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Abstract

Contextualized word embeddings have
emerged as the most important tool for
performing NLP tasks in a large variety of
languages. In order to improve the cross-
lingual representation and transfer learning
quality, contextualized embedding alignment
techniques, such as mapping and model
fine-tuning, are employed. Existing techniques
however are time-, data- and computational
resource-intensive. In this paper we analyze
these techniques by utilizing three tasks: bilin-
gual lexicon induction (BLI), word retrieval
and cross-lingual natural language inference
(XNLI) for a high resource (German-English)
and a low resource (Bengali-English) language
pair. In contrast to previous works which focus
only on a few popular models, we compare
five multilingual and seven monolingual
language models and investigate the effect of
various aspects on their performance, such
as vocabulary size, number of languages
used for training and number of parameters.
Additionally, we propose a parameter-, data-
and runtime-efficient technique which can
be trained with 10% of the data, less than
10% of the time and have less than 5% of
the trainable parameters compared to model
fine-tuning. We show that our proposed
method is competitive with resource heavy
models, even outperforming them in some
cases, even though it relies on less resources.

1 Introduction

Contextualized word representations generated
from pre-trained language models have outper-
formed previously standard static embeddings.
Static distributional word representations offer a
single representation for a word regardless of its
current context (Mikolov et al., 2013a; Bojanowski
et al., 2017). Contrarily, a word’s contextual repre-
sentation is influenced by the context in which it
is used. Contextualized embeddings have demon-
strated ground-breaking performance across sev-

eral NLP tasks and languages, and accommodate
many semantic and syntactic aspects of words (De-
vlin et al., 2019; Conneau et al., 2020; Brown
et al., 2020). From the introduction of ELMo
(Peters et al., 2018) and ULMFiT (Howard and
Ruder, 2018) to the present, different types of lan-
guage models have been proposed (Devlin et al.,
2019; Lan et al., 2020; Clark et al., 2020; Conneau
et al., 2020; Sanh et al., 2019; Radford et al., 2019;
Brown et al., 2020) of which the most influential
is BERT (Devlin et al., 2019) which initiated an
era of Transformer (Vaswani et al., 2017) based
language models.

Multilingual Language Models (MLMs) can per-
form various tasks across different languages. Pre-
vious works (Cao et al., 2020; Liu et al., 2019)
have showed that the MLM’s performance in dif-
ferent transfer learning tasks can further be im-
proved by alignment. The idea of aligning con-
textualized embeddings is to move the represen-
tations of words with similar meaning from dif-
ferent languages closer to each other. There are
several ways to perform alignment on contextu-
alized embeddings, such as anchor mapping (Liu
et al., 2019) and full model fine-tuning (Cao et al.,
2020). However, all of these methods have sev-
eral shortcomings. It is (1) time-consuming, taking
about 24 hours to perform mapping. In contrast to
static embeddings, in case of contextualized em-
beddings the generation of anchor embeddings is
required to be able to perform mapping which is
the majority of the required time (Liu et al., 2019).
Similarly, it takes about 8 hours to perform model
fine-tuning (Cao et al., 2020) on mBERT. It is also
(2) resource-intensive requiring a lot of GPU mem-
ory due to model size and (3) data-intensive re-
quiring a huge collection of monolingual sentences
for anchor generation, while fine-tuning requires
around 250K pairs of parallel sentences to produce
the best-reported alignment (Cao et al., 2020). As a
result of these limitations anchor embeddings map-
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ping and fine-tuning are often difficult or expensive
to perform, deploy and use in real-world scenarios.

To the best of our knowledge there is no study
available until now where different model architec-
tures and alignment techniques on various down-
stream tasks are systematically compared other
than on the most popular models such as mBERT
and XLM-RoBERTa (Kulshreshtha et al., 2020;
Cao et al., 2020; Libovický et al., 2020). In this
paper our main goal is to fill this gap. We have
compared five multilingual and seven monolingual
models with three current alignment techniques
(VecMap (Artetxe et al., 2016), RCSLS (Joulin
et al., 2018) and model fine-tuning (Cao et al.,
2020)) from different perspectives such as mul-
tilingual vs. monolingual, big vs. small mod-
els and the effect of vocabulary. To assess the
models and alignment techniques from different
perspectives we used three different tasks: bilin-
gual lexicon induction (BLI), word retrieval (Cao
et al., 2020) and zero-shot cross-lingual natural
language inference (XNLI) on two language pairs:
high-resource German-English and low-resource
Bengali-English.

Motivated by the shortcomings of current align-
ment methods discussed above, and inspired by the
fine-tuning based alignment technique of Cao et al.
(2020), in addition to the comparative analysis we
propose a parameter, data and time efficient align-
ment technique which requires 10% of the data,
runs within less than 10% of the time and uses the
amount of less than 5% of trainable parameters
compared to model fine-tuning (Cao et al., 2020).
An overview of our proposed approach is given in
Figure 1.

The findings of our experiments demonstrate
that 1) multilinguality always leads to better per-
formance in cross-lingual transfer tasks. 2) We
should choose bigger models over smaller models
when the resources (computational and data) are
available but 3) in case of unattainable resources
smaller but specialized multilingual models, such
as indic-bert (Kakwani et al., 2020), should be cho-
sen, since they are capable of outperforming or
performing similar to the big multilingual models,
such as XLM-RoBERTa (Conneau et al., 2020), on
a language the model is specialized for. 4) Having
a large vocabulary and language support is not an
advantage of itself, instead the number of tokens
allocated for a given language/script plays a more
important role. 5) Big language models are sensi-

Figure 1: Overview of the fine-tuning based alignment
technique (FAO) and our proposed technique (MAO).
Small colored square boxes in the upper right corner
indicate which modules are used in which method (FAO
or MAO).

tive to batch size and learning rate. 6) Model fine-
tuning based alignment (Cao et al., 2020) strength-
ens the quality of MLM’s contextualized embed-
dings and 7) our proposed method is competitive
with resource heavy models, even outperforming
them in some cases despite having a significantly
lower number of trainable parameters. Our work
shows that in specific cases (such as for Bengali
on XNLI task) less resource intensive but more
targeted solutions (e.g. indic-bert) can also be suc-
cessfully employed.

The paper is structured as the following: the
related work is discussed in Section 2. Then Sec-
tion 3 contains required background knowledge fol-
lowed by the explanation of our proposed approach
in Section 4. Following that, Section 5 contains all
the information regarding the tasks, data, different
pipelines of our experiments, training procedures
and hyperparameters. In Section 6 we discuss the
results of different tasks and experiments. Finally,
we conclude our work in Section 7.

2 Related Work

By pre-training language models on texts involv-
ing multiple languages their representation can be
leveraged for cross-lingual applications (Devlin
et al., 2019; Conneau et al., 2020). Cross-lingual
representation quality can be improved using sev-
eral alignment approaches. Aldarmaki and Diab
(2019) build an orthogonal mapping of contextual
ELMo (Peters et al., 2018) embeddings and used
these mapping for word and sentence translation
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retrieval. Schuster et al. (2019) also employed
a mapping approach to align ELMo embeddings,
first they acquired context-independent anchors by
factorizing the contextualized embedding space
into two parts (context-independent and context-
dependent) then they applied the mapping approach
to the independent part and tested their proposed
mapping approach on zero-shot dependency pars-
ing. Similarly, Wang et al. (2019) learned a linear
mapping directly using the contextual embeddings
generated from BERT and XLM (Conneau and
Lample, 2019), while Liu et al. (2019) aligned an-
chors of contextual mBERT embeddings. Cao et al.
(2020) proposed a model fine-tuning based align-
ment technique using parallel corpora and proposed
the word retrieval task to assess its performance. In
a similar work to ours, Kulshreshtha et al. (2020)
compared different rotation and fine-tuning based
alignments on various downstream tasks. However,
all previous work focused on improving state-of-
the-art cross-lingual performance and tested their
proposed approaches only on a few mainstream
MLMs, such as BERT or XLM. In contrast, our
main goal is to analyse which model and param-
eters fit certain data and computational resource
scenarios the best, thus we investigate applying dif-
ferent types of alignment approaches to different
types of multilingual and monolingual models in-
cluding various architectures and sizes, trained on
either monolingual or multilingual data.

Additionally, alignment approaches are resource
intensive. Performing anchor generation for map-
ping takes the majority of the required time (Liu
et al., 2019; Kulshreshtha et al., 2020). Likewise,
fine-tuning mBERT takes more than 8 hours (Cao
et al., 2020), and for XLM-RoBERTa it is even
longer. Due to model size, they require a lot of
GPU memory. Also, they are data-intensive re-
quiring a huge collection of monolingual sentences
(Liu et al., 2019) for anchor generation and dur-
ing fine-tuning, around 250K pairs of parallel sen-
tences are required to produce an alignment of good
quality. Focusing on these shortcomings we pro-
pose a parameter, data and time efficient alignment
approach to tackle these issues. Our proposed ap-
proach is lightweight compared to full model fine-
tuning based alignment, as well as more time and
data efficient than fine-tuning and anchor based
alignment.

3 Background

3.1 Mapping

In this section, we will discuss mapping techniques
using contextualized embeddings. The contextual-
ized embeddings mapping process follows a simi-
lar principle as static embeddings mapping. Given
a seed dictionary of source-target word pairs and
their embeddings, a linear projection of the source
embeddings to the target space is learned (Mikolov
et al., 2013b). Suppose xi and zi are source and tar-
get word embeddings respectively of the ith word
pair in the dictionary. The primary aim is to find
a transformation matrix W such that Wxi is sim-
ilar to zi. This can be expressed as the following
optimization problem:

arg_min
W

n∑

i=1

||Wxi − zi||2

Anchor Generation: Many approaches rely on
anchors as context independent word representa-
tions to generate mapping for contextualized em-
beddings (Liu et al., 2019; Kulshreshtha et al.,
2020). We generate anchors for each of the words
by following the procedures of (Liu et al., 2019).
For a selected word 1000 sentences where the word
is present are selected followed by the generation
of contextualized embeddings of each occurrence
which are average pooled resulting in the anchor
representation. For efficiency, we used 100 sen-
tences instead of 1000 in our systems. In case
a word is split into subwords we consider only
the embedding of the last subword following (Cao
et al., 2020). Additionally, we only considered
the output embeddings of the last layer, instead of
averaging all layers, since semantic features are
manifested in higher layers (de Vries et al., 2020).

3.2 Model Fine-Tuning

In order to improve the alignment of the language
model using a parallel corpus Cao et al. (2020)
proposed a fine-tuning based alignment method.
The intuition of this method is to tune the source
language embeddings to be closer to the target lan-
guage embeddings in the vector space. To bring
this intuition into practice a simple but effective
loss function was introduced:

L(f, C) = −
∑

(s,t)∈C

∑

(i,j)∈a(s,t)
sim(f(i, s), f(j, t))

(1)
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where (s, t) is a parallel sentence pair of the source
and target languages in the parallel corpus C,
a(s, t) indicates the word alignments for (s, t),
f(i, s) is the contextualized representation of the
word at index i in sentence s given by the used
MLM and sim(f(i, s), f(j, t)) indicates the sim-
ilarity of the indicated word embeddings defined
by:

sim(f(i, s), f(j, t)) = −||f(i, s)− f(j, t)||22
(2)

However, minimizing (1) could lead to a degen-
erative solution where all tokens are represented
in the same point mass. To avoid this case, the
authors proposed a regularizer preventing the tar-
get representations from deviating from the initial
value significantly. Let f0 indicate the initial pre-
trained model before the alignment, then:

R(f, C) =
∑

(s,t)∈C

∑

(i,j)∈a(s,t)
||f(i, t)− f0(i, t)||22

(3)
The regularizer is only applied to the target lan-
guage representations. The final loss function for
the model fine-tuning is the sum of (1) and (3).
Note however that due to f0, two copies of the
model have to be kept in memory. Additionally,
the model can be fine-tuned using multiple lan-
guage pairs, by training on the concatenation of
their parallel corpora.

In this work we refer to this technique as FAO
(fine-tuning based alignment objective) which we
also depict in Figure 1.

3.3 Cross-Lingual Evaluation

Word Retrieval For intrinsic evaluation of
MLMs Cao et al. (2020) proposed the word re-
trieval task. Given parallel data, the task is for each
source word to retrieve its translation, i.e., find the
parallel sentence pair of the source sentence con-
taining the input word and select the right word
in it. First, all the source and target language sen-
tences are passed through the language model to
build word representations for each word. Note that
since a given word type is contained in multiple
sentences, it has a contextualized representation for
each occurrence. For each of the source words, the
most similar word from the target set is taken as its
translation pair by calculating their CSLS similarity
(Lample et al., 2018). We report the accuracy score
for this task. Here the accuracy is defined as the

percentage of exact matches between source and
target words throughout the whole parallel corpus,
similar to Cao et al. (2020).

BLI Given a dictionary of source and target lan-
guage word pairs, bilingual lexicon induction is
the task of translating a source language word to a
target language word (Irvine and Callison-Burch,
2017; Shi et al., 2021). In this task, the target word
with the highest similarity score is chosen as the
translation of the source word by computing the co-
sine similarity between the anchored embeddings
of the source word and the target words. For this
task, we report P@1 and P@5. Here, P@1 indi-
cates the percentage of source words where the
target word with the highest similarity score is the
gold translation. P@5 is the percentage of source
words where the gold translation falls among the
five target words with the highest similarity scores.

XNLI Cross-lingual natural language inference
is a sentence pair classification task using the cor-
pus of (Conneau et al., 2018). It consists of three
classes (neutral, entailment and contradiction) and
is used to evaluate cross-lingual transfer learning
systems. It covers 15 languages, including two low-
resource languages (Swahili and Urdu) (Conneau
et al., 2018). We report the accuracy score for this
task.

4 Proposed Approach

FAO is data-intensive requiring 250K parallel sen-
tences, it is time-consuming and resource-intensive.
Similarly, applying simple but efficient alignment
techniques like Vecmap and RCSLS is too time-
consuming and resource intensive in the case of
contextualized embeddings. Inspired by these is-
sues we propose a small alignment architecture
which can be trained swiftly (less than 10% of
the time required for fine-tuning the whole model)
with a few thousand parallel sentences (10% of
the data required for fine-tuning the whole model)
and trainable parameters for all the proposed archi-
tectures are less than 3% of the language model’s
parameters. To achieve this we add small trainable
modules to MLMs and keep the rest of the network
frozen.

Linear or Transformer Layer on Top We add a
single linear or transformer layer on top of the used
MLM. An overview of our proposed method is pro-
vided in Figure 1. First, the sentences are fed into
the language model then we extract the embeddings
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of all the words (we only take the embedding of
the last subword following Cao et al. (2020) in case
a word is split). These embeddings are then fed
to the proposed linear or transformer layer, which
outputs embeddings of the same size as the MLM.
As mentioned, we train only the added layer and
keep the MLM frozen. This way the number of
parameters to be trained and the required time are
significantly reduced compared to FAO. Addition-
ally, unlike FAO we do not use the regularizer loss
which reduces computation and memory use since
the initial model (f0) is unnecessary. The rest of the
procedure is the same as described in Section 3. We
named our method modified alignment objective
(MAO).

Adapters Additionally, we leverage adapters
(Pfeiffer et al., 2020) in each of the MLM layers
together with a transformer layer on top of the
models. Similarly as above, we only trained the
transformer and the adapter parameters and kept
the language model parameters frozen.

5 Experimental Setup

5.1 Data

We have used three different downstream tasks and
for each of the tasks we have different data sources.
This section will provide an overview of the data
sources across the tasks.

Word Retrieval For the word retrieval task we
used German-English (Koehn et al., 2005) and
Bengali-English (Hasan et al., 2020) parallel data,
and we have followed all the procedures proposed
in (Cao et al., 2020). To generate 1-to-1 word align-
ments we used FastAlign (Dyer et al., 2013).

BLI For the bilingual lexicon induction task we
have used MUSE (Lample et al., 2018) train and
test dictionaries. As monolingual data for anchor
generation needed for VecMap and RCSLS we used
WikiDumps1 for all the three languages. To extract
sentences we have used WikiExtractor2. We gener-
ated anchors for the most frequent 50k words.

XNLI For the XNLI task, we have used English
train, validation and test sets, the German test set
from (Conneau et al., 2018) and the test data pro-
posed in (Bhattacharjee et al., 2021) for Bengali.

1https://dumps.wikimedia.org/
2https://github.com/attardi/

wikiextractor

5.2 Compared Language Models
We compared five multilingual and seven monolin-
gual language models of different types and sizes.
We used multilingual models for all three tasks,
however, we tested monolingual models only for
BLI. Since BLI is a word-level task not a trans-
fer learning task we wanted to know how much
difference different types of monolingual models
can make compared to the multilingual models.
We have tried monolingual models also for the
word retrieval task but their performance was not
satisfactory. For this reason, we have excluded
monolingual models for the other two tasks (word
retrieval and XNLI) to save resources, costs and
time. All the used language model names as can
be found on Huggingface Hub, their architectures,
vocabulary size and other information are pro-
vided in the appendix in Table 5. Our goal was
to select a diverse set of models in terms of ar-
chitecture (mBERT follows BERT (Devlin et al.,
2019), indic-bert (Kakwani et al., 2020) follows
ALBERT (Lan et al., 2020) architecture), train-
ing data (mBERT uses Wikipedia, XLM-RoBERTa
(Conneau et al., 2020) uses CommonCrawl), pre-
training tasks (mBERT uses the masked language
modeling (MLM) and next sentence prediction
tasks, indic-bert uses MLM and sentence order
prediction task), number of parameters (indic-bert
has only 33M parameters and XLM-RoBERTa has
270M parameters) and vocabulary sizes (mBERT
and dBERT has 119k tokens in vocabulary whereas
XLM-RoBERTa has 250k tokens). In this work, we
want to establish a clear and concise comparison
between these language models.

5.3 Pipelines
We have several pipelines and setups for the model
alignments and each of the three tasks. We briefly
describe these next. For all of our experiments we
have used NVIDIA TITAN X GPU with 12 GB
RAM.

Alignment Following Cao et al. (2020) we fine-
tuned a single multilingual model for both test lan-
guage pairs (de-en and bn-en) by simultaneously
using German-English and Bengali-English paral-
lel sentences in case of both FAO and MAO. Since
indic-bert does not support the German language,
it was fine-tuned only with Bengali-English sen-
tence pairs. In case of FAO we used 250K parallel
sentences pairs for each of the language pairs as
in (Cao et al., 2020), while for MAO we used only
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25K, except for indic-bert which resulted the best
performance with only 7K pairs. We selected these
parameters by training the models on different num-
bers of sentences and testing it on the validation
set. We fine-tuned the multilingual models for one
epoch following Cao et al. (2020). We report the
rest of the used hyperparameters in Table 6 of the
appendix. Additionally, we note that adapters could
only be used for three multilingual models because
at the time of implementation the used Adapter-
Hub toolkit (Pfeiffer et al., 2020) supported only
mBERT, dBERT and XLM-RoBERTa but not indic-
bert.

Pipelines for Word Retrieval In the word re-
trieval task as baseline we use language models
without any fine-tuning. In the second setup, we
fine-tune the multilingual language models using
FAO and use it for the word retrieval task. In the
third setup, we train our proposed linear and trans-
former layer with or without adapters.

Pipelines for BLI As baseline for BLI we use
language models without any fine-tuning to gener-
ate anchors for mapping. In the second and third
setups we fine-tune the multilingual language mod-
els using either FAO or MAO and use it to gen-
erate anchors and perform mapping. We map the
anchors using two alignment techniques VecMap
(Artetxe et al., 2016) or RCSLS (Liu et al., 2019).
We perform the mapping on two language pairs
Bengali-English and German-English. We use the
mapping for XNLI task as well as described below.

Pipelines for XNLI As baseline for XNLI task
we fine-tune the language model and a dedicated
classifier layer on the English XNLI data and test
them on German and Bengali data. In the second
setup we fine-tune the language models using FAO
first and then use this fine-tuned model in the same
way as the baseline, i.e., we add an additional XNLI
specific classification layer. In the third setup we
train our proposed models with MAO by adding
the trained alignment layers optionally together
with adapters between the language model and the
classifier layer. We only train the core LM and clas-
sifier on XNLI but keep the alignment layer and
the adapter frozen. In the last setup, we use map-
ping matrices built by either VecMap or RCSLS as
described above and initialize a linear layer added
between the language model and the classifier layer.
We do not train this linear layer when training on
XNLI. We trained our models for three epochs with

Models de-en bn-en Minutes
mBERT-cased 28.45 14.55 -
mBERT-cased + FAO 39.64 43.00 500.0
mBERT-cased + lin + MAO 45.84 26.93 29.0
mBERT-cased + trans + MAO 46.73 24.27 30.5
mBERT-cased + ada + transformer + MAO 48.02 24.55 32.5
dBERT 20.71 9.71 -
dBERT + FAO 35.28 39.72 293.0
dBERT + linear + MAO 29.50 14.41 17.5
dBERT + transformer + MAO 32.21 12.58 19.0
dBERT + adapter + transformer + MAO 31.48 12.60 19.5
XLM-RoBERTa 4.33 6.40 -
XLM-RoBERTa + FAO 7.58 6.40 1893.0
XLM-RoBERTa + transformer + MAO 22.54 14.41 31.0
indic-bert - 12.45 -
indic-bert + FAO - 29.22 221.0
indic-bert + linear + MAO - 15.36 4.0
indic-bert + transformer + MAO - 13.28 4.3

Table 1: Accuracy for word retrieval task for different
multilingual models for bn-en and de-en. Here bn =
Bengali, de = German, en = English, trans = transformer,
ada = adapter. Minutes column indicated the number
of minutes it takes to train the model

batch size 8 or 4 (when trained with mBERT or
XLM-RoBERTa) and used 1e−6 as learning rate.

6 Results & Discussion

We show results for our word retrieval task in Ta-
ble 1. Results for BLI task is shown in Table 2,
while Table 3 shows the results for the XNLI task.
The results shown in these tables are the outcome
of a single model per setup. We did not average the
results across runs or seeds in order to reduce the
required computational resources. Next we discuss
the comparison of various aspects of the selected
models.

Big vs. Small Models From all the results across
all the task and languages we observe that big mod-
els outperformed smaller models often by a sig-
nificant margin. In Table 3 for the XNLI task the
zero-shot accuracy score on de test set for mBERT
is 66.79, for XLM-RoBERTa it is 71.74 whereas
for dBERT is 61.74 (dBERT < mBERT < XLM-
RoBERTa). In Table 1 for Word Retrieval task
accuracy score in the de-en direction for mBERT
and dBERT is 28.45 and 20.71 respectively, even
after model fine-tuning the scores are 39.64 and
35.28 respectively. We see this pattern for the BLI
task as well, in Table 2. We should always choose
big models over smaller models when we have
available resources (computational, data and time).

Multilingual vs. Monolingual Models From
the results of the BLI task in Table 2 it is clear
that multilingual models showed far superior per-
formance than monolingual models. In Table 2 the

69



Models de-en bn-en
p@1 p@5 p@1 p@5

mBERT-uncased + vec 56.84 71.50 12.33 26.54
mBERT-uncased + rcs 59.79 74.37 12.26 27.27
mBERT-cased + vec 50.95 62.29 7.43 19.43
mBERT-cased + rcs 51.54 67.47 8.71 20.50
mBERT-cased + FAO + vec 57.29 57.58 15.08 29.89
mBERT-cased + FAO + rcs 57.58 70.91 16.68 32.23
mBERT-cased + lin + MAO + vec 50.81 63.69 9.04 20.24
mBERT-cased + lin + MAO + rcs 51.47 64.43 9.45 21.47
mBERT-cased + trans + MAO + vec 51.47 62.15 7.57 19.30
mBERT-cased + trans + MAO + rcs 52.06 63.62 8.84 20.91
mBERT-cased + ada + trans + MAO + vec 50.88 62.51 7.90 18.29
mBERT-cased + ada + trans + MAO + rcs 51.25 63.62 8.51 19.97
dBERT + vec 42.70 49.70 4.15 9.98
dBERT + rcs 43.74 52.28 5.16 13.20
dBERT + FAO + vec 53.46 66.12 11.39 25.06
dBERT + FAO + rcs 53.60 66.86 13.13 27.88
dBERT + lin + MAO + vec 43.37 52.87 4.69 10.52
dBERT + lin + MAO + rcs 43.88 53.97 5.49 11.79
dBERT + trans + MAO + vec 43.00 50.44 4.15 10.18
dBERT + trans + MAO + RCSLS 44.10 52.79 5.42 12.60
dBERT + ada + trans + MAO + vec 43.22 50.14 4.75 10.53
dBERT + ada + trans + MAO + rcs 44.25 52.65 5.63 11.99
XLM-RoBERTa + vec 48.82 60.60 10.32 20.17
XLM-RoBERTa + rcs 58.54 73.49 13.67 28.21
XLM-RoBERTa + FAO + vec 50.88 61.63 6.09 12.13
XLM-RoBERTa + FAO + rcs 54.93 68.85 12.33 24.46
XLM-RoBERTa + trans + MAO + vec 50.88 61.63 14.00 29.42
XLM-RoBERTa + trans + MAO + rcs 59.35 75.03 16.28 32.90
indic-bert + vec - - 12.13 21.24
indic-bert + rcs - - 12.33 23.99
indic-bert + FAO + vec - - 13.73 23.72
indic-bert + FAO + rcs - - 15.41 26.27
indic-bert + lin + MAO + vec - - 13.60 23.65
indic-bert + lin + MAO + rcs - - 14.14 24.59
indic-bert + trans + MAO + vec - - 11.59 21.17
indic-bert + trans + MAO + rcs - - 12.53 23.72
De BERT + En BERT + vec 43.00 62.44 - -
De BERT + En BERT + rcs 44.77 63.91 - -
De dBERT + En dBERT + vec 25.47 43.96 - -
De dBERT + En dBERT + rcs 27.46 46.53 - -
De Electra + En Electra + vec 1.62 4.12 - -
De Electra + En Electra + rcs 3.24 9.71 - -
Bn BERT + En BERT + vec - - 5.16 11.86
Bn BERT + En BERT + rcs - - 5.29 12.66

Table 2: P@1 and P@5 scores in BLI task for different
models in de-en and bn-en direction. For de-en and bn-
en direction, the coverage for MUSE test set is 90.53%
and 99.73% respectively. Coverage is the percentage of
word pairs where both source and target word embed-
dings are present in our embeddings matrices. Here bn =
Bengali, de = german, en = english trans = transformer,
ada = adapter, vec = VecMap, rcs = RCSLS.

P@1 score for mBERT-cased using VecMap map-
ping approach in de-en direction is 50.95 but when
we used monolingual BERT for both the German
and English language the P@1 score decreased
to 43.00. We see this performance decrement is-
sue for monolingual models in the bn-en direction
and for other models (dBERT) as well in Table 2.
Fine-tuned mBERT-cased accompanied by RCSLS
outperformed all the models in the de-en and bn-en
direction. Monolingual models exhibited signifi-
cantly poor performance for this word level BLI
task, which we did not anticipate.

Models en de bn

mBERT 79.42 66.79 55.21
mBERT + align-matrix - 67.60 55.04
mBERT + FAO 78.48 68.76 60.92
mBERT + linear + MAO 79.52 67.72 55.51
mBERT + transformer + MAO 80.04 68.04 55.01
mBERT + adapter + transformer + MAO 80.14 69.30 54.69
dBERT 75.51 61.74 50.84
dBERT + align-matrix - 62.44 49.74
dBERT + FAO 75.11 62.51 53.77
dBERT + linear + MAO 75.77 62.81 53.37
dBERT + transformer + MAO 74.89 62.40 52.10
dBERT + adapter + transformer + MAO 76.43 65.01 50.90
XLM-RoBERTa 80.18 71.74 67.94
XLM-RoBERTa + FAO 78.88 70.28 66.47
XLM-RoBERTa + transformer + MAO 80.52 73.05 68.14
indic-bert 75.93 - 65.59
indic-bert + align-matrix - - 67.58
indic-bert + FAO 76.11 - 59.80
indic-bert + linear + MAO 75.57 - 65.97
indic-bert + transformer + MAO 75.81 - 66.85

Table 3: Accuracy scores for XNLI Task for different
multilingual models for three different languages en,
de and bn. Here bn = Bengali, de = German, en =
English, trans = transformer, ada = adapter, align-matrix
= mapping matrix generated in BLI task using RCSLS
for the corresponding language model and language.

Effect of Vocabulary Size and Language Sup-
port On the sentence level task of XNLI shown
in Table 3, indic-bert outperformed mBERT on bn
test set in terms of accuracy score by a large margin
(indic-bert achieved accuracy score 65.59 whereas
mBERT-cased achieved 55.21), it even performed
on par with XLM-RoBERTa on bn (accuracy score
for XLM-RoBERTa is 67.94). For low resource
languages, big multilingual models mostly split the
words into multiple subwords because of the small
number of tokens in the vocabulary for that lan-
guage. But due to parameter sharing and positive
interference of high resource languages on the low
resource languages (Wang et al., 2020) bigger mul-
tilingual models accomplish good performance in
different tasks. indic-bert which is trained on 12 In-
dian subcontinent languages and English has 200k
tokens in its vocabulary (though it is smaller than
XLM-RoBERTa which has 250K tokens from 100
languages and mBERT has 119K tokens from 104
languages) so it does not split most of the Bengali
words into subwords and can capture the context of
the Bengali sentence on par with XLM-RoBERTa.
Increasing the number of languages and vocabulary
does not always lead to better performance.

VecMap vs. RCSLS In Table 2 for all models we
observe that RCSLS mapping always outperformed
VecMap for BLI task. P@1 scores in de-en and bn-
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en direction for mBERT-cased using VecMap are
50.95 and 7.43 respectively while on the contrary
for RCSLS P@1 scores are 51.94 and 8.71 respec-
tively. We have also used the align-matrix gener-
ated for each of the language models and languages
during the zero-shot testing in XNLI task (please
refer to Table 3). We have seen that for mBERT,
dBERT and XLM-RoBERTa scores increased by a
small margin only for the de test set whereas for bn
the scores decreased. However, for indic-bert when
align-matrix was used the scores increased for bn.
VecMap solves a least-square regression problem
to learn a mapping. However, RCSLS proposes
a unified approach where they directly optimize a
retrieval criterion (Joulin et al., 2018). Therefore,
RCSLS performs better than VecMap.

Model Fine-tuning Fine-tuning a multilingual
model with FAO strengthen its contextualized em-
beddings quality. Results shown in Table 1, Ta-
ble 2 and Table 3 indicate that model fine-tuning
significantly improved the performance across all
tasks and models. In Table 1 accuracy scores for
fine-tuned mBERT in word retrieval task for de-en
and bn-en direction are 39.64 and 43.00 respec-
tively over the vanilla mBERT’s accuracy scores
which are 28.45 and 14.55 respectively. In Table 3,
on XNLI de and bn test set fine-tuned mBERT
achieved accuracy scores 68.76 and 60.92 respec-
tively whereas vanilla mBERT achieved 66.79 and
55.21 respectively. There are some exceptions in
the case of XNLI task, where fine-tuned XLM-
RoBERTa and indic-bert’s performance decreased.
Due to constraints in computing resources, we had
to fine-tune XLM-RoBERTa with a small batch
size; for this reason the performance decreased for
XLM-RoBERTa. We have used the same learning
rate for all the models during fine-tuning the lan-
guage model and classifier training for the XNLI
task. That might affect fine-tuned indic-bert’s per-
formance. We believe rigorous hyperparameter
tuning for model fine-tuning and training would
improve the model’s performance significantly but
would lead to higher costs as well.

Proposed Alignment Approach From the accu-
racy scores reported in Table 1, our proposed align-
ment approach outperformed fine-tuned mBERT
in the de-en direction and XLM-RoBERTa in bn-
en direction for word retrieval task. Our align-
ment approach takes significantly less time than
model fine-tuning (see Minutes column of Table 1).

bn-en

Models trilingual bilingual

mBERT-cased + FAO 43.00 40.80
mBERT-cased + lin + MAO 26.93 27.22
mBERT-cased + trans + MAO 24.27 24.42
mBERT-cased + ada + trans + MAO 24.55 24.27

de-en

Models trilingual bilingual

mBERT-cased + FAO 39.64 40.35
mBERT-cased + lin + MA0 45.84 45.47
mBERT-cased + trans + MA0 47.73 46.80
mBERT-cased + ada + trans + MAO 48.02 48.04

Table 4: Accuracy scores for word retrieval task in bilin-
guality vs. trilinguality study using mBERT-cased. Here
bn = bengali, de = german, en = english trans = trans-
former, ada = adapter, lin = linear, bn-en and de-en
= following scores are reported for only bn-en and de-
en directions respectively, trilingual = the models are
trained with both bn-en and de-en parallel data, bilin-
gual = the models are trained with only bn-en parallel
data in case of bn-en direction and similarly for de-en
direction de-en parallel data is used for all model train-
ing.

This simple and smaller approach outperformed
fine-tuned mBERT, dBERT on the German test set
and indic-bert in the Bengali test set in the XNLI
task. For the BLI task our proposed approach with
XLM-RoBERTa and RCSLS outperformed all the
other models for both de-en and bn-en directions
by achieving P@5 scores 75.03 and 32.90 for de-en
and bn-en directions respectively.

Bilinguality vs. Trilinguality We wanted to
study the effect of training our proposed ap-
proaches using only a single language pair
(German-English or Bengali-English) using FAO
and MAO instead of using both of the language
pairs simultaneously. In Table 4, trilingual column
indicates the accuracy scores when the model is
trained on both the German-English and Bengali-
English language pairs simultaneously and the
bilingual column implies the scores when the
model is trained with only one of the language pairs.
From Table 4 we observe that for the bn-en direc-
tion when we fine-tuned the model using FAO only
with Bengali-English data the scores decreased by
a small margin, the score was 43.00 (reported in
the trilingual column) but it dropped to 40.80 (re-
ported in the bilingual column). Whereas for the
de-en direction when we fine-tuned the model with
only German-English data the opposite occurred,
the accuracy score slightly increased from 39.64 to
40.35. Hence, Bengali has minimal negative inter-
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ference on German and German has minimal posi-
tive interference on Bengali in the fine-tuning pro-
cess. However, in case of our proposed approach
(MAO) trained with only German-English data, per-
formance on the de-en direction of the linear and
transformer model decreased. Only the score of
the adapter method increased. Nevertheless, these
increments and decrements were by a tiny margin.
While on the contrary, when we trained the method
with Bengali-English data the performance for the
bn-en direction decreased for the adapter method
but increased for the other two methods. Therefore,
it is unclear whether bilinguality or trilinguality is
advantageous over each other in the case of our
proposed method.

7 Conclusion

In this paper we have compared currently popu-
lar alignment techniques using multilingual and
monolingual models of various architectures from
different aspects by utilizing two word level tasks
(BLI and word retrieval) and one sentence level task
XNLI with one low resource (Bengali-English) and
one high resource language pair (German-English).
We also have proposed a time, data and parame-
ter efficient alignment technique. Our experimen-
tal results demonstrate that multilinguality always
lead to better performance in cross-lingual trans-
fer tasks. When the resources (computational and
data) are available, bigger models are always pre-
ferred over smaller models, but when the resources
are not accessible, smaller but specialized multi-
lingual models should be chosen, since they are
capable of performing similarly to or better than
the large multilingual models on the languages the
model is specialized for. A large set of supported
languages and a large vocabulary does not always
assist in all types of tasks in contrast to models
specifically trained for a limited number of target
languages. Large language models are sensitive re-
garding batch size and learning rate. Finally, high
resource languages and large multilingual models
perform well with our proposed approach. In fu-
ture work we aim to develop alignment techniques
capable of performing well even on low resource
unseen languages.

Limitations

In case of monolingual language models, the per-
formance of our proposed approach is significantly
worse compared to multilingual models. The repre-

sentations produced by the language specific mono-
lingual models are independent from each other,
while in case multilingual models they are to some
extent aligned. Using the representations from
monolingual models and the simple objective func-
tion of our approach, it is more difficult to obtain
the same quality alignment as in case of multilin-
gual models which needs further development.
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Jindřich Libovický, Rudolf Rosa, and Alexander Fraser.
2020. On the language neutrality of pre-trained mul-
tilingual representations. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 1663–1674, Online. Association for Computa-
tional Linguistics.

Qianchu Liu, Diana McCarthy, Ivan Vulić, and Anna Ko-
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A Appendix

For our three different tasks, we have utilized seven
monolingual models and five multilingual models.
Information on the language models, including the
number of parameters, model type, supported lan-
guages and vocabulary size is reported in Table 5.
Hyperparameters utilized for each experiment in
our word retrieval task are mentioned in Table 6.
Table 4 contains the results of our bilingual and
trilingual training setups.
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Model Param. Vocab. Type Languages
mBERT-uncased 168M 105K BERT 104 languages
mBERT-cased 179M 119K BERT 104 languages
dBERT 134M 119K Distil BERT 104 languages
XLM-RoBERTa 270M 250K BERT 100 languages
indic-bert 33M 200K ALBERT 13 languages
bert-base-cased - - BERT English
distilbert-base-cased - - Distil BERT English
google/electra-base-generator - - Electra English
dbmdz/bert-base-german-cased - - BERT German
distilbert-base-german-cased - - Distil BERT German
dbmdz/electra-base-german-europeana-cased-discriminator - - Electra German
sagorsarker/bangla-bert-base - - BERT Bengali

Table 5: Language models used for our experiments.

Models
Batch
Size

Learning
rate

Attention
Head

Reduction
Factor

mBERT+FAO 4 5e−5 - -
mBERT+lin+MAO 16 1e−5 - -
mBERT+transr+MAO 32 5e−8 8 -
mBERT+ada +trans +MAO 32 1e−7 8 8
dBERT+FAO 4 5e−5 - -
dBERT+lin +MAO 32 1e−5 - -
dBERT+trans +MAO 32 1e−7 8 -
dBERT+ ada + trans+MAO 32 1e−7 8 8
XLM-RoBERTa+FAO 1 5e−5 - -
XLM-RoBERTa+trans+MAO 32 5e−5 8 -
indic-bert+FAO 4 5e−5 - -
indic-bert+lin+MAO 32 5e−5 - -
indic-bert+trans+MAO 32 1e−8 8 -

Table 6: Hyperparameters used for different models for the word retrieval task. Here (-) indicates not applicable for
this model, trans = transformer, ada = adapter, lin = linear.

75


