianNER8 NER
ARMAN (Poostchi et al., 2018) NER
PEYMA (Shahshahani et al., 2018) NER
FarsTail (Amirkhani et al., 2020) Textual Entailment
FaSpell9 Spell Checking
PersianNews (Farahani et al., 2020) Text Classification
PerDT Universal Dependency
PnSummary (Farahani et al., 2021) Text Summarization
SnappfoodSentiment (Farahani et al., 2020) Sentiment Classification
TEP (Pilevar et al., 2011) Text Translation(eng-fa)
WikipediaCorpus Corpus
PersianTweets (Khojasteh et al., 2020) Corpus

Table 2: Persian Datasets that are currently integrated in the DadmaTools toolkit.

The details of the correspond-
ing embeddings can be shown with
get embedding info(<EMBEDDING>).
Several functions are present in DadmaTools that
can be used for word embeddings, such as finding
top nearest neighbours, finding similarity scores
between two given words, or getting sentence
embedding of a text. Word embeddings that are
currently included in DadmaTools are listed in
Table 3. Similarly to the datasets module, we
will keep updating the list when new embedding
models are available.

2.3 NLP Pipeline

The pipeline consists of models that range from
tokenizing raw text to performing syntactic parsing
and high-level task such as NER. The artchitec-
ture of models employed in DadmaTools is mostly
based on Stanza (Qi et al., 2020) and ACE (Wang
et al., 2021).

Normalization. Each sentence can be passed to a
normalizer so that different optional procedures can
be applied to it, such as whitespace correction, char-
acter unification, stopwords/punctuations removal,
and email/number/URL replacement. As different

8https://github.com/Text-Mining/
Persian-NER

9https://lindat.mff.cuni.cz/
repository/xmlui/handle/11372/LRT-1547

10https://github.com/Text-Mining/
Persian-Wikipedia-Corpus/tree/master/
models/glove

11https://fasttext.cc/docs/en/
crawl-vectors.html

12http://vectors.nlpl.eu/repository/
13https://commoncrawl.org/

settings can be used, this task can be used indepen-
dently of the pipeline. However, the pipeline uses a
default normalizer, which only corrects whitespace
and unifies the character.

Tokenization, Sentence Splitting, and MWT.
As for tokenization and sentence splitting, Dad-
maTools uses a similar seq2seq architecture to that
of Stanza trained on the PerDT dataset.

The tokenizer also identifies whether or not a
token is a multi-word token (MWT). Once a word
is detected as an MWT, the word is expanded into
the underlying syntactic subwords using the MWT
Expander.

Lemmatization. Lemmatization is the task of
converting the input word to its canonical form.
For this purpose, we also utilize the seq2seq model
presented in the Stanza for lemmatization. How-
ever, we manually validate the training dataset and
remove wrong or empty instances which results in
a better performance (cf. Table 5).

Part of Speech Tagging. For each word in a
given input text DadmaTools assign a POS tag. To
predict the POS tag, we used the ACE model based
on ParsBERT pre-trained model (Mehrdad Fara-
hani, 2021) fine-tunned on the PerDT dataset for
the sequence labeling task.

Dependency Parsing. Similarly to POS tagging,
our dependency parsing module is based on the
ACE model. In this case, we fine-tuned ParsBERT
for dependency parsing on the PerDT dataset.

Constituency Parsing. A constituency parse tree
breaks a text into sub-phrases. Non-terminals in

126

Embedding Model Training corpus

glove-wiki10 GloVe Wikipedia
fasttext-commoncrawl-bin11 FastText CommonCrawl12

fasttext-commoncrawl-vec11 FastText CommonCrawl
word2vec-conll13 word2vec Persian CoNLL17 corpus

Table 3: Persian word embeddings currently supported by DadmaTools.

Dataset # of Instances Lemma POS Tags Dependency Tags Constituency parses

Seraji 6,000 ✓ ✓ ✓ ✗

PerDT (Rasooli et al., 2020) 29,107 ✓ ✓ ✓ ✗

Bijankhan 83,991 ✗ ✓ ✗ ✗

Dorsa Treebank (Dehghan et al., 2018) 30,000 ✗ ✗ ✗ ✓

Table 4: Persian datasets that are currently included in the toolkit.

the tree are types of phrases, the terminals are the
words in the sentence, and the edges are unlabeled.
To construct the constituency parser, we used the
Supar library CRFConstituencyParser14 using the
constituency dataset provided by Dorsa Treebank
(Dehghan et al., 2018). It is worth mentioning that
the output parse tree tags are different from the tags
produced by the POS tagger.

Chunking. Chunking is the process of separating
and segmenting a sentence into its sub constituents,
such as nouns, verbs, etc. We implemented a rule-
based chunker. The rules have been written based
on words, POS tags, and Dependency tags. The
chunking module functions based on around sixty
rules.

Ezafe Detecting. Ezafe is a grammatical particle
in Pesrsian language that links two words together.
Ezafe carries valuable information about the gram-
matical structure of sentences. However, it is not
explicitly written in Persian scripts. To create a
model to detect ezafe we used the Bijankhan cor-
pus, as it includes ezafe as one of its POS tags.
Therefore, we trained the sequence labeling model,
ParsBERT, on reprocessed Bijankhan corpus for
detecting the ezafe.

3 System Usage

It is possible to use the Normalizer directly with-
out triggering the pipeline using the normalizer
class. The DadmaTools pipline can be also initial-
ized with pipline class. By default, only the
tokenizer with sentence splitting and MWT are

14https://parser.yzhang.site/en/latest/
parsers/const.html

loaded. However, it is possible to load custom pro-
cessors by adding their names as arguments. The
pipeline will generate a Doc instance, which
contains all the raw text’s properties regarding the
processes that have been called, in the form of the
spaCy Doc. The following code snippet shows a
minimal usage example of DadmaTools.

import datamatools.pipeline as pipe

pipes gets the models e.g.
pips = ’lem’ will only contain
lemmatizer in pupeline
pips = ’lem,pos,dep,cons’
nlp = pipe.language.Pipeline(pips)

you can see the pipeline
with this code
info = nlp.analyze_pipes(pretty=True)
print(info)
doc is an SpaCy pbject
doc = nlp(<your_text>)

DadmaTools is designed to run on different types
of hardware (CUDA and CPU). Priority is given to
CUDA devices, if available.

4 Training Datasets

There are multiple Persian datasets that provide
training data for various NLP tasks. Table 4 pro-
vides details about some of these dataset. We exper-
imented with these datasets, both in isolation and
when combined. Taking these results as our basis,
we chose the best models as default for Dadma-
Tools. The merging of different datasets for POS
tags and dependencies was carefully evaluated by
linguists.

• Seraji. This dataset has 6K instances. Our
manual validation revealed noisy lemmas in

127

Toolkit
Seraji PerDT PerDT + Seraji

Dependency POS Lemm. Dependency POS Lemm. Dependency POS Lemm.
Stanza 87.20 / 83.89 97.43 93.34 / 91.05 97.35 98.97 84.95 / 80.55 88.53 96.92
jPTDP – / 84.07 96.66 – – – –
Hazm – – 86.93 – – 89.01 – – 87.95
DadmaTools 92.5 / 89.23 97.83 – 95.36 / 92.54 97.52 99.14 92.3 / 88.79 96.15 97.86

Table 5: F1 score percentage for various models on different Persian datasets. For dependency we report two scores,
for UAS (Unlabeled Attachment Score) and LAS (Labeled Attachment Score), as UAS/LAS.

the dataset which might be due to its auto-
matic construction procedure.

• PerDT. This dataset has almost 30K instances.
Thanks to its manual curation by linguists, the
dataset is relatively free of annotation errors
and mistakes.

• PerDT + Seraji. Combining these two
datasets was challenging in the case of de-
pendency parsing and POS tagging. We tried
to unify tags based on some rules. However,
the dataset was not fully unified. Therefore,
we did not train the final DadmaTools model
based on this combination.

• Bijankhan. This dataset has almost 80K
instances. The tokenized sentences in this
dataset is completely different from the pre-
vious ones. However, it has the ezafe tage in
its tagset which we used for training the ezafe
detection.

• Dorsa Treebank. This dataset is a Persian
constituency treebank. The treebank was de-
veloped by using a bootstrapping approach
which converts a dependency structure tree to
a phrase structure tree. The annotations are
then manually verified. The treebank consists
of approximately 30,000 sentences.

5 Experiments

Models presented in Table 5 are separately trained
on Seraji, PerDT, and combination of both. The
evaluations are carried out on corresponding test
sets of each dataset. We carried out a set of experi-
ments to compare DadmaTools with other popular
toolkits. We opted for Stanza as our main competi-
tor, given that it is the most widely used toolkit for
the Persian language. We were limited to compare
our toolkit only with those models that were trained
on the same datasets (or had public source codes al-
lowing us to train and test on specific datasets). It is

worth mentioning that the final models (lemmatizer,
POS tagger, and dependacny parser) presented in
DadmaTools is based on the PerDT dataset only.

Lemmatizer. We compare DadmaTools against
Stanza and hazm on the lemmatization task. As
shown in Table 5, DadmaTools outperforms the
other two tools.

POS Tagger. For this experiment, we compared
DadmaTools against Stanza given that both models
use the same dataset for their training. As shown
in Table 5, DadmaTools achieved a better result in
predicting the universal tags.

Dependency Parser. Similarly to the previous
setting, Stanza is our main baseline for dependency
parsing, given their training on the same dataset. As
shown in Table 5, DadmaTools outperforms Stanza
(+1.5% for LAS and +2% in UAS) in predicting
the universal tags.

Constituency Parser. To train the constituency
parser model we used the Dorsa Treebank. One
fifth of the treebank was split for testing and the
F-score percentage on the test dataset was 82.88.
There is no other similar constituency parser model
to compare the results with.

Chunker. Our chunker is rule-based model that
employs nearly eighty rules. There is no gold
dataset in the Persian language that would allow us
to evaluate the chunking module.

5.1 Speed

In order to test the speed of DadmaTools, we com-
bined PerDT and Seraji (PerDT + Seraji) to have a
large dataset which would allow us to draw reliable
conclusions. Table 6 shows the average run time
of models on PerDT + Seraji, computed based on
running the models on GPU. Hazm is faster for
POS tagging and lemmatizing due to its rule-based
nature (as opposed to our neural model).

128

Toolkit Dependency parser POS tagger Lemmatizer
Stanza 0.065 0.051 0.032
Hazm 2.404 0.001 0.000
DadmaTools 0.027 0.029 0.038

Table 6: Average run time (in seconds) per instance in the PerDT test set, using an Nvidia GeForce RTX 3090 GPU
.

6 Conclusion and Future Work

We introduced DadmaTools, an open-source
Python Natural Language Processing toolkit for
the Persian language. DadmaTools supports dif-
ferent NLP tasks. Moreover, it is based on the
spaCy framework which allows users to integrate
the toolkit with other processors in a pipeline. As
future work, we intend to extend the supported
tasks by adding high-level NLP tasks, such as senti-
ment analysis, entailment, and summarization. We
also plan to provide users with the ability to add
new datasets and models to the toolkit. We hope
that the toolkit can pave the way for research and
development for the Persian language.

References
Hossein Amirkhani, Mohammad AzariJafari, Zohreh

Pourjafari, Soroush Faridan-Jahromi, Zeinab
Kouhkan, and Azadeh Amirak. 2020. FarsTail: A
Persian Natural Language Inference Dataset. arXiv
preprint arXiv:2009.08820.

Steven Bird and Edward Loper. 2004. NLTK: The natu-
ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Mohammad Hossein Dehghan, Mohammad Molla-
Abbasi, and Heshaam Faili. 2018. Toward a multi-
representation persian treebank. In 2018 9th Inter-
national Symposium on Telecommunications (IST),
pages 581–586. IEEE.

Mehrdad Farahani, Mohammad Gharachorloo, Marzieh
Farahani, and Mohammad Manthouri. 2020. Pars-
BERT: Transformer-based model for persian lan-
guage understanding. ArXiv, abs/2005.12515.

Mehrdad Farahani, Mohammad Gharachorloo, and
M. Manthouri. 2021. Leveraging ParsBERT and pre-
trained mT5 for persian abstractive text summariza-
tion. 2021 26th International Computer Conference,
Computer Society of Iran (CSICC), pages 1–6.

Weston Feely, Mehdi Manshadi, Robert Frederking, and
Lori Levin. 2014. The cmu metal farsi nlp approach.
In Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 4052–4055.

Hadi Abdi Khojasteh, Ebrahim Ansari, and Mahdi
Bohlouli. 2020. LSCP: Enhanced large scale collo-
quial persian language understanding. arXiv preprint
arXiv:2003.06499.

Marzieh Farahani Mohammad Manthouri
Mehrdad Farahani, Mohammad Gharachorloo.
2021. Parsbert: Transformer-based model for
persian language understanding. Neural Processing
Letters.

Salar Mohtaj, Behnam Roshanfekr, Atefeh Zafarian,
and Habibollah Asghari. 2018. Parsivar: A language
processing toolkit for persian. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

Dat Quoc Nguyen and Karin Verspoor. 2018. An im-
proved neural network model for joint POS tagging
and dependency parsing. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages 81–91,
Brussels, Belgium. Association for Computational
Linguistics.

Mohammad Taher Pilevar, Heshaam Faili, and Ab-
dol Hamid Pilevar. 2011. Tep: Tehran english-
persian parallel corpus. In International Conference
on Intelligent Text Processing and Computational
Linguistics, pages 68–79. Springer.

Hanieh Poostchi, Ehsan Zare Borzeshi, and Massimo
Piccardi. 2018. BiLSTM-CRF for persian named-
entity recognition ArmanPersoNERCorpus: the first
entity-annotated persian dataset. In LREC.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Mohammad Sadegh Rasooli, Pegah Safari, Amirsaeid
Moloodi, and Alireza Nourian. 2020. The persian
dependency treebank made universal. arXiv preprint
arXiv:2009.10205.

Mahsa Sadat Shahshahani, Mahdi Mohseni, Azadeh
Shakery, and Heshaam Faili. 2018. PEYMA: A
tagged corpus for persian named entities. arXiv
preprint arXiv:1801.09936.

Mehrnoush Shamsfard, Hoda Sadat Jafari, and Mahdi
Ilbeygi. 2010. STeP-1: A set of fundamental tools
for persian text processing. In LREC.

129

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Automated Concatenation of Embeddings for Struc-
tured Prediction. In the Joint Conference of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP 2021). Association for Computational Lin-
guistics.

130

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 131 - 139

July 10-15, 2022 ©2022 Association for Computational Linguistics

FAMIE: A Fast Active Learning Framework for Multilingual Information
Extraction

Minh Van Nguyen1, Nghia Trung Ngo1, Bonan Min2, and Thien Huu Nguyen1

1 Dept. of Computer and Information Science, University of Oregon, Eugene, OR, USA
2 Raytheon BBN Technologies, USA

{minhnv@cs,nghian@,thien@cs}.uoregon.edu,
bonan.min@raytheon.com

Abstract

This paper presents FAMIE, a comprehensive
and efficient active learning (AL) toolkit for
multilingual information extraction. FAMIE is
designed to address a fundamental problem in
existing AL frameworks where annotators need
to wait for a long time between annotation
batches due to the time-consuming nature of
model training and data selection at each AL
iteration. This hinders the engagement, produc-
tivity, and efficiency of annotators. Based on
the idea of using a small proxy network for fast
data selection, we introduce a novel knowledge
distillation mechanism to synchronize the
proxy network with the main large model (i.e.,
BERT-based) to ensure the appropriateness
of the selected annotation examples for
the main model. Our AL framework can
support multiple languages. The experiments
demonstrate the advantages of FAMIE in terms
of competitive performance and time efficiency
for sequence labeling with AL. We publicly
release our code (https://github.com/
nlp-uoregon/famie) and demo website
(http://nlp.uoregon.edu:9000/).
A demo video for FAMIE is provided at:
https://youtu.be/I2i8n_jAyrY.

1 Introduction

Information Extraction (IE) systems provide im-
portant tools to extract structured information from
text (Li et al., 2014; Nguyen and Nguyen, 2019;
Lai et al., 2021; Veyseh et al., 2021; Nguyen et al.,
2021a). At the core of IE involves sequence la-
beling tasks that aim to recognize word spans and
semantic types for some objects of interest (e.g., en-
tities and events) in text. For example, two typical
sequence labeling tasks in IE feature Named En-
tity Recognition (NER) to find names of entities of
interest, and Event Detection (ED) to identify trig-
gers of specified event types (Walker et al., 2006).
Despite extensive research effort for sequence la-
beling (Lafferty et al., 2001; Ma and Hovy, 2016;

Pouran Ben Veyseh et al., 2021b), a major bottle-
neck of existing IE methods involves the require-
ment for large-scale human-annotated data to build
high-quality models. As annotating data is often
expensive and time-consuming, large-scale labeled
data is not practical for various domains and lan-
guages.

To address the annotation cost for IE, previ-
ous work has resorted to active learning (AL) ap-
proaches (Settles and Craven, 2008; Settles, 2009)
where only a selective set of examples are anno-
tated to minimize the annotation effort while max-
imizing the performance. Starting with a set of
unlabeled data, AL methods train and improve a se-
quence labeling model via multiple human-model
collaboration iterations. At each iteration, three
major steps are performed in order: (i) training the
model on the current labeled data, (ii) using the
trained model to select the most informative ex-
amples in the current unlabeled set for annotation,
and (iii) presenting the selected examples to hu-
man annotators to obtain labels. In AL, the number
of annotated samples or annotation time might be
limited by a budget to make it realistic.

Unfortunately, despite much potentials, existing
AL methods and frameworks are still not applied
widely in practice due to their main focus on devis-
ing the most effective example selection algorithm
for human annotation, e.g., based on the diversity
of the examples (Shen et al., 2017; Yuan et al.,
2020) and/or the uncertainty of the models (Roth
and Small, 2006; Wang and Shang, 2014; Shel-
manov et al., 2021). Training and selection time in
the first and second steps of each AL interaction
is thus not considered in prior work for sequence
labeling. This is a critical issue that limits the ap-
plication of AL: annotators might need to wait for
a long period between annotation batches due to
the long training and selection time of the models
at each AL iteration. Given the widespread trend
of using large-scale pre-trained language models

131

(e.g., BERT), this problem of long waiting or train-
ing/selection time in AL can only become worse.
On the one hand, the long idle time of annotators
reduces the number of annotated examples given
an annotation budget. Further, the engagement of
annotators in the annotation process can drop sig-
nificantly due to the long interruptions between
annotation rounds, potentially affecting the qual-
ity of their produced annotation. In all, current
AL frameworks are unable to optimize the avail-
able time of annotators to maximize the annotation
quantity and quality for satisfactory performance.

To this end, we demonstrate a novel AL frame-
work (called FAMIE) that leverages large-scale pre-
trained language models for sequence labeling to
achieve optimal modeling capacity while signifi-
cantly reducing the waiting time between annota-
tion rounds to optimize annotator time. Instead of
training the full/main large-scale model for data se-
lection at each AL iteration, our key idea is to train
only a small proxy model on the current labeled
data to recommend new examples for annotation
in the next round. In this way, the training and
data selection time can be reduced significantly to
enhance annotation engagement and quality. An
important issue in this idea is to ensure that the
examples selected by the proxy model are also op-
timal for the main large model. To this end, we
introduce a novel knowledge distillation mecha-
nism for AL that encourages the synchronization
between the proxy and main models, and promotes
the fitness of selected examples for the main model.
To update the main model with new annotated data
for effective distillation, we propose to train the
main large model on current labeled data during
the annotation time, thus not adding to the wait-
ing time of annotators between annotation rounds.
This is in contrast to previous AL frameworks that
leave the computing resources unused during an-
notation time. Our approach can thus efficiently
exploit both human and computer time for AL.

To evaluate the proposed AL framework FAMIE,
we conduct experiments for multilingual sequence
labeling problems, covering two important IE tasks
(i.e., NER and ED) in three languages (i.e., English,
Spanish, and Chinese). The experiments demon-
strate the efficiency and effectiveness of FAMIE
that can achieve strong performance with signif-
icantly less human-computer collaboration time.
Compared to existing AL systems such as Ac-
tiveAnno (Wiechmann et al., 2021) and Paladin

(Nghiem et al., 2021), our system FAMIE features
important advantages. First, FAMIE introduces a
novel approach to reduce model training and data
selection time for AL via a small proxy model
and knowledge distillation while still benefiting
from the advances in large-scale language mod-
els. Second, while previous AL systems only focus
on some specific task in English, FAMIE can sup-
port different sequence labeling tasks in multiple
languages due to the integration of our prior mul-
tilingual toolkit Trankit (Nguyen et al., 2021b) to
perform fundamental NLP tasks in 56 languages.
Third, in contrast to previous AL systems that only
implement one data selection algorithm, FAMIE
covers a diverse set of AL algorithms. Finally,
FAMIE is the first complete AL system that allows
users to define their sequence labeling problems,
work with the models to annotate data, and eventu-
ally obtain a ready-to-use model for deployment.

2 System Description

In AL, we are given two initial datasets, a small
seed set of labeled examplesD0 = {(w, y)} and an
unlabeled example set U0 = {w} (the seed set D0

is optional and our system can work directly with
only U0). For sequence labeling, models consume
a sequence of K words w = [w1, w2, . . . , wK]
(i.e., a sentence/example) to output a tag sequence
y = [y1, y2, . . . , yK] (yi is the label tag for wi).
The tag sequence is represented in the BIO scheme
to capture spans and types of objects of interest.

A typical AL process contains multiple
rounds/iterations of model training, data selection,
and human annotation in a sequential manner. Let
D and U be the overall labeled and unlabeled set
of examples at the beginning of the current t-th it-
eration (initialized with D0 and U0). At the current
iteration, a sequence labeling model is first trained
on the current labeled set D. A sample selection al-
gorithm then employs the trained model to suggest
the most informative subset of examples U t in U
(i.e., U t ⊂ U) for annotation. Afterwards, a human
annotator will provide labels for the sentences in
the selected set U t, leading to the labeled examples
Dt for U t. The labeled and unlabeled sets can then
be updated via: D ← D ∪Dt and U ← U \ U t.

2.1 Model

We employ the typical Transformer-CRF archi-
tecture for sequence labeling (Nguyen et al.,
2021b). In particular, given the input sentence

132

Figure 1: The overall Proxy Active Learning process.

w = [w1, w2, . . . , wK], the state-of-the-art mul-
tilingual language model XLM-Roberta (Conneau
et al., 2020) is used to obtain contextualized em-
beddings for the words: X = x1, . . . , xK =
XLMR(w1, . . . , wK) (i.e., to support multiple lan-
guages). Afterwards, the word embeddings are
sent to a feed-forward network with softmax in the
end to obtain the score vectors: zi = softmax(hi)
where hi = FFN(xi). Here, each value in
zi represents a score for a tag in the tag set
V . The score vectors are then fed into a Con-
ditional Random Field (CRF) layer to compute
a distribution for possible tag sequences for w:
P (ŷ|w) = exp(s(ŷ,w))∑

ŷ′∈Y (w) exp(s(ŷ′,w))
where Y (w) is the

set of all possible tag sequences for w. Also,
s(ŷ,w) is the score for a tag sequence ŷ =
[ŷ1, . . . , ŷK]: s(ŷ,w) =

∑
i zi[ŷi] +

∑
i πŷi→ŷi+1

.
Here, πŷi→ŷi+1

is the transition score from the
tag ŷi to the tag ŷi+1. The model is trained by
minimizing the negative log likelihood: Ltask =
− logP (y|w). For inference, the Viterbi algorithm
is used for decoding: ŷ∗ = maxŷ′P (ŷ

′|w).

Adapter-based Finetuning To further improve
the memory and time efficiency, we incorporate
light-weight adapter networks (Houlsby et al.,
2019; Peters et al., 2019) into our model. In form of
small feed-forward networks, adapters are injected
in between the transformer layers of XLM-Roberta.
For training, we only update the adapters while
the parameters of XLM-Roberta are fixed. This
significantly reduces the amount of learning param-
eters while sacrificing minimal extraction loss, or
in case of low-resource learning even surpassing
performance of fully fine-tuned models.

2.2 Data Selection Strategies

To improve the flexibility to accommodate differ-
ent problems, our AL framework supports a wide

range of data selection strategies for choosing the
best batch of examples to label at each iteration
for sequence labeling. These algorithms are cate-
gorized into three groups, i.e., uncertainty-based,
diversity-based, and hybrid. For each group, we
explore its most popular methods as follows.

Uncertainty-based. These methods select exam-
ples for annotation according to the main model’s
confidence over the predicted tag sequences for un-
labeled examples. Early methods sort the unlabeled
examples by the uncertainty of the main model.
To avoid the preference over longer examples, the
method Maximum Normalized Log-Probability
(MNLP) (Shen et al., 2017) proposes to normalize
the likelihood over example lengths. In particular,
MNLP selects examples with the highest MNLP
scores: MNLP (w) = −maxŷ′

1
K logP (ŷ′|w).

Diversity-based. Algorithms in this category as-
sume that a representative set of examples can act
as a good surrogate for the whole dataset. BERT-
KM (Yuan et al., 2020) uses K-Means to cluster
the examples in unlabeled data based on the con-
textualized embeddings of the sentences (i.e., the
representations for the [CLS] tokens in the trained
BERT-based models). The nearest neighbors to the
K cluster centers are then chosen for labeling.

Hybrid. Recently, several works have proposed
data selection strategies for BERT-based AL to
balance between uncertainty and diversity. The
BADGE method (Ash et al., 2019; Kim, 2020)
chooses examples from clusters of gradient embed-
dings, which are formed with the token represen-
tations hi from the penultimate layer of the main
model and the gradients of the cross-entropy loss
with respect to such token representations. The gra-
dient embeddings are then sent to the K-Means++
to find the initial K cluster centers that are distant
from each other, serving as the selected examples
(Kim, 2020).

In addition, we implement the AL framework
ALPS (Yuan et al., 2020) that does not require
training the main model for data section. ALPS
employs the surprisal embedding of w, which is ob-
tained from the likelihoods of masked tokens from
pre-trained language models (i.e., XLM-Roberta).
The surprisal embeddings are also clustered to se-
lect annotation examples as in BERT-KM.

133

2.3 Proxy Active Learning

As discussed in the introduction, model training
and data selection at each iteration of traditional
AL methods might consume significant time (espe-
cially with the current trend of large-scale language
models), thus introducing a long idle time for an-
notators that might reduce annotation quality and
quantity. To this end, (Shelmanov et al., 2021) have
explored approaches to accelerate training and data
selection steps for AL by leveraging smaller and
approximate models during the AL iterations. To
make it more efficient, the main large model is
only trained once in the end over all the annotated
examples in AL. Unfortunately, this approach suf-
fers from the mismatch between the approximate
and main models as they are separately trained in
AL, thus limiting the effectiveness of the selected
examples for the main model (Lowell et al., 2019).

To overcome these issues, our AL framework
FAMIE trains a small proxy network at each iter-
ation to suggest new unlabeled samples. Dealing
with the mismatch between the proxy-selected ex-
amples and the main model, FAMIE proposes to
involve the main model in the training and data
selection for the proxy model. In particular, at each
AL iteration, the main model will still be trained
over the latest labeled data. However, to avoid the
interference of the main large model with the wait-
ing time of annotators, we propose to train the main
model during the annotation time of the annotators
(i.e., main model training and data annotation are
done in parallel). Given the main model trained at
previous iteration, knowledge distillation will be
employed to synchronize the knowledge between
the main and proxy models at the current iteration.

The complete framework for FAMIE is pre-
sented in Figure 1. At iteration t, a proxy acquisi-
tion model is trained on the current labeled data set
Dt−1

0 = D0 ∪D1 . . . ∪Dt−1. The trained proxy
model at the current step is called M t

prx. Also,
we use knowledge distillation signals Kt−2

0 that is
computed from the main model M t−1

main trained at
the previous iteration t−1 to synchronize the proxy
model M t

prx and the main model M t−1
main (M1

prx is
trained only on D0). Afterwards, a data selection
algorithm is used to select a batch of examples U t

from the current unlabeled set U for annotation,
leveraging the feedback from M t

prx. Next, a hu-
man annotator will label U t to produce the labeled
data batch Dt for the next iteration t+ 1. During
this annotation time, the main model will also be

trained again over the current labeled data Dt−1
0 to

produce the current version M t
main of the model.

The distillation signal Kt−1
0 for the next step will

also be computed after the training of M t
main. This

process is repeated over multiple iterations and the
last version of Mmain will be returned for users.

To improve the fitness of the proxy-based se-
lected examples for Mmain, we leverage the dis-
tilled version miniLM of XLM-Roberta (Wang
et al., 2021) that employs similar stacks of trans-
former layers for the proxy model Mprx. Note that
Mprx also includes a CRF layer on top of miniLM.

2.4 Uncertainty Distillation

Although the proxy and main model Mprx and
Mmain are trained on similar data, they might still
exhibit large mismatch, e.g., regarding decision
boundaries. This prompts a demand for regulariz-
ing the proxy model’s predictions to be consistent
with those of a trained main model to improve the
fitness of the selected examples forMmain. Ideally,
we expect the tag sequence distribution Pprx(y|w)
learned by the proxy model to mimic the tag se-
quence distribution Pmain(y|w) learned by the
main model. To this end, we propose to minimize
the difference between the intermediate outcomes
(i.e., the unary and transition scores) of the two dis-
tributions. In particular, we introduce the following
distillation objective for each sentence w at one AL
iteration: Ldist = −

∑
i

∑
v p

main
i [v] log pprxi [v] +∑

i(π
main
yi→yi+1

− πprxyi→yi+1)
2 where pmain

i and pprxi

are the tag distributions computed by the main and
proxy models respectively for the word wi ∈ w
(i.e., the scores zi). Note that pmain

i and πmain
yi→yi+1

serve as the knowledge distillation signal that is
obtained once the main model finishes its train-
ing at each iteration. Here, we will use the newly
selected examples for the current annotation to
compute the distillation signals. The overall ob-
jective to train Mprx at each AL iteration is thus:
L = Ltask + Ldist.

3 Usage

Detailed documentation for FaMIE is provided at:
https://famie.readthedocs.io/. The
codebase is written in Python and Javascript, which
can be easily installed through PyPI at : https:
//pypi.org/project/famie/.
Initialization. To initialize a project, users first
choose a data selection strategy and upload a label
set to define a sequence labeling problem. Next,

134

0 5 10 15 20 25
0.70

0.75

0.80

0.85

0.90

F1
 sc

or
e

a) Performance comparison on CoNLL03-English

All Data
MNLP
ALPS
BADGE
BertKM
Random

0 5 10 15 20 25
0

25

50

75

100

125

150

M
in

ut
es

b) Time comparison on CoNLL03-English
All Data
MNLP
ALPS
BADGE
BertKM
Random

0 5 10 15 20 25
Iterations

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

F1
 sc

or
e

c) Performance comparison on ACE-English

All Data
MNLP
ALPS
BADGE
BertKM
Random

0 5 10 15 20 25
Iterations

0

50

100

150

200

M
in

ut
es

d) Time comparison on ACE-English
All Data
MNLP
ALPS
BADGE
BertKM
Random

Figure 2: Comparison among data selection strategies.

the dataset U with unlabeled sentences should be
submitted. FAMIE then allows users to interact
with the models and annotate data over multiple
rounds with a web interface. Also, FAMIE can de-
tect languages automatically for further processing.
Annotating procedure. Given one annotation
batch in an iteration, annotators label one sentence
at a time as illustrated in Figure 3. In particular, the
annotators annotate the word spans for each label
by first choosing the label and then highlighting
the appropriate spans. Also, FAMIE designs the
size of the annotation batches to allow enough time
to finish the training of the main model during the
annotation time at each iteration.
Output. Unlike previous AL toolkits which fo-
cus only on their web interfaces to produce labeled
data, FAMIE provides a simple and intuitive code
interface for interacting with the resulting labeled
dataset and trained main models after the AL pro-
cesses. The code snippet in Figure 4 presents a
minimal usage of our famie Python package to use
the trained main model for inference over new data.
This allows users to immediately evaluate their
models and annotation efforts on data of interest.

Figure 3: Annotation interface in FAMIE.

4 Evaluation

Datasets and Hyper-parameters. To compre-
hensively evaluate our AL framework FAMIE,

import famie
access a project via its name
p = famie.get_project('NewProject')
access the project's labeled data
data = p.get_labeled_data()

access the project's trained target model
model = p.get_trained_model()
make predictions with the trained model
doc = '''Nick is happy.'''
output = model.predict(doc)
print(output)
[('Nick', 'B-Person'), ('is', 'O'), ('happy', 'O'), ('. ', 'O')]

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 4: Accessing the labeled dataset and the trained main
model returned by an AL project.

we conduct experiments on two IE tasks (i.e.,
NER and ED) for three languages using four
datasets: CoNLL03-English (Tjong Kim Sang and
De Meulder, 2003) and CoNLL02-Spanish (Tjong
Kim Sang, 2002) for NER, and ACE-English and
ACE-Chinese for ED (i.e., using the multilingual
ACE-05 dataset (Walker et al., 2006; Nguyen and
Grishman, 2015, 2018)). The CoNLL datasets
cover 4 entity types while 33 event types are an-
notated in ACE-05 datasets. We follow the stan-
dard data splits for train/dev/test portions for each
dataset (Li et al., 2013; Lai et al., 2020; Pouran
Ben Veyseh et al., 2021a).

For the main target model Mmain, the full-scale
XLM-Robertalarge model is used as the encoder.
Our framework for AL thus inherits the ability of
XLM-Roberta to support more than 100 languages.
Also, we employ the compact miniLM architecture
(distilled from the pre-trained XLM-Roberta) for
the proxy model Mprx. In all experiments, the
main model is trained for 40 epochs while the proxy
model is trained for 20 epochs at each iteration. We
use the Adam optimizer with batch size of 16 and
learning rate of 1e-5 to train the models.

We follow the AL settings in previous work to
achieve consistent evaluation (Kim, 2020; Shel-
manov et al., 2021; Liu et al., 2022). Specifically,
the unlabeled pool is created by discarding labels
from the original training data of each dataset; 2%
of which (∼ 242 sentences) is selected for labeling
at each iteration for a total of 25 iterations (exam-
ples of the first iteration are randomly sampled to
serve as the seed D0). The annotation is simulated
by recovering the ground-truth labels of the cor-
responding instances. The model performance is
measured on the test datasets by taking average
over 3 runs with different random seeds.

Comparing Data Selection Strategies. In this
experiment, we aim to determine the best data se-
lection strategy for our AL framework. To this end,
we perform the standard AL process (i.e., training
the full transformer-CRF model with no adapters,

135

Idle CoNLL03-English CoNLL02-Spanish ACE-English ACE-Chinese
mins/iter 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100%

Full Data x x x x x x 92.4 x x x x x 89.6 x x x x x 71.9 x x x x x 69.1
Large 41.6 90.3 92.4 93.0 92.4 92.4 x 86.9 88.6 89.4 89.3 89.0 x 67.8 71.1 70.0 72.4 71.3 x 64.8 67.6 71.3 68.7 71.5 x
FaMIE 3.4 90.1 91.7 91.8 91.7 92.7 x 86.5 88.2 88.5 88.1 89.4 x 67.0 69.3 69.5 68.9 70.6 x 61.3 67.9 68.5 69.8 69.6 x
FaMIE-A 5.7 89.7 90.8 91.3 91.9 91.7 x 87.4 87.2 89.0 87.7 89.1 x 67.2 68.0 69.5 68.9 70.6 x 62.8 66.5 67.9 66.3 69.4 x
FaMIE-AD 5.6 87.0 90.1 90.5 90.7 90.5 x 85.5 86.9 87.7 88.8 88.6 x 64.9 65.4 67.7 66.8 69.1 x 58.1 65.4 66.5 64.8 70.3 x
Random x 86.0 89.1 90.6 91.4 91.9 x 80.8 85.3 88.1 88.7 88.6 x 60.4 64.1 66.9 69.0 67.5 x 48.4 58.2 65.1 65.4 66.6 x

Table 1: Main model’s performance on multilingual NER and ED tasks. “Idle” indicate average waiting time of annotators.

selecting data, and annotating data at each itera-
tion) for different data selection strategies to mea-
sure performance and time. We focus on English
datasets in this experiment. Figure 2 reports the
performance across AL iterations of the model for
different data selection methods. As can be seen,
“MNLP” is the overall best method for data selec-
tion in AL. We will thus leverage MNLP as the
data section strategy for the evaluation of FAMIE.

Also, Figure 2 shows the annotators’ idle time
(the combined time for model training and data se-
lection) across iterations for each selection strategy.
The major difference comes from ALPS that has
significantly less waiting time than other methods
as it does not require model training. However,
ALPS’s performance is considerably worse than
MNLP as a result, especially in early iterations.
This demonstrates the importance of training and
including the main model during the AL iterations
for data section. Importantly, we find that the wait-
ing time of annotators at each iteration is very high
in current AL methods (e.g., more than 30 minutes
after the first 8 iterations with the MNLP strategy),
thus affecting the annotators’ productivity.

Performance and Time Efficiency. To evaluate
the performance and time efficiency of FAMIE,
Table 1 compares our full proposed framework
FAMIE (with proxy model, knowledge distilla-
tion, and adapters) with the following baselines: (i)
“Large”: the best AL baseline from the previous ex-
periment employing the full-scale transformer en-
coder and MNLP for data selection; (ii) “Random”:
this is the same as “Large”, but replaces MNLP
with random selection; (iii) “FAMIE-A”: this is
the proposed framework FAMIE without adapter-
based tuning (all parameters from the main model
are fine-tuned); and (iv) “FAMIE-AD”: we fur-
ther remove the knowledge distillation loss from
“FAMIE-A” in this method. The experiments are
done for all four datasets of NER and ED.

The first observation is that FAMIE’s perfor-
mance is only marginally below that of Large de-
spite only using the small proxy network for data
selection. Importantly, annotators only have to wait
for about 3.4 minutes per AL iteration before they

can annotate the next data batch in FAMIE. This is
over 10 times faster compared to the standard AL
approaches (e.g., in Large). Second, the adapters
in FAMIE not only boost the overall performance
for AL but also reduce the waiting time for annota-
tors. Also, we note that using adapters, the training
time of Mmain only takes 32 minutes at each iter-
ation (on average). This is reasonable to fit into
the time that an annotator needs to spend to label
an annotation batch at each AL iteration, thus ac-
commodating our proposal for training the main
model during annotation time. Finally, FAMIE-AD
performs worst (i.e., similar or even worse than
Random) in most cases, which confirms the neces-
sity of our distillation component in FAMIE.

5 Related Work

Despite the potential of AL in reducing annota-
tion cost for a target task, most previous AL work
focuses on developing data selection strategies
to maximize the model performance (Wang and
Shang, 2014; Sener and Savarese, 2017; Ash et al.,
2019; Kim, 2020; Liu et al., 2022; Margatina et al.,
2021). As such, previous AL methods and frame-
works tend to ignore the necessary time to train
models and perform data selection at each AL iter-
ation that can be significantly long and hinder an-
notators’ productivity and model performance. To
make AL frameworks practical, few recent works
have attempted to minimize the model training and
data selection time by leveraging simple and non
state-of-the-art architectures as the main model,
e.g., ActiveAnno (Wiechmann et al., 2021) and
Paladin (Nghiem et al., 2021). However, an issue
with these approaches is the inability to exploit re-
cent advances in large-scale language models to
achieve optimal performance. In addition, some re-
cent works have also explored large-scale language
models for AL (Shelmanov et al., 2021; Yuan et al.,
2020); however, to reduce waiting time for anno-
tators, such methods need to exclude the training
of the large models in the AL iterations or employ
small models for data selection, thus suffering from
a harmful mismatch between the annotated exam-
ples and the main models (Lowell et al., 2019).

136

6 Conclusion

We introduce FAMIE, a comprehensive AL frame-
work that supports model creation and data anno-
tation for sequence labeling in multiple languages.
FAMIE optimizes the annotators’ time by leverag-
ing a small proxy network for data selection and
a novel knowledge distillation to synchronize the
proxy and main target models for AL. As FAMIE
is task-agnostic, we plan to extend FAMIE to cover
other NLP tasks in future work.

Acknowledgement

This research has been supported by the Army Re-
search Office (ARO) grant W911NF-21-1-0112
and the NSF grant CNS-1747798 to the IU-
CRC Center for Big Learning. This research is
also based upon work supported by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activ-
ity (IARPA), via IARPA Contract No. 2019-
19051600006 under the Better Extraction from Text
Towards Enhanced Retrieval (BETTER) Program.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies, ei-
ther expressed or implied, of ARO, ODNI, IARPA,
the Department of Defense, or the U.S. Govern-
ment. The U.S. Government is authorized to re-
produce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein. This document does not contain technol-
ogy or technical data controlled under either the
U.S. International Traffic in Arms Regulations or
the U.S. Export Administration Regulations.

References
Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy,

John Langford, and Alekh Agarwal. 2019. Deep
batch active learning by diverse, uncertain gradient
lower bounds. arXiv preprint arXiv:1906.03671.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea

Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Pro-
ceedings of the International Conference on Machine
Learning.

Yekyung Kim. 2020. Deep active learning for sequence
labeling based on diversity and uncertainty in gradi-
ent. In Proceedings of the 2nd Workshop on Life-long
Learning for Spoken Language Systems, pages 1–8,
Suzhou, China. Association for Computational Lin-
guistics.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Viet Dac Lai, Minh Van Nguyen, Thien Huu Nguyen,
and Franck Dernoncourt. 2021. Graph learning reg-
ularization and transfer learning for few-shot event
detection. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 2172–2176.

Viet Dac Lai, Tuan Ngo Nguyen, and Thien Huu
Nguyen. 2020. Event detection: Gate diversity and
syntactic importance scores for graph convolution
neural networks. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Con-
structing information networks using one single
model. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51th Annual Meeting of
the Association for Computational Linguistics.

Mingyi Liu, Zhiying Tu, Tong Zhang, Tonghua Su, Xi-
aofei Xu, and Zhongjie Wang. 2022. Ltp: A new
active learning strategy for crf-based named entity
recognition. Neural Processing Letters, pages 1–22.

David Lowell, Zachary C. Lipton, and Byron C. Wal-
lace. 2019. Practical obstacles to deploying active
learning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
21–30, Hong Kong, China. Association for Computa-
tional Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021. Active learning by
acquiring contrastive examples. arXiv preprint
arXiv:2109.03764.

137

Minh-Quoc Nghiem, Paul Baylis, and Sophia Anani-
adou. 2021. Paladin: an annotation tool based on
active and proactive learning. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 238–243, Online. Association
for Computational Linguistics.

Minh Van Nguyen, Viet Lai, and Thien Huu Nguyen.
2021a. Cross-task instance representation interac-
tions and label dependencies for joint information
extraction with graph convolutional networks. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 27–38, Online. Association for Computational
Linguistics.

Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben
Veyseh, and Thien Huu Nguyen. 2021b. Trankit: A
light-weight transformer-based toolkit for multilin-
gual natural language processing. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations.

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In The 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing.

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pool-
ing for event detection. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Trung Minh Nguyen and Thien Huu Nguyen. 2019. One
for all: Neural joint modeling of entities and events.
In Proceedings of the AAAI Conference on Artificial
Intelligence.

Matthew E Peters, Sebastian Ruder, and Noah A Smith.
2019. To tune or not to tune? adapting pretrained rep-
resentations to diverse tasks. In RepL4NLP@ACL.

Amir Pouran Ben Veyseh, Viet Lai, Franck Dernon-
court, and Thien Huu Nguyen. 2021a. Unleash GPT-
2 power for event detection. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers).

Amir Pouran Ben Veyseh, Minh Van Nguyen, Nghia
Ngo Trung, Bonan Min, and Thien Huu Nguyen.
2021b. Modeling document-level context for event
detection via important context selection. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing.

Dan Roth and Kevin Small. 2006. Margin-based active
learning for structured output spaces. In European
Conference on Machine Learning, pages 413–424.
Springer.

Ozan Sener and Silvio Savarese. 2017. Active learn-
ing for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489.

Burr Settles. 2009. Active learning literature survey.

Burr Settles and Mark Craven. 2008. An analysis of
active learning strategies for sequence labeling tasks.
In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1070–1079, Honolulu, Hawaii. Association for Com-
putational Linguistics.

Artem Shelmanov, Dmitri Puzyrev, Lyubov
Kupriyanova, Denis Belyakov, Daniil Larionov,
Nikita Khromov, Olga Kozlova, Ekaterina Artemova,
Dmitry V. Dylov, and Alexander Panchenko. 2021.
Active learning for sequence tagging with deep
pre-trained models and Bayesian uncertainty
estimates. In Proceedings of the 16th Conference
of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages
1698–1712, Online. Association for Computational
Linguistics.

Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017. Deep
active learning for named entity recognition. arXiv
preprint arXiv:1707.05928.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The 6th
Conference on Natural Language Learning 2002
(CoNLL-2002).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Amir Pouran Ben Veyseh, Minh Van Nguyen, Bonan
Min, and Thien Huu Nguyen. 2021. Augmenting
open-domain event detection with synthetic data from
gpt-2. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases,
pages 644–660. Springer.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilingual
training corpus. In Technical report, Linguistic Data
Consortium.

Dan Wang and Yi Shang. 2014. A new active labeling
method for deep learning. In 2014 International joint
conference on neural networks (IJCNN), pages 112–
119. IEEE.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. MiniLMv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2140–2151, Online. Association for Computa-
tional Linguistics.

138

Max Wiechmann, Seid Muhie Yimam, and Chris
Biemann. 2021. ActiveAnno: General-purpose
document-level annotation tool with active learning
integration. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Demonstrations, pages 99–105, Online.
Association for Computational Linguistics.

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-
Graber. 2020. Cold-start active learning through self-
supervised language modeling. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7935–7948,
Online. Association for Computational Linguistics.

139

Author Index

Adi, Yossi, 1
Agirre, Eneko, 27
Alecakir, Huseyin, 17

Bansal, Mohit, 54, 71
Barbosa, George C.G., 64
Bölücü, Necva, 17

Callison-Burch, Chris, 54
Can, Burcu, 17
Chang, Shih-Fu, 54
Chen, Junkun, 114
Chen, Xiaojie, 114
Chen, Zeyu, 114
Copet, Jade, 1

Deng, Yuqian, 90
Ding, Hantian, 90
Dror, Rotem, 54
Du, Xinya, 54
Dupoux, Emmanuel, 1

Edwards, Carl, 54
Elkahky, Ali, 1
Etezadi, Romina, 124

Fedorenko, Evelina, 99

Gong, Enlei, 114

Hahn-Powell, Gus, 64
Han, Jiawei, 54
Hannan, Darryl, 54
Hsu, Wei-Ning, 1
Hu, Xiaoguang, 114
Hu, Yinuo, 71
Huang, Liang, 114
Huang, Yuxin, 114

Ji, Heng, 54
Jiao, Yizhu, 54
Jin, Xiaomeng, 54

Karrabi, Mohammad, 124
Kazeminejad, Ghazaleh, 54
Kharitonov, Eugene, 1
Kim, Hyounghun, 54
Kobza, Ondrej, 39

Konrád, Jakub, 39
Kyjánek, Lukáš, 10

Lacalle, Oier Lopez De, 27
Lai, Tuan, 54
Lakhotia, Kushal, 1
Lee, Ann, 1
Lei, Jie, 54
Li, Manling, 54
Li, Sha, 54
Li, Xintong, 114
Lin, Xudong, 54
Liu, Iris, 54
Lorenc, Petr, 39
Lyu, Qing, 54

Ma, Yanjun, 114
Malandri, Lorenzo, 46
Marek, Petr, 39
Mercorio, Fabio, 46
Mezzanzanica, Mario, 46
Min, Bonan, 27, 131
Mohamed, Abdelrahman, 1

Ngo, Nghia Trung, 131
Nguyen, Minh Van, 131
Nguyen, Thien Huu, 131
Nguyen, Tu Anh, 1
Nobani, Navid, 46
Noriega-Atala, Enrique, 64

Palmer, Martha, 54
Panter, Abigail, 71
Pichl, Jan, 39
Pilehvar, Mohammad Taher, 124

Qiu, Haoling, 27

Regan, Michael, 54
Roth, Dan, 54, 90

Sainz, Oscar, 27
Sajadi, Mohamad Bagher, 124
Sathe, Aalok, 99
Sathy, Viji, 71
Seveso, Andrea, 46
Shain, Cory, 99
Sharp, Rebecca, 64

140

Surdeanu, Mihai, 64
Šedivý, Jan, 39

Tomasello, Paden, 1
Tuckute, Greta, 99

Vacareanu, Robert, 64
Valenzuela-Escárcega, Marco A., 64
Vondrick, Carl, 54

Wang, Haoyu, 54
Wang, Hongwei, 54
Wang, Mingye, 99
Wang, Zhenhailong, 54
Wang, Ziqi, 54
Wen, Haoyang, 54

Yang, Jinrui, 90

Yoder, Harley, 99
Yu, Charles, 54
Yu, Dianhai, 114
Yu, Pengfei, 54
Yuan, Tian, 114

Zajíček, Tomáš, 39
Zare, Najmeh, 124
Zeng, Qi, 54
Zhang, Hongming, 90
Zhang, Hui, 114
Zhang, Shiyue, 71
Zhang, Zixuan, 54
Zheng, Renjie, 114
Zhou, Ben, 54

141

