Handling Idioms in Symbolic Multilingual Natural Language Generation

Michaelle Dubé

Francois Lareau

OLST, Université de Montréal
C.P. 6128 succ. Centre-Ville, Montréal QC, H3C 3J7, Canada
{michaelle.dube, francois.lareau} @umontreal.ca

Abstract
While idioms are usually very rigid in their expression, they sometimes allow a certain level of freedom in their usage, with
modifiers or complements splitting them or being syntactically attached to internal nodes rather than to the root (e.g., take
something with a big grain of salt). This means that they cannot always be handled as ready-made strings in rule-based natural
language generation systems. Having access to the internal syntactic structure of an idiom allows for more subtle processing.
We propose a way to enumerate all possible language-independent n-node trees and to map particular idioms of a language
onto these generic syntactic patterns. Using this method, we integrate the idioms from the French Lexical Network (LNy) into
GenDR, a multilingual realizer. Our implementation covers nearly 98% of LNg’s idioms with high precision, and can easily

be extended or ported to other languages.

Keywords: idioms, multilingual natural language generation, lexicalization

1. Introduction

Idioms are notoriously difficult for natural language
processing (NLP) (Sag et al., 2002; |(Constant et al.,
2017). In this paper, we will focus on the task of rule-
based natural language generation (NLG), and on the
most prototypical type of idioms, which have namely
been called fixed expressions by Sag et al. (2002)) or full
idioms by |Mel’cuk (2012). To put it in a nutshell, such
idioms can be defined as non-compositional multiword
expressions (MWESs) where each word has been emp-
tied of its meaning and rendered non-referential. They
show a high degree of syntactic cohesion that typi-
cally forbids alteration. For example, UNDER THE
WEATHER doesn’t refer to any weather at all but means
‘sick’, and the noun WEATHER here cannot be modi-
fied without breaking the idiomatic interpretation of the
whole. This is not to say that idioms cannot have com-
plements or modifiers, but these are normally attached
to the syntactic head of the phrase (here, UNDER), and
they complement or modify the whole expression, not
one of its internal words.

Because idioms behave somewhat like simple words
from a syntactic point of view, they can very well be
processed as ready-made blocks in symbolic NLG. For
example, if a system is able to produce Mary felt a bit
sick that day, it is trivial to replace the string "sick"
with "under the weather" somewhere in the pro-
cess and produce Mary felt a bit under the weather that
day. Indeed, this has been the prevalent approach so
far (cf. §2). However, there are several ways idioms
can wreak havoc in an NLG system:

1. An idiom can be split by its modifier. For exam-
ple, in French, DONNER SA LANGUE AU CHAT
(‘give up guessing’, lit. ‘give one’s tongue to
the cat’), when combined with ENCORE (‘again’)
yields donner encore sa langue au chat.

2. Modifiers do not always attach to the syntactic
head of an idiom. For example, to intensify TAKE

(y) WITH A GRAIN OF SALT, you can modify the
noun GRAIN instead of the head TAKE: Take it
with a big grain of salt.

3. Anidiom can be split by its complement, as in You
have to take whatever he says with a grain of salt.

4. Complements do not always attach to the syntac-
tic head of an idiom. This is particularly com-
mon with (but not exclusive to) idioms that con-
tain body part words. For example, the second ac-
tant of PULL (y’S) LEG is expressed as a syntactic
complement of the noun LEG, not as an object of
the verb: He’s just pulling your leg.

5. Inflection can be messy. This is especially true of
nominal idioms in languages where agreement ex-
ists, because an inflected head triggers the inflec-
tion of internal determiners and adjectives. The
problem is further exacerbated in languages with
grammatical case. For example, in Lithuanian,
LIETUVOS APELIACINIS TEISMAS (‘court of ap-
peal of Lithuania’, lit. ‘appellate court of Lithua-
nia’) has a nominal head TEISMAS ‘court’ with
an adjective APELIACINIS ‘appellate’, and when
the noun varies in case or number, so does the ad-
jective. This requires access to individual words
within the idiom (Dubinskaité, 2017).

6. Idioms can sometimes “loosen up” and allow
some syntactic freedom, with component words
becoming referential, as in It was a pretty big bul-
let to bite, where BULLET acts as if it actually
meant something like ‘situation’, although there is
no such sense for that word in any other context.

Solving these problems elegantly in a symbolic NLG
system requires access to the internal syntactic struc-
ture of idioms. In this paper, we propose a solution
to represent that internal structure, which addresses the
first five issues above. It is language-independent and
designed for multilingual natural language generation

118

Proceedings of the 18th Workshop on Multiword Expressions (MWE 2022) n@LREC2022, pages 118-126
Marseille, 25 June 2022. © European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0



(MNLG), but it requires detailed lexical resources that
we had only for French. Therefore, the discussion will
draw from French data. As for the sixth issue, it has
been explored in detail by [Pausé (2017) from a theoret-
ical point of view, but we have no elegant solution for
it in the context of MNLG.

This paper is structured as follows. First, we will make
a distinction between superficial and deep realizers in
NLG and discuss briefly how idioms have been handled
in existing systems (§2). Then, we will present the lex-
ical data on which we rely and explain Pausé’s (2017)
idiom classification, which is central to our solution
(§3). The main section will present our implementa-
tion (§4), which will be followed by an evaluation (§3)
and a conclusion (§6).

2.

We should emphasize that in this paper we will only
discuss the problem of idioms in rule-based realizers.
Statistical and neuronal language models typically re-
produce MWEs with relative ease, since they are very
good at capturing recurrent patterns in a corpus. Yet,
they are rambling machines that are very hard to har-
ness. Thus, for many practical NLG applications where
high precision and full control are needed, symbolic re-
alizers are still the way to go.

While NLG refers to the whole pipeline from data
collection to text delivery, realizers focus on the lin-
guistic part of the process. Most realizers expect an
input where both lexical choice and syntactic struc-
ture have already been computed, leaving the user
with two particularly complex tasks. This is the case
for FUF/SURGE (Elhadad, 1993}, Elhadad and Robin,
1996), RealPro (Lavoie and Rambow, 1997; |(CoGen-
Tex, 1998), SimpleNLG (Gatt and Reiter, 2009), its
bilingual version, SimpleNLG-EnFr (Vaudry and La-
palme, 2013) and its Spanish version, SimpleNLG-
ES (Ramos-Soto et al., 2017), JSReal (Daoust and
Lapalme, 2015) and its bilingual version, JSRealB
(Molins and Lapalme, 2015} [Lapalme, 2020), as well
as ATML3 (Weiligraeber and Madsack, 2017). KPML
(Bateman, 1996) and OpenCCG (White, 2008)) both
start from a more abstract representation of the text’s
meaning, but they tend to focus on the grammar more
than the lexicon, resulting in well-formed sentences
that somehow lack lexical flexibility. The same goes
for the bilingual (French/English) realizer FLAUBERT
(Meunier and Danlos, 1998; Danlos, 2000)—not the be
confused with the language model FlauBERT (Le et al.,
2020). More recently, statistical approaches have been
applied to text generation from logical forms (Basile,
20135) or semantic structures (Mille, 2014)), but again
lexical choice is rather rigid.

MARQUIS (Wanner et al., 2010) was a multilingual
data-to-text generator used to produce air quality bul-
letins. It was designed to have a reusable text realiza-
tion component that takes as input semantic represen-
tations, thus taking charge of lexical choice. Its lex-

Idioms in Linguistic Realizers

119

icalization module was designed to produce natural-
sounding collocations and to be as generic as possible
(Lareau and Wanner, 2007; |Wanner and Lareau, 2009).
However, it handled full idioms as blocks of text, lack-
ing the flexibility required for the cases discussed in §T}
Its successor FORGe (Mille and Wanner, 2017)) signif-
icantly improved the lexical coverage of MARQUIS,
but also takes a rigid approach to idioms. Another suc-
cessor, GenDR (Lareau et al., 2018) significantly ex-
panded the range of collocation patterns it can handle
(Lambrey and Lareau, 2015), but it also treats idioms
as blocks with no internal structure.

To sum up, as far as we know, there is no generic,
largish-scale deep realizer that takes idioms for what
they are: premade phrases with internal syntactic struc-
ture. Hence, our goal is to incorporate such a function-
ality into a deep realizer. We picked GenDR for that
purpose, because it already had a strong focus on non-
trivial lexicalizations, in particular collocations. We
will explain in this paper how we extended its lexical-
ization module to handle idioms in a way that reflects
both their non-compositional semantic nature and their
internal syntactic structure.

3. Lexical Data

We take our lexical data from the LNy (Polguere,
2009; Polguere, 2014} |Ollinger and Polguere, 2020),
a rich, open resource based on the principles of
Explicative Combinatorial Lexicology (ECL) (Mel’ cuk
et al., 1995; [Mel’Cuk, 1995; |Apresjan, 2000; |[Mel’ Cuk,
2006). Since GenDR itself is based on Meaning-Text
Theory (MTT) (Zolkovskij and Mel’¢uk, 1965; [Ka-
hane, 2003; [Mel’Cuk, 2016), an ECL-based resource
was an obvious choice for our purposes. Each of LNy.’s
~20k entries corresponds to a specific word sense that
has its own lexicographic record with morphological,
semantic and syntactic information, examples, and re-
lations with other lexical units via lexical functions
(LFs) (Wanner, 1996} |Apresjan et al., 2002).

Our work is based on Pausé’s (2017) idiom classifi-
cation, in which she proposed linear syntactic patterns
for French idioms. To avoid any confusion with our
own generic patterns, we will henceforth use the term
linguistic patterns to refer to them. These patterns are
sequences of part of speech (POS) tags that represent
each word of an idiom. For example, the idiom JOIN-
DRE LES DEUX BOUTS (‘make ends meet’, lit. ‘join the
two ends’) is assigned the pattern v Det Num N.

If necessary, function markers are used to distinguish
patterns that have the same POS sequence but differ-
ent syntactic structures. For example, while CRACHER
DANS LA SOUPE (‘bite the hand that feeds you’,
lit. ‘spit in the soup’) and BATTRE DE L’AILE (‘be
on the skids’, lit. ‘flap from the wing’) both corre-
spond to the sequence V. Prep Det N, they don’t have
the same syntactic structure because the preposition
is a circumstantial in the former but an oblique in
the latter, so they have been assigned, respectively,



V Prep.circ Det NandV Prep.obl Det N. Ob-
viously, this is tied to an underlying syntactic analysis,
as determined by the lexicographers.

These patterns can further specify the syntactic posi-
tion of an idiom’s complements, which is useful when
they do not attach to the syntactic head of the idiom,
but to an arbitrary node within the idiom. For exam-
ple, in PARLER DANS LE DOS (DE y) (‘talk behind
(y’s) back’), the second complement of the idiom is
expressed as a complement of the noun DOS (‘back’),
not as a complement of the head PARLER (‘talk’). This
is encoded as V Prep Det N (Prep_$2), where
(Prep_$2) refers to the second complement and its
preposition.

Pausé’s classification was incorporated into LNy,
which contained 2919 idioms classified between
514 different patterns when we conducted our study.
Table [T] gives the frequency of the most common pat-
terns, with an example for each. Note the zipfian distri-
bution, with only eight patterns accounting for half of
the data.

Idiom pattern Example # %
N Prep N TETE DE MULE 409 14%
N Adj TERRE FERME 377 13%
Prep N DE JUSTESSE 222 8%
N Prep.circ N CORPS A CORPS 138 5%
Adj N JOLI CEUR 100 4%
Prep Det N DANS LE VENT 98 3%
V Det N LEVER LE PIED 79 3%
N Prep Det N ART DELA TABLE 79 3%
Others 1417 49%
Total 2919 100%

Table 1: Most frequent idiom patterns in LNy,

4.

As said in §2] we implemented our solution in the mul-
tilingual deep realizer GenDR (Lareau et al., 2018),
which follows the principle of resource sharing across
languages (Bateman et al., 2005). This realizer is
built on top of the graph transducer MATE (Bohnet
and Wanner, 2010). It is based on MTT and only
handles the semantics-syntax interface: it takes as
input a graph-based semantic representation (SemR)
(Mel’Cuk, 2012) and produces first an abstract de-
pendency tree called a deep syntactic representa-
tion (DSyntR), from which it then derives a full-
dependency tree called a surface syntactic representa-
tion (SSyntR) (Mel cuk, 1988). A DSyntR is roughly
similar to a Universal Dependency tree (de Marn-
effe et al., 2021)), without functional words and with
idioms collapsed into single nodes, while a SSyntR
is analogous to a Surface-syntactic Universal Depen-
dency (SUD) tree (Gerdes et al., 2018). Only the sec-
ond transduction is relevant to us, since idioms are

Implementation

120

represented as single nodes in the DSyntR (thus, the
SemR=DSyntR mapping is trivial), but as multiple
nodes in the SSyntR. Figure [I| presents an input exam-
ple (SemR) and a sample of possible outputs (SSyntR),
in which the meaning ‘courtiser’ (‘to court’) can be
lexicalized as the lexeme COURTISER or as the idiom
FAIRE LA COUR (lit. ‘do the court’).

FAIRE

/N

SAM COUR A

LE ALEX

‘courtiser’ A

arg/ ¥g2

‘Sam’ ‘Alex’ >

COURTISER

/N

SAM ALEX

SemR SSyntR

Figure 1: Alternative outputs for a simple SemR

4.1. Template Lexicalization Rules

The process of mapping a single DSyntR node onto
multiple SSyntR nodes is called template lexicaliza-
tion within GenDR (Lareau et al., 2018)). Figure[Z]is an
example of such a rule for JOINDRE LES DEUX BOUTS
(‘make ends meet’, lit. ‘join the two ends’)ﬂ

JOINDRE
JOINDRE LES ) Jz
DEUX BOUTS _ ou s\
les deux
DSyntR SSyntR

Figure 2: A simple template lexicalization rule

A full grammar would require rules like this one for
each idiom in a given language. Obviously, a great
number of these rules would resemble each other, thus
the goal is to generalize them. Our solution is to cre-
ate a set of template lexicalization rules that generalize
Pausé’s linguistic patterns (cf. §3). Each of these rules
describes a generic pattern of syntactic tree with place-
holders that are filled with lexical stock from our dic-
tionary. The latter is derived from LNy and enhanced
with our own data, as explained below. The idea behind
these rules is to generalize linguistic patterns into more
generic, language-independent patterns defined by the
number of nodes in an idiom’s subtree.

'Note that we omit relation names from our discussion.
The choice of relation names is beyond the scope of our work,
since they are language-specific. These decisions are thus left
to the lexicographers working on LNj;.



4.2. Generic Tree Patterns

We grouped idioms that had identical structures. For
example, four-nodes idioms like JOINDRE LES DEUX
BOUTS, ENFONCER UNE PORTE OUVERTE (‘state the
obvious’, lit. ‘kick an open door’) and DANS DE BEAUX
DRAPS (‘in trouble’, lit. ‘in some nice bedsheets’) have
different linguistic patterns, but share the same struc-
ture, as illustrated in FigureE}

Wo
V Det Num N l
V Det N Adj = w1
Prep Det Adj N / \
w2 ws

Linguistic Generic

Figure 3: Linguistic patterns with the same structure

This pattern is not the only possibility for a four-node
tree. Giving SSyntRs only represent hierarchy and not
word order, two trees that differ solely by word order
are equivalent. Therefore, there are four theoretically
possible patterns for a four-node tree, to which we as-
signed IDs 4_01 to 4_04, as shown in Figure

4.01 4.02 4.03 4.04
wo wo wo Wo
J l wl/ \’wg wl/ l \w?,
w1 w1 l wWo
J ’wg/ \’wg ws
w2
|
w3

Figure 4: Generic patterns for a four-node tree

To systematically enumerate all possible generic pat-
terns, we rely on number theory, which defines an inte-
ger’s partition as its decomposition into a sum of posi-
tive integers (Andrews, 1998)). For example, 3 has three
different partitions: 3, 2+ 1, and 1 + 1 + 1. Each sum-
mand of the partition is called a part. The integer par-
titions thus correspond to all possible configurations of
a root’s (direct and indirect) dependents in a tree, with
the number of parts in a partition corresponding to the
number of direct dependents of the root.

To illustrate this, consider a three-node tree. It com-
prises a root and two dependents. The root’s position
is fixed, but there are two ways we can configure the
other two nodes: either one depends on the root, and
the other depends on the first (forming a chain), or both
depend directly on the root. This corresponds to the
two partitions of the integer 2: as 2 (a two-node sub-
tree is attached to the root) or 1 + 1 (two single-node
subtrees are attached to the root).

121

Partitions #Trees

1

2 nodes

o

3 nodes
1+1

4 nodes
2+1
1+1+1

4
3+1
242
2+1+1
1+1+1+1

5 nodes

= T S R SO N e N R N I L U

5

4+1

3+2

3+41+1
24+2+1
2+1+1+1
1+1+1+1+1

6 nodes

1
[
(=]

6

5+1

4+2

4+1+1

3+3

342+1
3+1+1+1
24242
242+1+1
2+1+1+1+1
I+1+1+1+1+1

[3%]
(e]

7 nodes

— = e = NN WA MO

Il
N
o

Table 2: Number of different n-node trees

As one can see, the enumeration of all node configura-
tions for a tree of size n boils down to enumerating the
partitions of the integer n — 1. Hence, the nodes of a
four-node tree can be configured according to the par-
titions of 3, since its root has three (direct or indirect)
dependents:

¢ aroot linked to a three-node subtree (3);

* aroot linked to a one-node subtree and a two-node

subtree (2 + 1);

* aroot linked to three one-node subtrees (1+1+1).
We have established above that a three-node subtree
can be configured in two ways, thus yielding a total of
four different configurations for a four-node tree. Now
that we have computed the configurations for a four-
node tree, we can compute those of a five-node tree,
and so on, recursively. Table|2| gives the partitions and
corresponding number of configurations for trees with
up to seven nodes.

Let us pay special attention to the 3 + 3 partition for the



dependents of a seven-node tree, highlighted in Table 2}
This partition is composed of two three-node subtrees.
As seen previously, with n = 3, there are two possible
trees for this part. Thus, one might expect to get 2 + 2
trees for a 3 + 3 partition. However, this is not the case.
To demonstrate this, let us identify the two variants of
a three-node tree as A and B. If you have two of them,
the possible combinations are AA, AB, BA and BB.
However, since our trees are unordered, AB and BA
are actually identical. Therefore, there are only three
possible configurations for a 3 + 3 partition.

4.3. Mapping Linguistic Patterns onto
Generic Patterns

Since our generic patterns are essentially empty trees,
they must be filled with lexical information specific to
each language, which we retrieved from LNy, in this
case. Therefore, we need to map each linguistic pat-
tern used for French idioms (cf. onto one of our
generic patterns. This pattern mapping involves estab-
lishing each idiom’s SSyntR; therefore, it requires good
knowledge of the formalism and high precision. Con-
sequently, it was performed manually. For this purpose,
we differentiated each generic pattern with a unique ID,
as seen in Figure 4| In addition, we annotated each lin-
guistic pattern with a word-to-node mapping code that
describes the position in the tree of all the words of an
idiom’s pattern, as in Table 3]

For example, the four-node idiom JOINDRE LES DEUX
BOUTS (‘make ends meet’, lit. ‘join the two ends’) fol-
lows the generic tree pattern 4_02. Using its linguis-
tic pattern Vv Det Num N, we established a mapping
between the idioms’ words and the nodes of the tree,
which we express as a code: 0231. Figure[J]illustrates
the procedure we followed.

joindre les  deux  bouts
! I { l
v Det Num N
} } } l
wo (%) ws w1
Wo Jjoindre
w1 bouts
7N 7N\
w2 w3 les deux

Figure 5: Example of an idiom’s word mapping

The mapping code tells our realizer which word to as-
sign to each of the tree’s nodes during lexicalization.
Each node in a tree is identified by an ID (wg, wi,
ws, etc.). Furthermore, we refer to an idiom’s words
by their linear order in the citation form. In sum, the
mapping code takes this ordinal numbering and rear-
ranges it according to the words’ position in the tree.

122

Idiom pattern Tree pattern Word mapping
Adj N 2 10

N Prep N 3_01 012

Prep Det N 3_01 021

V Det Num N 4_02 0231

Table 3: Pattern mapping

Thus, in this case, 0231 means that wq will be filled by
"joindre", node wy by "les", node ws by "deux"
and node w; by "bouts".

Following this procedure, we determined the mapping
codes for each pair of patterns. This had to be done
manually for each of the 514 linguistic patterns. Ta-
ble[3|gives a few examples.

The mapping between specific idioms and one of
Pausé’s patterns is already given in the LNy, as this
is part of the dictionary’s structure. Hence, each of the
2919 French idioms are mapped onto one of 514 pat-
terns. Table[d] presents some examples.

Idiom Idiom pattern
JOLI CEUR Adj N
FEUILLE DE MATCH N Prep N

DANS LE VENT
JOINDRE LES DEUX BOUTS

Prep Det N
V Det Num N

Table 4: Idiom pattern mappings from LN,

All this information was compiled into a dictionary
format compatible with GenDR (Lareau and Lambrey,
2016). The process was relatively straightforward, ex-
cept in the case of amalgams (such as des=de+les), as
they are single words but correspond to two nodes in
the SSyntR. Other forms that required special attention
were reflexive pronouns, compounds and linguistic pat-
terns containing embedded idioms.

5. Evaluation

The evaluation of our implementation focuses on the
surface lexicalization of idioms in GenDR. The as-
sessment is based on two criteria. First, we evaluate
the coverage of the implementation, i.e., the percent-
age of LNg’s idioms that we can regenerate. Second,
we evaluate the precision of the implementation, i.e.,
the proportion of generated structures that are correctly
formed.

5.1.

The coverage of our implementation is measured by
calculating the number of idioms that we process out of
the total number of idioms associated with a linguistic
pattern in LNg.. Our dataset was composed of 2919 id-
ioms from LNy, classified between 514 linguistic pat-
terns (cf. §3). Most of the data (93%) were nominal
(48%), prepositional (22%) and verbal (22%) idiom:s.

Coverage



Coverage #total %
Idioms 2846 2919 97,5%
Linguitic patterns 452 514 87,9%
Generic patterns 29 36 80,6%

Table 5: Coverage against LNg;

Our implementation is currently limited to idioms of
six words or fewer, which corresponds to a 97.5% cov-
erage of the idioms in LNy, i.e., 2846 idioms. As seen
in Table [5 only 73 idioms (divided into 62 patterns)
are not covered by our implementation and overall 29
of our 36 generic patterns are exploited by LNg’s id-
ioms.

Table [6] lists the coverage of LNy, idioms classified by
POS. We notice a high coverage of all POS, except for
clausal idioms (67%), such as CE N’EST PAS LA MER A
BOIRE (‘it’s no big deal’, lit. ‘it is not the sea to drink’).
This is due to their length, which tends to be greater
than other idioms, thus often exceeding our limit of six.

POS Coverage #idioms %
Nominal 1409 1414 99,6%
Prepositional 650 655 22%
Verbal 601 646 93%
Conjunctive 84 87 97%
Clausal 28 42 67%
Adjectival 35 35 100%
Adverbial 21 21 100%
Propositional 7 8 88%
Numeral 5 5 100%
Interjectional 4 4 100%
Pronominal 2 2 100%
Total 2856 2919 97,5%

Table 6: Coverage by part of speech against LNy,

The decision to limit our coverage to six-node idioms
was based on two factors. First, the number of possi-
ble trees (or generic patterns) grows exponentially with
the number of nodes. Figure [6] shows the relationship
between the number of trees and the frequency in LNy,
for idioms of different sizes. Notice that the number of
possible trees quickly becomes higher than the number
of idioms in the dictionary.

Secondly, we observe a recursion among the generic
patterns. A tree being an intrinsically recursive struc-
ture, a subtree is itself a tree. Thus, we can compare
the internal structure of idioms to Russian dolls, one
embedded in the other. As a result, we can group an
idiom’s words into clusters that do not necessarily cor-
respond to anything from a lexicological point of view,
but that can operate as a string from a computational
point of view. In other words, it is possible to describe
a long idiom as a combination of smaller idioms corre-
sponding to implemented generic patterns. For exam-

123

# trees
—— # idioms (LN-fr)

1500 7 coverage limit

1000 A

500 +

0 11
Figure 6: Number of trees vs. number of actual idioms

in LNy, (y-axis) with n nodes (x-axis), shown with our
coverage cutoff

.7 METTRE  ~+_
7/ dans~ /plats NN

LN

grands \\ petits  les i
[N /

1
Jz !
/

\

Figure 7: METTRE LES PETITS PLATS DANS LES
GRANDS (‘put on a big spread’, lit. ‘put the small
dishes in the large’) seen as a recursive structure

ple, METTRE LES PETITS PLATS DANS LES GRANDS
(‘put on a big spread’, lit. ‘put the small dishes in the
large’) has seven nodes in its structure. In order to sim-
plify this tree, we can reconfigure it into a three-node
tree where les petits plats and dans les grands them-
selves form two three-node subtrees that depend on the
root METTRE (Figure|7).

The verb (METTRE) is the only element of this idiom
that can be freely inflected, hence the only one that
needs to be isolated from the others. Note that this
reconfiguration is not implemented for the moment.
However, this solution will allow us to reuse our work
as a design basis for processing longer idioms.

5.2. Precision

We automatically generated DSyntRs in MATE for-
mat for each of the 2846 idioms in LNy, together with
placeholders for their complements. We then randomly
selected three samples without overlap for human eval-
uation by two annotators: samples 1 and 2 each con-
tained 100 structures (3.5% of the data) and were re-
spectively evaluated by annotators A and B; sample 3
had 300 structures (10.6% of the data) and underwent
double evaluation. The annotators were graduate stu-
dents in linguistics with extensive training in GenDR
and MTT. They used our grammar rules to process the
DSyntRs and evaluated the resulting SSyntRs. An out-



Sample n Judge A Judge B K
Sample 1 100 98 (98%)

Sample2 100 97 (97%)

Sample 3 300 295 (98.3%) 294 (98%) 0.91

Table 7: Precision evaluation results

put structure was considered correct if all the nodes of
the idiom were present and attached to the correct gov-
ernor. Table [7] summarizes the number of correct out-
puts for each part of the evaluation.

Overall, 97.8% of the SSyntRs had the expected con-
figuration, with only 11 structures deemed problematic
out of all 500. Cohen’s k (Cohen, 1960) was 0.91,
which indicates near perfect inter-annotator agreement;
only one structure was not agreed upon.

The problems we encountered stemmed from possibly
too vague linguistic patterns (5), weaknesses in our im-
plementation (4) and annotation errors (2).

The problems identified derive mainly from pattern
mapping. As we have seen earlier, mapping requires a
matching number of items on both patterns. Although
LN¢’s linguistic patterns are supposed to represent a
single syntactic tree, some describe idioms containing
a varying number of constituents.

The first explanation for this is embedded idioms.
LNy does not specify the POS of idioms when
they are embedded in another idiom. For exam-
ple, Vv Det N_Idiom describes both MANGER LA
FEUILLE DE MATCH (‘fail to score a goal that should
have resulted in victory’, lit. ‘eat the game sheet’) and
FAIRE LE JOLI CEUR. Both FEUILLE DE MATCH and
JOLI CEUR are nominal idioms, but the former has
three nodes and the latter only has two. The linguis-
tic pattern might thus be too vague.

The second is our handling of amalgams (du, des, aux,
etc.). The token des is ambiguous in French: it can be
a determiner (the plural of UN ‘a’) or an amalgam of a
preposition and a determiner (des=de+les ‘of the’). Our
handling of idioms failed to take this difference into ac-
count. This problem is also a consequence of node in-
flection. For example, the idiom ALLER AUX FRAISES
(‘make out in the bushes’, lit. ‘go to the strawberries’)
contains two inflected nodes (aux and fraises). The
nodes in SSyntR are usually not word-forms; rather,
they are lexemes with attached grammatical features
specifying the desired inflection. This allows lexical
information to be consolidated into entries correspond-
ing to the lexical unit (FRAISE) rather than the word-
form (fraises). Although the inflection of articles can
be quickly processed, that of nouns or verbs would re-
quire going over each of the idiom entries.

6. Conclusion

Since idioms shows signs of form flexibility, it is cru-
cial that their handling makes the isolation of specific
nodes possible in order to enable the addition of inflec-

tions, complements or modifiers. We propose a creative
solution to handling MWESs in MNLG, inspired from a
generalization of Pausé’s (2017) idiom classification.
Our data were thus collected from the LNy, (Polguere,
2009; [Polguere, 2014} |Ollinger and Polguere, 2020),
an open resource for French.

We implemented our solution in the multilingual
generic deep realizer GenDR (Lareau et al., 2018),
which is built on top of the graph transducer MATE
(Bohnet and Wanner, 2010). We automatically gen-
erated graph transduction rules for GenDR’s template
lexicalization. These rules were based on generic pat-
terns that use integer partition to list all possible n-node
trees. Our generic patterns are dependency syntactic
trees with empty slots that will be completed with lex-
ical data. We thus automatically generated a lexical
dictionary encoding 452 linguistic pattern that describe
the mapping of 2846 French idioms. We then manually
mapped generic and linguistic patterns onto each other.

As a result, we covered 97.5% of the idioms in LNy,
excluding only idioms that contain seven lexemes or
more. Our implementation also features a precision of
97.8% and a near perfect Cohen’s x of 0.91. The few
problems identified stemmed from the pattern mapping
caused by vague linguistic patterns and node inflection.

Many of the problems we encountered while imple-
menting our solution originated from our very first de-
cisions regarding our data collection from LNy data.
If we were to start over, we would map each idiom’s
lexical units to their POS. This would allow us to de-
sign a script that fetches the POS describing embedded
idioms. This solution would enable us to promptly en-
code the inflection of the idioms as grammemes and to
subtract it from the lexemes’ citation form in SSyntR.

Since our handling of idiom is based on data from the
LNy, it would also gain in precision if idioms’ lexi-
cographic files systematically described their govern-
ment pattern (to allow the addition of the proper prepo-
sition). Furthermore, these files could include informa-
tion on the possible coreferences between the idiom’s
constituents and its actancts. Among other things,
this would be relevant for idioms that include a de-
terminative pronoun. For example, the file of the id-
iom AVALER SON CHAPEAU ‘eat one’s hat’ (Vv Det N)
could describe the coreference relationship between the
idiom’s Det and its first actant (X) : X avala son cha-
peau (‘X ate his hat’).

Our solution is language-agnostic but relies on com-
plex lexical resources that are currently only available
for French. The team behind LNy, is also developing
resources for English and Russian. Thus, we expect to
be able to extend our solution to these languages fairly
easily in the near future. Concretely, porting our gram-
mar to a new language could easily be done without
modification if the dictionary used to describe this lan-
guage is in the same format as ours. All that would
be required to do would be mapping language-specific
idiom patterns to our generic patterns. This mapping

124



can be done by a trained linguist in a matter of days.
Obviously, the hard part is to write the dictionary it-
self (years of work by a whole team of highly trained
lexicographers), but this is independent of our imple-
mentation.

Appart from handling idioms in MNLG, one of the pur-
poses of our system was to check the accuracy of lex-
ical resources. Accessing the internal structure of id-
ioms in order to regenerate them proved a good way of
highlighting errors and inconsistencies in LNg. In par-
ticular, besides the occasional errors one would expect
to find in a large lexical database, we found that the lin-
guistic patterns used in LNy were not explicit enough
with regards to the inflection of the words within an id-
iom. For example, compare the two synonyms A FOND
LA CAISSE (‘at full throttle’, lit. ‘all the way (with) the
car’) and A FOND LES MANETTES (‘at full throttle’,
lit. “all the way (with) the controls’). In the first case,
caisse is singular, but in the second manettes is plu-
ral. This information was not captured by the linguistic
patterns used in LNg,.

Finally, our grammar design could be ported to other
graph transducers, such as GREW (Bonfante et al.,
2018)), but this would require significant effort. How-
ever, a GREW implementation could be used to apply
the rules in reverse, allowing the automatic construc-
tion of deep-syntactic corpora from existing surface-
syntactic corpora in the SUD format (Gerdes et al.,
2018).

7. Bibliographical References

Andrews, G. E. (1998). The theory of partitions. Cam-
bridge university press, Cambridge, 2nd edition.

Apresjan, J. D., Boguslavsky, I. M., Iomdin, L. L.,
and Tsinman, L. L. (2002). Lexical functions in ac-
tual NLP applications. In Computational Linguistics
for the New Millennium: Divergence or Synergy?
Festschrift in Honour of Peter Hellwig on the occa-
sion of his 60th Birthday, pages 55-72. Peter Lang,
Frankfurt.

Apresjan, J. (2000). Systematic Lexicography. Oxford
University Press, Oxford.

Basile, V. (2015). From Logic to Language: Natural
Language Generation from Logical Forms. Ph.D.
thesis, University of Groningen.

Bateman, J. A., Kruijff-Korbayova, 1., and Kruijff,
G.-J. (2005). Multilingual resource sharing across
both related and unrelated languages: An imple-
mented, open-source framework for practical natu-
ral language generation. Research on Language and
Computation, 15:1-29.

Bateman, J. A. (1996). KPML Development Envi-
ronment. GMD/Institut fiir Integrierte Publikations-
und Informationssysteme, Darmstadt.

Bohnet, B. and Wanner, L. (2010). Open source graph
transducer interpreter and grammar development en-
vironment. In Proceedings of LREC’10, pages 211—
218, Malta.

125

Bonfante, G., Guillaume, B., and Perrier, G. (2018).
Application of Graph Rewriting to Natural Lan-
guage Processing. iSTE/Wiley, London/Hoboken.

CoGenTex, (1998). RealPro: General English Gram-
mar. User manual.

Cohen, J. (1960). A Coefficient of Agreement for
Nominal Scales. Educational and Psychological
Measurement, 20(1):37-46.

Constant, M., Eryigit, G., Monti, J., van der Plas, L.,
Ramisch, C., Rosner, M., and Todirascu, A. (2017).
Survey: Multiword expression processing: A Sur-
vey. Computational Linguistics, 43(4):837-892.

Danlos, L. (2000). A lexicalized formalism for text
generation inspired by tree adjoining grammar. In
Anne Abeillé et al., editors, Tree Adjoining Gram-
mars: Formalisms, Linguistic Analysis, and Process-
ing, chapter 15. CSLI Publications, Stanford.

Daoust, N. and Lapalme, G. (2015). JSREAL: A text
realizer for web programming. In Nuria Gala, et al.,
editors, Language Production, Cognition, and the
Lexicon, pages 361-376. Springer, Ziirich.

de Marneffe, M.-C., Manning, C. D., Nivre, J., and Ze-
man, D. (2021). Universal dependencies. Computa-
tional Linguistics, 47(2):255-308.

Dubinskaite, I. (2017). Développement de ressources
lituaniennes pour un générateur automatique de texte
multilingue. Master’s thesis, Université Grenoble
Alpes, Grenoble.

Elhadad, M. and Robin, J. (1996). An overview of
SURGE: A reusable comprehensive syntactic re-
alization component. In Proceedings of INLG 96,
pages 1-4, Brighton.

Elhadad, M. (1993). FUF: the universal unifier. User
manual version 5.2. Technical report, Computer Sci-
ence, Ben Gurion University of the Negev, Beer
Sheva, Israel.

Gatt, A. and Reiter, E. (2009). SimpleNLG: A reali-
sation engine for practical applications. In Proceed-
ings of ENLG’09, pages 90-93, Athens.

Gerdes, K., Guillaume, B., Kahane, S., and Perrier, G.
(2018). SUD or Surface-Syntactic Universal Depen-
dencies: An annotation scheme near-isomorphic to
UD. In Proceedings of the Universal Dependencies
Workshop 2018, Brussels, Belgium.

Kahane, S. (2003). The Meaning-Text Theory. In Vil-
mos Agel, et al., editors, Dependenz und Valenz: Ein
internationales Handbuch der zeitgendssischen For-
shung/ Dependency and Valency: An International
Handbook of Contemporary Research, volume 1,
pages 546-570. Walter de Gruyter.

Lambrey, F. and Lareau, F. (2015). Le traitement des
collocations en génération de texte multilingue. In
Actes de la 22e conférence sur le Traitement Au-
tomatique des Langues Naturelles (TALN), pages
579-585, Caen.

Lapalme, G. (2020). The jsRealB text realizer:
Organization and use cases. arXiv:2012.15425v2
[cs.CL].



Lareau, F. and Lambrey, F. (2016). GECO. Technical
report, OLST, Université de Montréal.

Lareau, F. and Wanner, L. (2007). Towards a generic
multilingual dependency grammar for text gener-
ation. In Proceedings of the GEAF07 Workshop,
pages 203-223, Stanford. CSLI Publications.

Lareau, F., Lambrey, F., Dubinskaité, 1., Galarreta-
Piquette, D., and Nejat, M. (2018). GenDR: A
generic deep realizer with complex lexicalization. In
Nicoletta Calzolari, et al., editors, Proceedings of
LREC’18, pages 3018-3025, Miyazaki.

Lavoie, B. and Rambow, O. (1997). A fast and
portable realizer for text generation systems. In Pro-
ceedings of ANLP’97, pages 265-268, Washington.

Le, H., Vial, L., Frej, J., Segonne, V., Coavoux, M.,
Lecouteux, B., Allauzen, A., Crabbé, B., Besacier,
L., and Schwab, D. (2020). FlauBERT: Unsuper-
vised language model pre-training for French. In
Proceedings of LREC’20, pages 2479-2490, Mar-
seille, France.

Mel’Cuk, I. A., Clas, A., and Polguere, A. (1995). In-
troduction a la lexicologie explicative et combina-
toire. Duculot, Louvain-la-Neuve.

Mel’Cuk, I. A. (1988). Dependency syntax: theory and
practice. State University of New York Press, Al-
bany.

Mel’Cuk, I. A. (1995). The future of the lexicon in lin-
guistic description and the explanatory combinato-
rial dictionary. In Ik-Hwan Lee, editor, Linguistics
in the morning calm, volume 3. Hanshin, Seoul.

Mel’Cuk, I. A. (2006). Explanatory combinatorial dic-
tionary. In Giandomenico Sica, editor, Open Prob-
lems in linguistics and lexicography, pages 225-355.
Polimetrica, Monza.

Mel’¢uk, 1. A. (2012). Semantics: From Meaning
to Text, volume 1. John Benjamins, Amsterdam/
Philadelphia.

Mel’¢uk, I. A. (2016). Language: From Meaning to
Text. Ars Rossica, Moscow/Boston.

Mel’¢uk, I. A. (2012). Phraseology in the language, in
the dictionary, and in the computer. The Yearbook of
Phraseology, 3:31-56.

Meunier, F. and Danlos, L. (1998). FLAUBERT: A
user friendly system for multilingual text generation.
In Proceedings of INLG’98, Niagara-on-the-Lake,
Canada.

Mille, S. and Wanner, L. (2017). A demo of FORGe:
the pompeu fabra open rule-based generator. In Pro-
ceedings of INLG’17, pages 245-246, Santiago de
Compostela, Spain. Association for Computational
Linguistics.

Mille, S. (2014). Deep stochastic sentence generation:
Resources and strategies. Ph.D. thesis, Universitat
Pompeu Fabra, Barcelona.

Molins, P. and Lapalme, G. (2015). JSrealB: A bilin-
gual text realizer for web programming. In Proceed-
ings of ENGL’15, pages 109-111, Brighton.

Ollinger, S. and Polguere, A. (2020). Distribution

126

des systemes lexicaux, ver. 2.0. Technical report,
ATILF-CNRS, Nancy, France.

Pausé, M.-S. (2017). Structure lexico-syntaxique des
locutions du francais et incidence sur leur combina-
toire. Ph.D. thesis, Université de Lorraine, Nancy.

Polguere, A. (2009). Lexical systems: graph models
of natural language lexicons. Language Resources
and Evaluation, 43(1):41-55.

Polguere, A. (2014). From writing dictionaries to
weaving lexical networks. International Journal of
Lexicography, 27(4):396—418.

Ramos-Soto, A., Janeiro-Gallardo, J., and Bugarin, A.
(2017). Adapting SimpleNLG to Spanish. In Pro-
ceedings of INLG’17, pages 144-148, Santiago de
Compostela.

Sag, I. A., Baldwin, T., Bond, F., Copestake, A., and
Flickinger, D. (2002). Multiword expressions: A
pain in the neck for NLP. In Proceedings of the
International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, pages 1-15,
Mexico.

Vaudry, P.-L. and Lapalme, G. (2013). Adapting Sim-
pleNLG for bilingual English-French realisation. In
Proceedings of ENLG’13, pages 183-187, Sofia.

Wanner, L. and Lareau, F. (2009). Applying the
Meaning-Text Theory model to text synthesis with
low- and middle-density languages in mind. In
Sergei Nirenburg, editor, Language Engineering for
Lesser-Studied Languages, volume 21 of NATO Sci-
ence for Peace and Security. 10S Press, Amsterdam.

Wanner, L., Bohnet, B., Bouayad-Agha, N., Lareau, F.,
and NicklaB, D. (2010). MARQUIS: Generation of
user-tailored multilingual air quality bulletins. Ap-
plied Artificial Intelligence, 24(10):914-952.

Leo Wanner, editor. (1996). Lexical functions in lex-
icography and natural language processing, vol-
ume 31 of Studies in language. John Benjamins,
Amsterdam/Philadelphia.

Weillgraeber, R. and Madsack, A. (2017). A working,
non-trivial, topically indifferent NLG system for 17
languages. In Proceedings of INLG’17, pages 156—
157, Santiago de Compostela.

White, M., (2008). OpenCCG Realizer Manual.

Zolkovskij, A. K. and Mel’Cuk, I. A. (1965). O
vozmoznom metode i instrumentax semanti¢eskogo
sinteza. Naucno-texniceskaja informacija, 5:23-28.



	Introduction
	Idioms in Linguistic Realizers
	Lexical Data
	Implementation
	Template Lexicalization Rules
	Generic Tree Patterns
	Mapping Linguistic Patterns onto Generic Patterns

	Evaluation
	Coverage
	Precision

	Conclusion
	Bibliographical References

