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Abstract

Cross-Lingual Event Detection (CLED) mod-
els are capable of performing the Event De-
tection (ED) task in multiple languages. Such
models are trained using data from a source
language and then evaluated on data from a dis-
tinct farget language. Training is usually per-
formed in the standard supervised setting with
labeled data available in the source language.
The Few-Shot Learning (FSL) paradigm is yet
to be explored for CLED despite its inherent
advantage of allowing models to better gener-
alize to unseen event types. As such, in this
work we study the CLED task under an FSL
setting. Our contribution is threefold: first, we
introduce a novel FSL classification method
based on Optimal Transport (OT); second, we
present a novel regularization term to incorpo-
rate the global distance between the support and
query sets; and third, we adapt our approach
to the cross-lingual setting by exploiting the
alignment between source and target data. Our
experiments on three, syntactically-different,
target languages show the applicability of our
approach and its effectiveness at improving the
cross-lingual performance of few-shot models
for event detection.

1 Introduction

Event Detection (ED) is a significant sub-task
within the larger task of Information Extraction
(IE) in Natural Language Processing (NLP). Its
core purpose is to identify the words, or phrases,
that most clearly express the occurrence of an event,
known as event triggers, and to correctly categorize
them into a discrete set of classes. For instance, in
the sentence:

Frank purchased his dream house yesterday.

the word “purchased” should be identi-
fied by an ED system as the trigger of a
Transaction:Transfer-Ownership

event type'. Event detection is a highly active

"Event type example taken from ACEO5 dataset.
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research area which has been lately dominated by
deep-learning-based approaches (Sha et al., 2018;
Wadden et al., 2019; Zhang et al., 2019a; Yang
et al., 2019a; Nguyen and Nguyen, 2019; Zhang
et al., 2020; Liu et al., 2020; Lu et al., 2021). Most
of these works use the standard supervised learning
paradigm in which lots of labeled data is required
during training. However, a significant limitation
of models trained in this manner is their inability
to properly generalize to new event types that were
unobserved during training (Lai et al., 2020b).

Few-Shot Learning: In contrast to the supervised
approach, Few-Shot Learning (FSL) proposes a
training setting in which a model must quickly
learn new concepts from just a few examples, simi-
lar to how humans can learn to detect and identify
new objects after having observed only a couple
of instances. During an FSL training iteration, a
model is given a support set and a query set, each
of which contains only a handful of examples for
a set of classes. Then, the model is trained to pre-
dict the classes for the query samples based on the
labeled support samples. Under these constrained
training settings, supervised training easily results
in model overfitting due to the limited availability
of training data. Furthermore, in FSL, a model is
evaluated on its ability to generalize to new, un-
observed types. To achieve this, during testing an
FSL model is provided with new support and query
sets whose samples belong to entirely new classes
never observed during training.

Typical FSL approaches consist of obtain-
ing a vector representation for each sample
and then performing classification based on the
distance between such vectors, e.g., Matching
Networks (Vinyals et al., 2016), Relation Net-
works (Sung et al., 2018), and Prototypical Net-
works (Snell et al., 2017). The key differences
between these approaches often come down to the
way the sample representations are generated, and
how the distance between such representations is
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determined.

FSL training allows a model to easily extend to

new classes as it only needs to see a few labeled ex-
amples in order to successfully classify them. FSL
has been applied successfully for many tasks. Re-
cently, there have been several efforts that explore
event detection under a few-shot learning setting
(FSLED) (Lai et al., 2020a,b; Deng et al., 2020;
Lai et al., 2021a,b; Cong et al., 2021; Shen et al.,
2021; Chen et al., 2021).
Cross-Lingual Event Detection: Cross-Lingual
Learning (CLL) is a paradigm that aims at trans-
ferring the knowledge from one language to an-
other (Pikuliak et al., 2021). CLL can help over-
come the lack of data availability that plagues many
languages and allow for the creation of NLP-based
tools that can benefit their communities.

As such, Cross-lingual Event Detection (CLED)

aims at detecting and classifying event triggers with
the added complexity of operating on two sepa-
rate languages. These two languages are referred
to as source and rarget, respectively. In standard
zero-shot training, a CLED model is trained us-
ing labeled data belonging to the source language
exclusively. Then, at testing time, data from the
target language is used to evaluate the model’s per-
formance (M’hamdi et al., 2019; Majewska et al.,
2021; Nguyen et al., 2021; Guzman-Nateras et al.,
2022).
Contributions: A proper effort on CLED under
FSL conditions has yet to be explored despite the
potential advantages it could contribute to cross-
lingual models. Hence, we recognize this opportu-
nity and propose the novel Few-Shot Cross-Lingual
Event Detection (FSCLED) task to integrate these
two settings. We consider the following as our
main contributions:

* To the best of our knowledge, this is the first
effort at integrating the few-shot and cross-
lingual settings for the event detection task.
To provide foundation for future research, we
first evaluate the performance of representa-
tive FSL methods (Vinyals et al., 2016; Snell
et al., 2017; Sung et al., 2018) in this task.

We propose a novel optimal-transport-based
method for FSL classification that leverages
the optimal alignment between the support
and query samples.

We address a limitation of traditional FSL
methods by incorporating a novel regulariza-
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tion term that considers the global distance
between the support and query sets.

* To adapt our approach to the cross-lingual
setting, we promote language-invariant repre-
sentation learning by integrating the distance
between source and target data into our model.

* Our experiments on three diverse target
languages (Arabic, Chinese, and Spanish)
show that our approach improves the best-
performing FSL methods in the new FSCLED
setting and that our proposed training signals
can be seamlessly incorporated with other
FSL models to improve their performance on
the challenging FSCLED task.

The rest of the paper is organized as follows:
Section 2 provides a formal definition for FSCLED
task, Section 3 describes the details our proposed
approach, Section 4 presents the results of our ex-
periments, and finally, we present our conclusions
in Section 6.

2 Problem Definition
2.1 Few-shot Event Detection

We follow the same problem formulation as in prior
work for few-shot ED (Lai et al., 2020b; Deng et al.,
2020; Lai et al., 2021a). In particular, we cast event
detection as a token classification task in which a
model must learn to correctly classify the trigger
tokens. In a standard FSL setting, an iteration in-
volves a support set S and a query set Q that cover
sample sentences for IV distinct classes; each class
is represented by K € [1, 10] examples. Addition-
ally, for event detection, S and Q are extended with
an additional negative, or non-event, type NULL
(also with K examples) (Lai et al., 2021a). In this
manner, given an input sentence along with an trig-
ger candidate, an FSL model for ED should be able
to predict whether the candidate is an event trigger
as well as which event type is evoked by the trigger
(if any).

Hence, the formal definition of the FSL task is
as follows. The S and Q sets are defined by:

8§ ={(s!V. 64}
0= {(Sg(Q)’tg(Q),qu(Q))}

where i € [1,K]? j € [0,N] (4 0 is
used for the non-event type), and a single sample

2We use the same number of samples for each class in both
the support and query sets.
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contains a sentence S
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(Sg('), tg(-)’ ylj(')) , a trig-

ger candidate word t? in s
type yf- O As per FSL requirements, the label set
used when training the model must be disjoint from
those used when evaluating the model to properly
assess the model’s ability to generalize to unob-

served classes.

2.2 Few-shot Cross-lingual Event Detection

Cross-Lingual Learning (CLL) methods (Pikuliak
et al., 2021) emerged from the need to create NLP
models for low-resource target languages that lack
the required labeled data to perform supervised
learning. The core idea is to train models using
available labeled data from a high-resource source
language with techniques that allow them to learn
task-specific language-invariant features. The mod-
els are then evaluated on the desired target language
without access to target-language labeled data dur-
ing training. This setting is known as zero-shot
cross-lingual transfer learning>.

As such in the zero-shot cross-lingual ED task,
the labeled samples used during training Dy,.4;,, and
development D, belong to the source language
while the ones used for testing D,.s; correspond to
the target languages (M’hamdi et al., 2019; Majew-
ska et al., 2021).

In this work, we combine the aforementioned
zero-shot approach to cross-lingual evaluation with
the added intricacy of the standard few-shot setting.
During training, the models are presented with a
support set S and a query set Q°" that belong to
the source language. Then, at testing time, the sup-
port set St and query set Q"9 are taken from the
target language for evaluation. Furthermore, given
the FSL setting, the label set used during training
is disjoint from the label set for development and
testing. We designate this novel task as Few-Shot
Cross-Lingual Event Detection (FSCLED).

3 Model

As done in prior FSL models for ED (Lai et al.,
2021a), our model for FSCLED involves two main
components: an encoder F and a classifier C.

3.1 Encoder

The encoder’s purpose is to obtain a representation
vector vi- ) for each sample in the support S and

3Not to be confused with standard zero-shot learning where
zero data for a new class is used by models to perform predic-
tion.
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query Q sets:
(O E(s:(') tj(')) c R4

2

where d is the vector size, and - can be either S or
Q.

Following recent work on CLED, we lever-
age the pretrained multilingual language model
(mLM) mBERT (Devlin et al., 2019) for our
encoder to take advantage of its ability to in-
duce language-invariant representations (Majewska
et al., 2021). Additionally, we stack a Multi-Layer
Perceptron (MLP) layer on top of the transformer
outputs to create our multilingual encoder, called
BERTMLP (Yang et al., 2019b). Then, we em-
t! ) generated by
J()

i .

ploy the vector representation for
BERTMLP to serve as the representation v

3.2 Classifier

For convenience, let v* and v? be the representa-
tion vectors for the sample s € S and ¢ € Q, and
V() and V(9 be the sets of representation vec-
tors for all samples in the support and query sets,
respectively.

The classifier C aims to predict a label y¢ for
each instance ¢ in the query set based on its repre-
sentation v? and the representations of the samples
in the support set V' (S):

y? = C(v9, V)
Given the multilingual representations vf ('), a
feasible approach is to employ existing FSL models
(e.g., Matching, Relation, or Prototypical networks)
to perform classification in FSCLED. The models
can then be trained using the standard cross-entropy
loss.

3.2.1 Optimal Transport

We recognize, nonetheless, a potential issue with
traditional FSL models in that they only consider
local distances between individual pairs of samples
in the support and query sets. In the case of Proto-
typical Networks (Snell et al., 2017), for example,
the distance is between a query sample and a class
prototype. Hence, if the overall global distance
between the support and query sets is large, a small
difference between the distances of two individual
samples becomes less reliable to determine the la-
bel assignments. In turn, we argue that the global
distances between S and O should be minimized
to improve the reliability of the distances between
individual pairs for accurate FSCLED.



To this end, we propose utilizing Optimal Trans-
port (OT) (Villani, 2008) to estimate the distance
between the support S and query Q sets for FS-
CLED. In broad terms, OT aims to find the most
cost-effective transformation between two discrete
probability distributions. Optimal transport em-
ploys a cost function to compute the cost of trans-
forming data points from one distribution to the
other. If a distance function (Euclidean, Cosine,
etc.) is used as such cost function, the obtained min-
imum cost is known as the Wasserstein distance.
Formally, OT solves the following optimization
problem:

min ZZ m(x, 2) ,Z)

mell(@2) 123 ez

sit. x ~ P(z)and z ~ P(z)

™ (x, z) =

where P(z) and P(z) are probability distributions
for the X and Z domains, and D is a distance-
based cost function for mapping X to Z, D(z, 2) :
X x Z — Ry. Finally, 7*(x, z) is the optimal
joint distribution over the set of all joint distribu-
tions [[(z, z) (i.e., the optimal transformation be-
tween Z and X). The described OT optimization
problem is, however, intractable as it requires op-
timizing over the infinite set [ [(z, z). In practice,
we instead solve an entropy-based relaxation of
the discrete OT problem using the Sinkhorn algo-
rithm (Cuturi, 2013).

3.2.2 Few-Shot Classification via OT

To adapt FSL classification into an OT formulation
we consider the support S and query Q sets as the
two domains to be transformed. Each sample in
S and Q represents a data point in the correspond-
ing distribution. The probability distributions P(S)
and P(Q) are estimated using an event-presence
module F'. In our work, F'is a feed-forward neural
network (FFNN) with a single output and sigmoid
activation that scores the likelihood that a trigger
candidate word is actually an event trigger. F' re-
ceives as input the vector representation of a trigger
v from either S or Q, and outputs a scalar in the
range [0-1]. Then, the probability distributions for
S and Q are obtained by computing the Softmax
over F’s outputs for the samples in each set:

= Softmax(F(V9)))
= Softmax(F(V(9)))

To supervise the event-presence module F', we

19

include the cross-entropy loss for event identifica-
tion into the overall loss function:

ﬁident =

D it o(F()) + (1 - %) -

seS

o(l — F(v®))

where ¢° is the golden binary variable to indicate if
s corresponds to an event trigger or not, and o is
the sigmoid function.

In our model, the distance D(q, s) between a
sample in ¢ € Q and a sample s € S is based on
the Euclidean distance between their representation
vectors v*® and v¥:

D(q7 3) =

>t vt

1€d

)2

Once the OT algorithm converges, or the maxi-
mum number of iterations is reached, the obtained
optimal alignment matrix 7* is a squared matrix
with dimensions (N + 1)« K) x ((N + 1) * K)
where each entry 7, . represents the alignment
score between the r-th query sample and c-th sup-
port sample.

The conversion from matrix index (r, ¢) to event
type (j) and sample number (¢) can be computed
in a straightforward manner as all samples from
the same class (event type) are contiguous: j =
r//K,i = r % K where // and % are the integer
division and modulo operators.

To perform sample classification and train our
FSCLED model, we first use the optimal alignment
matrix 7 to compute a likelihood vector « for each
query sample (i.e., the r-th) by performing class-
based pooling with respect to the V + 1 classes:

>

1€[0,K—1]

J
o =

*
T, (j*K) +i

where j € [0, N]. As such, the resulting «, vec-
tors have N + 1 dimensions. And the complete o
matrix has a (N + 1) « K) x (N + 1) size. We
then apply a Softmax operation over «,. to obtain
a class distribution P, for the r-th query sample:
P, = Softmax(a.). P, will then be used for train-
ing and inference in our model. In particular, we
use the negative log-likelihood loss as the main
term of our overall training loss:

class = Z P yr
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Figure 1: OT-based classification procedure example for a 3-way, 3-shot setting.

where y,. is the golden class for the r-th query exam-
ple. Figure 1 shows a visualization of the described
procedure for a 3-way, 3-shot setting. As such, a
key distinction is that the class distribution P, in
our FSL method is obtained from the support-query
alignment scores 7* in optimal transport. This is
in contrast to previous FSL models where the class
distributions tend to be computed directly from
sample representations.

3.3 Support-Query Distance

In addition to our optimal-transport-based FSL clas-
sifier, we propose computing the Wasserstein dis-
tance between S and Q and including it into the
loss function as a regularization term to minimize
the overall distance between the support and query
sets for reliable predictions. We obtain the afore-
mentioned Wasserstein distance using the optimal
alignment matrix 7*:

ﬁdist = Z Z W:,c D<Q7 3)

SES qeQ

where 7 and c¢ are the matrix indexes for ¢ and s,
respectively.

3.4 Cross-Lingual Distance

To adapt our approach to the cross-lingual setting,
we aim to encourage language-invariant represen-
tation learning by regularizing our model so the
representation vectors of samples in the source and
target languages are closer to each other in the em-
bedding space.

Following the work by Guzman-Nateras et al.
(2022), which leveraged OT to successfully align
samples taken the source and target languages to
improve adversarial language adaptation, we pro-
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pose to further use OT to estimate the distance be-
tween samples in the source and target languages so
that it can be included in the overall loss function as
an additional regularization term for minimization.

To this end, given the unavailability of labeled
data in the target language, we make use of unla-
beled data — often readily available for most lan-
guages — instead. For convenience, let R and T
represent the source-language and target-language
data set respectively. In any given FSL training iter-
ation, the support S and the query Q sets comprise
the R set for the source language. To constitute the
set representing the target language 7, we collect
enough unlabeled samples to match the size of R.

Thus, similarly to the OT formulation described
in section 3.2.2 that computes the optimal align-
ment between two domains S and Q, in this context
we consider the source- and target-language data
set R and 7 as the domains to be transformed.
Subsequently, we employ our BERTMLP multilin-
gual encoder to obtain representation vectors for
the samples in both R and 7 that will serve as the
inputs for the OT algorithm.

It is important to note that, due to the unavailabil-
ity of the class information for the target-language
samples T for training, it is less reliable to estimate
the probability distribution P(7") for the target lan-
guage using the event-presence prediction module
F' as performed for P(S) and P(Q). Hence, we
initialize P(R) and P(7) as uniform distributions
for the OT computation in this case.

Under this setting, we solve the OT equation to
obtain the optimal alignment matrix p* between
R and 7. The Wasserstein distance L,..ss is then
computed and integrated into the overall loss func-



tion for regularization:

['cross = Z Z p:,m D(T’, t)

reRteT

where n and m are the matrix indexes for r and ¢,
respectively.

3.4.1 Full Model

Finally, the overall loss function £ used to train our
Optimal-Transport-based Event Detection (OTED)
model is: £ = Eclass + aﬁident + ﬁﬁdist +7£cross
where «, (3, and -y are trade-off hyperparameters.

4 Experiments

4.1 Datasets

We use the ACEOS5 (Walker et al., 2006) and
EREOS5 (Song et al., 2015) datasets, which are fre-
quently used as the standard benchmarks in cross-
lingual event detection efforts (M’hamdi et al.,
2019; Majewska et al., 2021; Nguyen et al., 2021;
Guzman-Nateras et al., 2022), to evaluate our FS-
CLED models. In particular, we utilize data in
three languages (English, Chinese, and Arabic)
from ACEOQS5 and two languages (English and Span-
ish) from EREQ5. Both ACEO5 and EREOS5 or-
ganize their event classes in a hierarchical struc-
ture of types and subtypes. For example, in
the Transaction:Transfer-Ownership
class, Transaction is the main event type and
Transfer-Ownership is the subtype. The two
datasets have distinct label sets as ACEO5 includes
33 event subtypes and ACEO5-ERE has 38 event
subtypes. Each language in the datasets has its own
training/development/test split.

4.1.1 FSL Preprocessing

Standard datasets used for supervised learning,
such as ACEO5 and EREOS5, can also be exploited
for FSL by simulating a limited-data-availability
setting via episodic training (Lai et al., 2021a). An
episode is created by sampling a set of K exam-
ples from a small subset of classes N out of the
total number of classes in the dataset. This setting
is referred to as N-way, K-shot and N and K are
usually selected in the range of 1 to 10.

Following previous work on FSL for ED (Lai
et al., 2020b), we further truncate the training, de-
velopment, and testing portions of the datasets for
each language to satisfy the conditions for FSL: (1)
the set of event types in the training data must be
disjoint from those for the development and test
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Dataset

# Types Removed Types

Justice:Extradite

ACEOQ5-English (train) 19 Justice:Pardon
ACEO05-English (dev) 12
ACEOQO5-Chinese (test) 11 Life:Divorce
Life:Be-Born
ACEOQ5-Arabic (test) 9 Life:Divorce
Personnel:Nominate
EREO05-English (train) 22 Business:Bankrupcy
EREO05-English (dev) 15
EREO05-Spanish (test) 14 Personnel:Nominate

Table 1: Dataset preparation for FSCLED. The total
number of remaining types is shown for each data sec-
tion alongside the removed subtypes without a sufficient
number of samples for episodic training.

data; (2) the types in each set must contain at least
5 samples (to facilitate 5+1-way 5-shot learning
with the additional +1 class being used for non-
triggers); and (3) the training set should have as
many samples as possible.

Adapting these criteria to cross-lingual FSL, we
separate the samples belonging to the Business,
Contact, Conflict,and Justice typesto
be used for training purposes. Meanwhile, we leave
the samples belonging to the Life, Movement,
Personnel, and Transaction event types for
development and testing. Furthermore, we remove
any subtypes that do not contain enough samples to
construct an episode (5 samples minimum). Table 1
shows the total number of remaining classes for
each portion of data in different languages for our
FSCLED setting. We also list the event subtypes
that are removed to meet the criteria in each dataset
portion. Note that, while the training label set must
be disjoint from the development and testing label
sets, there is no requirement for the latter two to be
disjoint as done in (Lai et al., 2020b).

As the final step in our data preprocessing, we
obtain the samples for the non-event type by se-
lecting words, other than the actual triggers, from
annotated sentences similar to the approach taken
by Lai et al. (2020b).

4.2 Training Details
4.2.1 Episode Composition

In all our experiments, English is considered the
sole source language as it is often used as the bench-
mark source language in cross-lingual efforts. As
such, training and development episodes are con-
structed from English data. However, given the
FSL constraints, their samples must come from



Target Language

Chinese Arabic Spanish
Model Version P R F1 P R F1 P R F1
Relation 78.62 79.1 78.86 52.89 53.35 53.12 4853 48.777 48.65
Matching 8544 8579 85.64 6621 6592 66.06 56.77 5695 56.86
Prototypical ~ 85.81 86.12 8596 70.02 70.44 70.23 60.87 61.17 61.02
OTED (ours) 86.05 86.29 86.17 70.66 70.98 70.82 62.25 6249 62.37

Table 2: Performance for cross-lingual few-shot event detection. English is the source language used for training.
The experiments for Chinese and Arabic are done over ACEO5 while EREOS is used for Spanish.

disjoint label sets. Hence, in any training iter-
ation, the samples used for both the support S
and query Q sets are in English and belong to the
training subtypes of the Business, Contact,
Conflict, or Justice types. In contrast, dur-
ing validation, S and Q will still be in English
but their samples belong to the validation sub-
types of the Life, Movement,
or Transaction types.

Personnel,

Furthermore, as cross-lingual models are evalu-
ated on the target language, during testing, episodes
are created from target-language data and their
samples belong to the same types as the devel-
opment episodes, i.e., the Life, Movement,
Personnel, or Transaction types.

4.2.2 Additional Settings

We utilize a fixed 6-way (5 event types plus
the non-event), 5-shot setting for all the experi-
ments. We initialize our encoder E with the pre-
trained bert-base-multilingual-cased
transformer model (Devlin et al., 2019) and add a
single linear layer followed by a hyperbolic tangent
non-linearity on top. Our final encoder representa-
tions have 512 dimensions. All hyperparameters
were tuned on the development data of the source
language, and all reported values are the average
obtained from five runs with different random seeds.
Our fine-tuning process suggests the following val-
ues:

¢ AdamW (Loshchilov and Hutter, 2017) as the
optimizer.

Using 5 warm up epochs.

Learning rate is set to 3e~%.

The «, 8 and v hyper-parameters are set to
0.1,0.01, and 0.01 respectively.

The batch size is set to 16.
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* 512 for the dimensionality of the layers in the
feed-forward networks.

A dropout of 10% for added regularization
during training.

4.3 Results

We compare our Optimal-Transport-based Event
Detection (OTED) model, against three typical
FSL models adapted to FSCLED as the baselines:
Matching networks (Vinyals et al., 2016), Proto-
typical networks (Snell et al., 2017), and Relation
networks (Sung et al., 2018). All models utilize the
same mBERT-based encoder for a fair comparison.
We use English as the source language during train-
ing as it is recurrently utilized the source-language
benchmark (M’hamdi et al., 2019; Majewska et al.,
2021) due to its high-resource availability.

Our main experiment results are presented in
Table 2 which shows that our OTED model consis-
tently outperforms the best-performing baselines
in every target language: Chinese (+0.21%), Ara-
bic (+0.59%), and Spanish (+1.35%). We believe
these results validate OTED as a suitable and effec-
tive alternative for FSCLED.

Furthermore, an additional benefit of OTED’s
training signals (i.e., the loss terms L;gent, Ldist,
and L.,ss) is that they can be directly integrated
into any existing FSL methods. Thus, we conduct
a supplementary set of experiments where we inte-
grate the loss function terms from OTED into Re-
lation, Matching, and Prototypical networks (i.e.,
combining our training signals in OTED with the
standard cross-entropy losses of such FSL base-
lines). The performance for these integrated mod-
els are presented in Table 3. Comparing the cor-
responding performance in Tables 2 and 3, it is
evident that integrating OTED with traditional FSL
methods leads to overall performance improvement
across different target languages and FSL models,
further demonstrating the benefits and applicability
of OTED for FSCLED.



Target Language

Model Version Chinese Arabic Spanish
Relation + OTED 79.36 53.41 48.89
Matching + OTED 85.88 66.21 56.97
Prototypical + OTED  86.42 71.11 62.43

Table 3: Model performance for integrating OTED into
traditional FSL methods. F1 scores are reported.

Target Language
Model Chinese Arabic Spanish
OTED (full) 86.17 70.82  62.37
-Lgist 85.63 70.57 61.85
-Leross 85.45 70.22 61.78
-Laist ~Leross 85.25 69.44  61.19
“Lident - Laist - Leross — 84.67 68.21 60.65

Table 4: Ablation results over the test data.

4.4 Ablation study

To evaluate the contribution of different proposed
components (i.e., Lident, Ldist, and Leross), We
perform an ablation study whose outcomes are pre-
sented in Table 4. The left-most column indicates
the components being removed from the overall
loss L. The first two rows show the performance
when either the Wasserstein-distance loss term, i.e.,
Laist of Leross 1s removed. As expected, removing
any of them hurts the performance of OTED across
different target languages. This demonstrates the
importance of considering the global distances be-
tween query and support sets, and the necessity
of adapting to the cross-lingual setting by leverag-
ing unlabeled target-language data. Furthermore,
the performance of OTED suffers even more when
both L5 and L.oss are excluded.

Similarly, when L;gen; is removed in the last row,
the performance is also further reduced, dropping
significantly by more than 1.5% for Chinese and
Arabic compared to the full model. Note that re-
moving L;4en: has deeper implications as, in such
case, the event-presence module F' is not trained.
In turn, the P(S) and P(Q) distributions for the
support and query sets cannot be estimated reliably
and are instead initialized using uniform distribu-
tions in the OT computation. These results thus
confirm the usefulness of the event identification
loss to support the OT computation in our model.

5 Related Work

Event detection has been thoroughly studied over
the years. Early ED efforts were based on hand-
crafted features (Ahn, 2006; Ji and Grishman,
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2008; Patwardhan and Riloff, 2009; Liao and Grish-
man, 2010a,b; Hong et al., 2011; McClosky et al.,
2011; Li et al., 2013; Miwa et al., 2014; Yang and
Mitchell, 2016). More recently, deep learning tech-
niques such as recurrent neural networks (Nguyen
et al., 2016a; Sha et al., 2018; Nguyen and Nguyen,
2019), convolutional neural networks (Nguyen and
Grishman, 2015; Chen et al., 2015; Nguyen et al.,
2016b), graph convolutional networks (Nguyen and
Grishman, 2018a; Yan et al., 2019), adversarial net-
works (Hong et al., 2018)(Zhang et al., 2019b),
pre-trained language models (Wadden et al., 2019;
Zhang et al., 2019a; Yang et al., 2019a; Zhang et al.,
2020; Liu et al., 2020), and generative models (Lu
et al., 2021) have been prevalent. Nevertheless,
these works study ED under a supervised or semi-
supervised setting.

Alternatively, ED was recently formulated as a
few-shot task (Lai et al., 2021a). In a short time,
several methods have been proposed using a va-
riety of techniques such as meta-learning(Deng
et al.,, 2020; Shen et al., 2021), cross-task pro-
totyping (Lai et al., 2021a), dependency graphs
(Lai et al., 2021b), causal modeling (Cong et al.,
2021), and label dependency via conditional ran-
dom fields (Chen et al., 2021).

Previous works on cross-lingual ED generally
make use of cross-lingual resources such as bilin-
gual dictionaries or parallel corpora (Muis et al.,
2018; Liu et al., 2019) to address the differences be-
tween languages. More recent approaches exploit
the language-invariant characteristics of pre-trained
multilingual language models (Hambardzumyan
et al., 2020) along with complementary features
such as label dependency (M’hamdi et al., 2019),
verb-class knowledge (Majewska et al., 2021), and
class-aware cross-lingual alignment (Nguyen et al.,
2021).

Optimal transport has also been recently used
in cross-lingual settings for information extraction
tasks such as event co-reference resolution (Phung
et al., 2021) and event detection (Guzman-Nateras
et al., 2022). However, the amalgamation of the
few-shot and cross-lingual settings creates unique
challenges that have not been tackled by any re-
lated work. Consequently, our proposed use of OT
differs from related works as it addresses the global
alignment between the support and query sets for
few-shot learning and between source and target
languages for the cross-lingual setting.



6 Conclusion

We explore a novel few-shot cross-lingual set-
ting for event detection that combines the lim-
ited training-data conditions of FSL with zero-shot
cross-lingual transfer learning. We provide the per-
formance of typical FSL models as the foundations
for future research. More importantly, we introduce
a novel method for FSCLED that leverages the op-
timal alignment between query and support sets
obtained via OT to perform FSL classification. Our
method is complemented by two additional regular-
ization terms that aim at integrating the global dis-
tance between support and query sets and fostering
language-invariant representations by leveraging
unlabeled data in the target language. Our exper-
iments on three target languages demonstrate the
advantages of our approach and its general appli-
cability to traditional FSL models. As future work,
we intend to extend our method to other related
tasks in IE such as relation extraction.

7 Limitations

As is the case for any research effort, the scale of
our work is restricted by time and resource limi-
tations. Supplementary experiments with diverse
source/target language pairs could provide a more
comprehensive overview of our method’s perfor-
mance and additional insight into its strengths and
weaknesses. Episode composition also plays an
key role during few-shot training which can intro-
duce some variance in the results. Furthermore, the
cross-lingual setting and casting the problem as a
token classification task places some important re-
strictions as prior knowledge of event triggers is re-
quired even for target-language data (only the trig-
ger is required, not its label) which could limit the
applicability of our method for some low-resource
languages. Finally, considerable GPU resources
are required to be able to train our model, partic-
ularly in order to fit the multilingual transformer
encoder.
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