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Abstract
PaddleSpeech is an open-source all-in-one
speech toolkit. It aims at facilitating the devel-
opment and research of speech processing tech-
nologies by providing an easy-to-use command-
line interface and a simple code structure. This
paper describes the design philosophy and core
architecture of PaddleSpeech to support sev-
eral essential speech-to-text and text-to-speech
tasks. PaddleSpeech achieves competitive or
state-of-the-art performance on various speech
datasets and implements the most popular meth-
ods. It also provides recipes and pretrained
models to quickly reproduce the experimental
results in this paper. PaddleSpeech is publicly
avaiable at https://github.com/PaddlePaddle/
PaddleSpeech.1

1 Introduction

Speech processing technology enables humans to
directly communicate with computers, which is
an essential part of enormous applications such
as smart home devices (Hoy, 2018), autonomous
driving, and simultaneous translation (Zheng et al.,
2020). Open-source toolkits boost the develop-
ment of speech processing technology by lower-
ing the barrier of application and research in this
area (Young et al., 2002; Lee et al., 2001; Huggins-
Daines et al., 2006; Rybach et al., 2011; Povey
et al., 2011; Watanabe et al., 2018; Han et al., 2019;
Wang et al., 2020; Ravanelli et al., 2021; Zhao et al.,
2021).

However, the current prevailing speech process-
ing toolkits presume that their users are experi-
enced practitioners or researchers, so beginners
might feel baffled when developing their exciting
applications. For example, to prototype new speech
applications with Kaldi (Povey et al., 2011), the
users have to be comfortable reading and revis-
ing the provided recipes written in Bash, Perl, and
1Demo video: https://paddlespeech.readthedocs.io/en

/latest/demo_video.html

Python scripts and be proficient at C++ to hack its
implementation. The more recent toolkits, such
as Fairseq S2T (Wang et al., 2020) and NeurST
(Zhao et al., 2021), become more flexible by build-
ing on general-purpose deep learning libraries. But
their complicated code styles also make it time-
consuming to learn and hard to migrate from one to
another. So, we have developed PaddleSpeech, pro-
viding a command-line interface and portable func-
tions to make the development of speech-related
applications accessible to everyone.

Notably, the Chinese community has many de-
velopers eager to contribute to the community.
However, nearly all deep learning libraries, such
as Pytorch (Paszke et al., 2019) and Tensorflow
(Abadi et al., 2016), target the English commu-
nity mainly, so it significantly increases the dif-
ficulty for Chinese developers. PaddlePaddle, as
the only fully-functioning open-source deep learn-
ing platform targeting both the English and Chi-
nese community, has accumulated more than 500k
commits, 476k models, and is used by 157k en-
terprises. So, we expect PaddleSpeech, developed
with PaddlePaddle can remove the barriers between
the English and Chinese communities to boost the
development of speech technologies and applica-
tions.

Developing speech applications for the industry
is not the same scenario as conducting research in
academia. The research papers mainly focus on de-
veloping novel models to perform better on specific
datasets. However, a clean dataset usually does not
exist when applying a speech product. So, Paddle-
Speech provides on-the-fly preprocessing for the
raw audios to make PaddleSpeech directly usable in
product-oriented applications. Notably, some pre-
processing methods are exclusive in PaddleSpeech,
such as rule-based Chinese text-to-speech frontend,
which can significantly benefit the performance of
synthesized speech.

Performance is the cornerstone of all applica-
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Task Description Techniques Datasets

Sound
Classification Label sound class Finetuned PANN (Kong et al., 2020b) ESC-50 dataset (Piczak, 2015)

Speech
Recognition

Transcribe speech
to text

Deepspeech2 (Amodei et al., 2016)
Conformer (Zhang et al., 2020)
Transformer (Zhang et al., 2020)

Librispeech (Panayotov et al., 2015)
AISHELL-1 (Bu et al., 2017)

Punctuation
Restoration

Post-add punctuation
to transcribed text Finetuned ERNIE (Sun et al., 2019) IWSLT2012-zh (Federico et al., 2012)

Speech
Translation

Translate speech
to text Transformer (Vaswani et al., 2017) MuST-C (Di Gangi et al., 2019)

Text
To Speech

Synthesis speech
from text

Acoustic Model
Tacotron 2 (Shen et al., 2018)
Transformer TTS (Li et al., 2019)
SpeedySpeech (Vainer and Dušek, 2020)
FastPitch (Łańcucki, 2021)
FastSpeech 2 (Ren et al., 2020)

Vocoder
WaveFlow(Ping et al., 2020)
Parallel WaveGAN (Yamamoto et al., 2020)
MelGAN (Kumar et al., 2019)
Style MelGAN (Mustafa et al., 2021)
Multi Band MelGAN (Yang et al., 2021)
HiFi GAN (Kong et al., 2020a)

CSMS (DataBaker)
AISHELL-3 (Shi et al., 2020)
LJSpeech (Ito and Johnson, 2017)
VCTK (Yamagishi et al., 2019)

Table 1: List of speech tasks and corpora that are currently supported by PaddleSpeech.

tions. PaddleSpeech achieves state-of-the-art or
competitive performers on various commonly used
benchmarks, as shown in Table 1.

Our main contributions in this paper are two-
folds.

• We introduce how we designed PaddleSpeech
and what features it supports.

• We provide the implementation and repro-
ducible experimental details that result in
state-of-the-art or competitive performance
on various tasks.

2 Design of PaddleSpeech

Figure 1 shows the software architecture of Pad-
dleSpeech. As an easy-to-use speech processing
toolkit, PaddleSpeech provides many complete
recipes to perform various speech-related tasks and
demo usage of the command line interface. Getting
familiar with the top level should be enough for
building speech-related applications.

The second level faces researchers in speech
and language processing. The design philosophy
of PaddleSpeech is model-centric to simplify the
learning and development of speech processing
methods. For a specific method, all computations
of a specific model are included in two files under

Fundamental Platforms

Common Modules

Models & Updaters & Datasets

Recipes

PaddlePaddle
Other Libraries

Kaldi, Sclite, Sox, Openblas

PaddleAudio
paddleaudio.features.Spectrogram
paddleaudio.features.LogMelSpectrogram

Utils
utils/build_vocab.py
utils/parse_options.sh

PaddleSpeech
cli/asr/infer.py
t2s/exps/fastspeech2/train.py
t2s/models/fastspeech2/fastspeech2.py
t2s/models/fastspeech2/fastspeech2_updater.py

Datasets

dataset/aishell/aishell.py
dataset/librispeech/librispeech.py

Examples/Demos
examples/aishell/run.sh
demos/metaverse/run.sh

Figure 1: Software architecture of PaddleSpeech.

PaddleSpeech/<task>/models/<model>.2

PaddleSpeech has implemented most of the com-
monly used and well-performing models. A model
architecture is implemented in a standalone file
named by the method. Its corresponding train-
ing step and evaluation step are implemented
in another updater file. Generally, reading or
hacking these two files is enough to understand
or design a model. More advanced hacking
on more fine data processing or more compli-
2<task> includes s2t and t2s which stands for speech-to-
text and text-to-speech respectively.
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cated training/evaluation loop is also available at
PaddleSpeech/<task>/exps/<model>. The orig-
inal datasets can be obtained by scripts in cor-
responding dataset/<dataset>/. PaddleSpeech
supports distributed multi-GPU training with good
efficiency.

The standard modules, such as audio and text
feature transformation and utility scripts, are imple-
mented as libraries in the third level . The backend
of PaddleSpeech is mainly PaddlePaddle with some
functions from third-party libraries as shown in
the fourth level . PaddleSpeech provides multiple

ways to extract multiple types of speech features
from raw audios using PaddleAudio and Kaldi,
such as spectrogram and filterbanks, which can
be varied according to the needs of the tasks.

3 Experiments

In this section, we compare the performance of
models in PaddleSpeech with other popular imple-
mentations in five speech-related tasks, including
sound classification, speech recognition, punctua-
tion, speech translation, and speech synthesizing.
The toolkit can reach SOTA on most tasks. All
experiments in this section include details on data
preparation, evaluation metrics, and implementa-
tion to enhance reproducibility.3

3.1 Sound Classification

Sound Classification is a task to recognize particu-
lar sounds, including speech commands (Warden,
2018), environment sounds (Piczak, 2015), iden-
tifying musical instruments (Engel et al., 2017),
finding birdsongs (Stowell et al., 2018), emotion
recognition (Xu et al., 2019) and speaker verifica-
tion (Liu et al., 2018).

Datasets In this section, we analyze the perfor-
mance of PaddleSpeech in Sound Classification
on ESC-50 dataset (Piczak, 2015). The ESC-50
dataset is a labeled collection of 2000 environ-
mental 5-second audio recordings consisting of 50
sound events, such as "Dog", "Cat", "Breathing"
and "Fireworks", with 40 recordings per event.

Data Preprocessing First, we resample all audio
recordings to 32 kHz, and convert them to mono-
phonic to be consistent with the PANNs trained on
AudioSet (Kong et al., 2020b). And then, we trans-
form the recordings into log mel spectrograms by
3
https://github.com/PaddlePaddle/PaddleSpeech/tree/

develop/examples

Model Accuracy

AST-P (Gong et al., 2021) 95.6± 0.4

PANNs-CNN14 95.00
PANNs-CNN10 89.75
PANNs-CNN6 88.25

Table 2: 5-fold cross validation accuracy of ESC-50.

applying short-time Fourier transform on the wave-
forms with a Hamming window of size 1024 and a
hop size of 320 samples. This configuration leads
to 100 frames per second. Following Kong et al.
(2019), we apply 64 mel filter banks to calculate
the log mel spectrogram.

Implementation PANNs (Kong et al., 2020b)
is one of the pre-trained CNN models for audio-
related tasks, which is characterized in terms of
being trained with the AudioSet (Gemmeke et al.,
2017). PANNs are helpful for tasks where only a
limited number of training clips are provided. In
this case, we fine-tune all parameters of a PANN for
the environment sounds classification task. All pa-
rameters are initialized from the PANN, except the
final fully-connected layer which is randomly ini-
tialized. Specifically, we implement CNNs with 6,
10 and 14 layers, respectively (Kong et al., 2020b).

Results We report 5-fold cross validation accu-
racy values on ESC-50 dataset. As shown in Table
2, PANNs-CNN14 achieves 0.9500 5-fold cross
validation accuracy that is comparable to the cur-
rent state-of-the-art method (Gong et al., 2021).

3.2 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is a task to
transcribe the audio content to text in the same
language.

Datasets We conduct the ASR experiments on
two major datasets including Librispeech4 (Panay-
otov et al., 2015) and Aishell-15 (Bu et al., 2017).
Librispeech contains 1000 hours speech data. The
whole dataset is divided into 3 training sets (100h
clean, 360h clean, 500h other), 2 validation sets
(clean, other), and 2 test sets (clean, other). Aishell
contains 178 hours speech data. 400 speakers from
different accent areas in China participate in the
recording. The dataset is divided into the training

4
http://www.openslr.org/12/

5
http://www.aishelltech.com/kysjcp
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Data Model Streaming Test Data Language Model CER WER
A

is
he

ll
WeNet Conformer†∗ (Yao et al., 2021) ✓ 5.45 -
WeNet Conformer† (Yao et al., 2021) 4.61 -
WeNet Transformer† (Yao et al., 2021) 5.30 -
ESPnet Conformer† (Inaguma et al., 2020) 5.10 -
ESPnet Transformer† (Inaguma et al., 2020) 6.70 -
SpeechBrain Transformer† (Ravanelli et al., 2021) 5.58 -

Deepspeech 2 ✓ char 5-gram 6.66 -
Deepspeech 2 char 5-gram 6.40 -
Transformer 5.23 -
Conformer∗ ✓ 5.44 -
Conformer 4.64 -

L
ib

ri
sp

ee
ch

WeNet Conformer† (Yao et al., 2021) test-clean - 2.85
SpeechBrain Transformer† (Ravanelli et al., 2021) test-clean TransformerLM - 2.46
ESPnet Transformer† (Inaguma et al., 2020) test-clean TransformerLM - 2.60

Deepspeech 2 test-clean word 5-gram - 7.25
Conformer test-clean - 3.37
Transformer test-clean TransformerLM - 2.40

†
denotes the results are reported in their public repositories.

∗
denotes the results are streaming with chunk size 16.

Table 3: WER/CER on Aishell, Librispeech for ASR Tasks.

set (340 speakers), validation set, (40 speakers) and
test set (20 speakers).

Data Preprocessing Deepspeech 2 takes
character-level vocabularies for both English
and Mandarin tasks. For other models, we use
character-level vocabulary for Mandarin. And
English text is preprocessed with SentencePiece
(Kudo and Richardson, 2018). Both two kinds
of datasets are added four additional characters,
which are <’>, <space>, <blank> and <eos>.
For cepstral mean and variance normalization
(CMVN), a subset of or full of the training set
is selected and be used to compute the feature
mean and standard error. For feature extraction,
we have several methods implemented, such as
linear spectrogram, filterbank, and mfcc. Currently,
the Deepspeech 2 model uses linear spectrogram
or filterbank, but Transformer and Conformer
models use filterbank. For a fair comparison, we
take additional 3 dimensional pitch features into
Transformer to be consistent with ESPnet.

Implementation We implement both streaming
and non-streaming Deepspeech 2 (Amodei et al.,
2016). The non-streaming model has 2 convolu-
tion layers and 3 LSTM layers. The streaming
model has 2 convolution layers and 5 LSTM lay-
ers. The Conformer and Transformer models are
implemented following Zhang et al. (2020) with 12
encoder layers and 6 decoder layers.

Results We report word error rate (WER) and
character error rate (CER) for Librispeech (En-
glish) and Aishell (Mandarin) speech recognition,
respectively. As shown in Table 3, Conformer and
Transformer are better than Deepspeech 2. Our
best models achieve comparable performance on
both datasets compared with related works.

3.3 Punctuation Restoration
Punctuation restoration is a post-processing prob-
lem for ASR systems. It is crucial to improve the
readability of the transcribed text for the human
reader and facilitate down-streaming NLP tasks.

Datasets We conduct experiments on
IWSLT2012-zh6 dataset, which contains 150k
Chinese sentences with punctuation. We select
comma, period, and question marks as restore
targets in this task, so we replace other punctuation
with these three marks before training a model. We
split the data into training, validation and testing
sets with 147k, 2k, and 1k samples, respectively.

Implementation We formulate the problem of
punctuation restoration as a sequence labeling task
with four target classes including EMPTY, COMMA,
PERIOD, and QUESTION (Nagy et al., 2021b).
ERNIE (Sun et al., 2019), as a pretrained language
model, achieves new state-of-the-art results on five
Chinese natural language processing tasks, includ-
ing natural language inference, semantic similarity,
6
https://hltc.cs.ust.hk/iwslt/
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Frameworks De Es Fr It Nl Pt Ro Ru

ESPnet-ST (Inaguma et al., 2020) 22.9 28.0 32.8 23.8 27.4 28.0 21.9 15.8
fairseq-ST (Wang et al., 2020) 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3
NeurST (Zhao et al., 2021) 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1

PaddleSpeech 23.0 27.4 32.9 22.9 26.7 28.8 22.2 15.4

Table 4: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON.

model COMMA PERIOD QUESTION Overall

BERTLinear† 0.4646 0.4227 0.7400 0.5424
BERTBiLSTM† 0.5190 0.5707 0.8095 0.6330

ERNIELinear 0.5142 0.5447 0.8406 0.6331
†

denotes the results come from our reproduced models.

Table 5: F1-score values on IWSLT2012-zh dataset.

named entity recognition, sentiment analysis, and
question answering. So, we finetune an ERNIE
model for this task. More specifically, all param-
eters are initialized from the ERNIE pretrained
model, except the final shared fully-connected
layer, which is randomly initialized.

Results We report F1-score values on
IWSLT2012-zh dataset. As shown in Table
5, our ERNIELinear model achieves 0.6331 overall
F1-score, which is comparable with the previous
work (Nagy et al., 2021a).

3.4 Speech Translation

Speech translation, where translating speech in a
source language to text in another language, is ben-
eficial in human communications.

Datasets In this section, we analyze the perfor-
mance of speech-to-text translation with Paddle-
Speech on MuST-C dataset (Di Gangi et al., 2019)
with 8 different language translation pairs, which
take the English speech as the source input.

Implementation We process the raw audios
with Kaldi (Povey et al., 2011) and extract 80-
dimensional log-mel filterbanks stacked with 3-
dimensional pitch feature using a 25ms window
size and a 10ms step size. Text is firstly tokenized
with Moses tokenizer7 and then processed by Sen-
tencePiece (Kudo and Richardson, 2018) with a
joint vocabulary whose size is 8K for each language
pair. We employ Transformer (Vaswani et al., 2017)
as the base architecture for the speech translation
experiments. In detail, the Transformer model has
7
https://github.com/moses-smt/mosesdecoder

12 encoder layers that follow 2 layers of 2D convo-
lution with kernel size of 3 and stride size of 2, and
6 decoder layers. Each layer contains 4 attention
heads with a size of 256. The encoder is initialized
from a pretrained ASR model.

Results We report detokenized case-sensitive
BLEU8. As shown in Table 4, PaddleSpeech can
achieve competitive results compared with other
frameworks.

3.5 Text-To-Speech

A Text-To-Speech (TTS) system converts given
language text into speech. PaddleSpeech’s TTS
pipeline includes three steps. We first convert the
original text into the characters/phonemes through
the text frontend module. Then, through an Acous-
tic model, we convert the characters or phonemes
into acoustic features, such as mel spectrogram, Fi-
nally, we generate waveform from the acoustic fea-
tures through a Vocoder. In PaddleSpeech, the text
frontend is a rule-based model inspired by expert
knowledge. The Acoustic models and Vocoders are
trainable.

Datasets In PaddleSpeech, we mainly focus on
Mandarin and English speech synthesis. We
have benchmarks on CSMSC9, AISHELL-310,
LJSpeech11, VCTK12. Due to the limit of space,
we only list the experimental results on CSMSC,
which includes 12 hours speech audio correspond-
ing to 10k sentences.

Text Frontend A text frontend module is used to
extract linguistic features, characters and phonemes
from given text. It mainly includes: Text Segmenta-
tion, Text Normalization (TN), Word Segmentation
(WS), Part-of-Speech Tagging, Prosody Prediction
and Grapheme-to-Phoneme (G2P) (see Table 6).

8
https://github.com/mjpost/sacrebleu

9
https://www.data-baker.com/open_source.html

10
http://www.aishelltech.com/aishell_3

11
https://keithito.com/LJ-Speech-Dataset/

12
https://datashare.ed.ac.uk/handle/10283/3443
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jı̄n tiān shì zuì dı̄ wēn dù shì
Text 今天 是 2020/10/29 ， 最低 温度 是 -3°C 。

today is lowest temperature is

èr líng èr líng nían shí yùe èr shí jǐu rì líng xià sān dù
TN 今天 是 二零 二 零 年 十 月 二十九 日 ， 最低 温度 是 零下 三 度 。

2 0 0 2 year 10 month 29 day negative three degree

WS 今天 / 是 / 二零二零年 /十月 /二十九日 ， /最低 温度 / 是 / 零下 /三度 。

G2P jin1 tian1 shi4 er4 ling2 er4 ling2 nian2 shi4 yue4 er4 shi2 jiu3 ri4 zui4 di1 wen1 du4 shi4 ling2 xia4 san1 du4

ESPnet jin1 tian1 shi4 2020/10/29 zui4 di1 wen1 du4 shi4 -3°C

Table 6: An example of the text preprocessing pipeline for Mandarin TTS of PaddleSpeech and ESPnet. TN
stands for the text normalization module, WS stands for the word segmentation module, G2P stands for the
grapheme-to-phoneme module. The text normalization module for mandarin of ESPnet is not able to correctly
handle dates (2020/10/29) and temperatures (-3°C).

For Mandarin, our G2P system consists of a poly-
phone module, which uses pypinyin and g2pM, and
a tone sandhi module which uses rules based on
chinese word segmentations. To the best of our
knowledge, our Mandarin text frontend system is
the most complete one compared with other pub-
licly released works.

Data Preprocessing PaddleSpeech TTS uses the
following modules for data preprocessing13: First,
we use Montreal-Forced-Aligner to get the duration
for corresponding phonemes. Second, we extract
mel spectrograms as the features (additional pitch
and energy features for Fastspeech 2). Last, we
conduct the statistical normalization for each fea-
ture.

Acoustic Model Acoustic models can be
mainly classified into autoregressive and non-
autoregressive models. The decoding of the au-
toregressive model relies on previous predictions
at each step, which leads to longer inference
time but relatively better quality. While the non-
autoregressive model generates the outputs in par-
allel, so the inference speed is faster, but the quality
of generated result is relatively poor.

As shown in Table 1, PaddleSpeech has im-
plemented the following commonly used autore-
gressive acoustic models: Tacotron 2 and Trans-
former TTS, and non-autoregressive acoustic mod-
els: SpeedySpeech, FastPitch and FastSpeech 2.

Vocoder As shown in Table 1, PaddleSpeech
has implemented the following vocoders: Wave-
Flow, Parallel WaveGAN, MelGAN, Style Mel-

13
https://github.com/PaddlePaddle/PaddleSpeech/blob/

develop/examples/csmsc/tts3/local/preprocess.sh

Acoustic Model Vocoder MOS ↑
ESPnet Fastspeech 2 PWGAN 2.55 ± 0.19

Tacotron 2 PWGAN 3.69 ± 0.11
Speedyspeech PWGAN 3.79 ± 0.09
Fastspeech 2 PWGAN 4.25 ± 0.09

PaddleSpeech Fastspeech 2 Style MelGAN 4.32 ± 0.10
Fastspeech 2 MB MelGAN 4.43 ± 0.09
Fastspeech 2 HiFi GAN 4.72 ± 0.08

Table 7: The MOS evaluation with 95% confidence
intervals for TTS models trained using CSMSC dataset.
PWGAN stands for Parallel WaveGan, MB MelGAN
stands for Multi-Band MelGAN.

GAN, Multi Band MelGAN, and HiFi GAN.

Implementation The PadddleSpeech TTS imple-
mentation of FastSpeech 2 adopts some improve-
ment from FastPitch and uses MFA to obtain the
forced alignment (the original FastSpeech paper
uses Tacotron 2). Notably, the speech feature pa-
rameters of the acoustic model and the vocoder of
one TTS pipeline should be the same. Detailed
settings can be found in the sample config file14 on
CSMSC dataset.

Results We report the mean opinion score (MOS)
for naturalness evaluation in Table 7. We use the
crowdMOS toolkit (Ribeiro et al., 2011), where 14
Mandarin samples (see Appendix A) from these
7 different models were presented to 14 workers
on Mechanical Turk. As shown in Table 7, Pad-
dleSpeech can largely outperform ESPnet on Man-
darin TTS. The main reason is that PaddleSpeech
TTS has a better text frontend as shown in Table
6. Compared with other models, Fastspeech 2 with

14
https://github.com/PaddlePaddle/PaddleSpeech/blob/

develop/examples/csmsc/tts2/conf/default.yaml
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HiFi GAN can achieve the best results.

4 Conclusion

This paper introduces PaddleSpeech, an open-
source, easy-to-use, all-in-one speech processing
toolkit. We illustrated the main design philosophy
behind this toolkit to conduct development and re-
search on various speech-related tasks accessible.
A number of reproducible experiments and com-
parisons show that PaddleSpeech achieves state-of-
the-art or competitive performance with the most
popular models on standard benchmarks.
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Jan Vainer and Ondřej Dušek. 2020. Speedyspeech:
Efficient neural speech synthesis. arXiv preprint
arXiv:2008.03802.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 33–39, Suzhou, China. Association
for Computational Linguistics.

Pete Warden. 2018. Speech commands: A dataset
for limited-vocabulary speech recognition. ArXiv,
abs/1804.03209.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson En-
rique Yalta Soplin, Jahn Heymann, Matthew Wiesner,
Nanxin Chen, et al. 2018. Espnet: End-to-end speech
processing toolkit. arXiv preprint arXiv:1804.00015.

Haiyang Xu, Hui Zhang, Kun Han, Yun Wang, Yiping
Peng, and Xiangang Li. 2019. Learning alignment
for multimodal emotion recognition from speech.
CoRR, abs/1909.05645.

Junichi Yamagishi, Christophe Veaux, Kirsten MacDon-
ald, et al. 2019. Cstr vctk corpus: English multi-
speaker corpus for cstr voice cloning toolkit (ver-
sion 0.92). University of Edinburgh. The Centre for
Speech Technology Research (CSTR).

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim.
2020. Parallel wavegan: A fast waveform generation
model based on generative adversarial networks with
multi-resolution spectrogram. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6199–6203.
IEEE.

Geng Yang, Shan Yang, Kai Liu, Peng Fang, Wei Chen,
and Lei Xie. 2021. Multi-band melgan: Faster wave-
form generation for high-quality text-to-speech. In
2021 IEEE Spoken Language Technology Workshop
(SLT), pages 492–498. IEEE.

Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang,
Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu Chen,
Lei Xie, and Xin Lei. 2021. Wenet: Produc-
tion oriented streaming and non-streaming end-to-
end speech recognition toolkit. arXiv preprint
arXiv:2102.01547.

Steve Young, Gunnar Evermann, Mark Gales, Thomas
Hain, Dan Kershaw, Xunying Liu, Gareth Moore,
Julian Odell, Dave Ollason, Dan Povey, et al. 2002.
The htk book. Cambridge university engineering
department, 3(175):12.

Binbin Zhang, Di Wu, Zhuoyuan Yao, Xiong Wang,
Fan Yu, Chao Yang, Liyong Guo, Yaguang Hu, Lei
Xie, and Xin Lei. 2020. Unified streaming and
non-streaming two-pass end-to-end model for speech
recognition. arXiv preprint arXiv:2012.05481.

Chengqi Zhao, Mingxuan Wang, Qianqian Dong, Rong
Ye, and Lei Li. 2021. NeurST: Neural speech transla-
tion toolkit. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 55–62, Online. Association for Computational
Linguistics.

Renjie Zheng, Mingbo Ma, Baigong Zheng, Kaibo Liu,
Jiahong Yuan, Kenneth Church, and Liang Huang.
2020. Fluent and low-latency simultaneous speech-
to-speech translation with self-adaptive training. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3928–3937.

122

https://aclanthology.org/2020.aacl-demo.6
https://aclanthology.org/2020.aacl-demo.6
http://arxiv.org/abs/1909.05645
http://arxiv.org/abs/1909.05645
https://doi.org/10.18653/v1/2021.acl-demo.7
https://doi.org/10.18653/v1/2021.acl-demo.7


A TTS Examples

We use the following sentences as the MOS evalua-
tion test set in Table 7.

• 早上好，今天是2020/10/29，最低温度是-
3°C。

• 你好，我的编号是37249，很高兴为您服
务。

• 我们公司有37249个人。

• 我出生于2005年10月8日。

• 我们习惯在12:30吃中午饭。

• 只要有超过3/4的人投票同意，你就会成
为我们的新班长。

• 我要买一只价值999.9元的手表。

• 我的手机号是18544139121，欢迎来电。

• 明天有62%的概率降雨。

• 手表厂有五种好产品。

• 跑马场有五百匹很勇敢的千里马。

• 有一天，我看到了一栋楼，我顿感不妙，
因为我看不清里面有没有人。

• 史小姐拿着小雨伞去找她的老保姆了。

• 不要相信这个老奶奶说的话，她一点儿也
不好。
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