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Abstract

Voice assistants are becoming central to our
lives. The convenience of using voice assis-
tants to do simple tasks has created an indus-
try for voice-enabled devices like TVs, ther-
mostats, air conditioners, etc. It has also im-
proved the quality of life of elders by making
the world more accessible. Voice assistants en-
gage in task-oriented dialogues using machine-
learned language understanding models. How-
ever, training deep-learned models take a lot
of training data, which is time-consuming and
expensive. Furthermore, it is even more prob-
lematic if we want the voice assistant to un-
derstand hundreds of languages. In this paper,
we present a zero-shot deep learning algorithm
that uses only the English part of the Massive
dataset and achieves a high level of accuracy
across 51 languages. The algorithm uses delex-
icalized translation to generate a multilingual
parallel corpus with intent and slot labels for
data augmentation. The training data is fur-
ther weighted to improve the accuracy of the
worst-performing languages. We report on our
experiments with code-switching, word order,
multilingual ensemble methods and other tech-
niques and their impact on overall accuracy.

1 Introduction

Task-oriented languages have become standard in
voice-enabled devices and voice assistants. While
there has been extensive research on task-oriented
dialogue systems in limited domains, most of these
systems are built in a limited set of languages due
to a lack of labeled multilingual corpus. Ama-
zon’s MASSIVE dataset is a new resource for task-
oriented language understanding that has 996K ut-
terances annotated with intent and slot labels, along
with their translations into 51 languages. The MAS-
SIVE dataset is a unique resource for conducting
multilingual language understanding research, and
in particular building zero-shot learning algorithms
where using only one language data, the trained
system can perform language understanding tasks
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in the rest of the unseen languages. The importance
of such training algorithms cannot be understated
— labeled data is expensive and time-consuming to
generate and hence any approach that reduces the
cost and time to train such a multilingual system is
desirable.

There are numerous hurdles in creating a zero-
shot multilingual language understanding system.
While machine translation systems can be used for
translating utterances and creating a parallel corpus
for training, aligning slot labels across languages
can be challenging. In addition, if we expect the
multilingual model representation to leverage in-
formation across languages, the input text represen-
tation needs to have the same tokenization process
across languages. Furthermore, low-density lan-
guages are hard to get open-source resources for.

In this paper, we first review the related work in
Section 2. Next, we address the issues listed above
by introducing a novel delexicalized annotated ut-
terance translation algorithm that is described in
Section 3. To align code representations across
languages, we randomly switched the language for
a small percentage of the words. Finally, we ex-
plored the possible impact of using all the utterance
translations instead of just one utterance in a spe-
cific language and were surprised by the accuracy
boost. These and other experiments and analyses
are described in Section 4.

2 Related Work

Transformer-based large multilingual masked lan-
guage models, such as mBERT (Devlin et al.,
2018), XLLM (Lam- ple and Conneau, 2019) XLM-
R (Conneau et al., 2019; Goyal et al., 2021), and
mT5(Xue et al., 2020), have prevailed in cross-
lingual language understanding. These models are
pre-trained on a large multilingual text corpus to
create a language representation that allows cross-
lingual transfer on down-streaming tasks, such as
cross-lingual document classification (Schwenk
and Li, 2018; Pappas and Popescu-Belis, 2017),
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role labeling (Bjorkelund et al., 2009), question
answering (Kwiatkowski et al., 2019; Chen et al.,
2017; Lewis et al., 2019) and named entity recog-
nition (Nothman et al., 2013; Al-Rfou et al., 2015).
In the field of natural language understanding, Liu
and Lane and Chen et al. trained for intent clas-
sification and slot-filling tasks jointly to learn the
inherent correlation between the two tasks via mul-
titask learning. Castellucci et al. further used a
joint Bert-based model to detect intents and extract
slots for the multi-lingual scenario including En-
glish and Italian languages. However, systematic
work on massive languages datasets (51 locales in-
cluding sufficient variance of language order types
including subject-initial, verb-initial and no pre-
ferred word order) has not been paid enough atten-
tion until now due to the lack of labeled datasets.

With the availability of the MASSIVE
dataset (FitzGerald et al., 2022) with annotation
for slot-filling and intent classification, and virtual
assistant evaluation metrics and scoring tools, we
will able to push the state of the art of multilingual
natural language processing for a task-oriented
dialogue system (Razumovskaia et al., 2022; Tur
et al., 2010). To tackle the difficulty/high cost of
collecting low-resource language data previous
work (Xu et al., 2020; Upadhyay et al., 2018;
Schuster et al., 2018) explored the use of machine
translation to get translated data (Wu et al., 2016)
and utilize zero-shot learning (Palatucci et al.,
2009) to transfer the understanding learned on
one language to another language. However, the
correspondence across all languages in terms
of intent and slot alignment is insufficiently
incorporated into the training and inference
phases of the cross-lingual NLU model. In this
paper, we explore how to represent connection
among massive languages in the model. Besides,
inspired by the common code-switch behavior
and multilingual speakers and previous work
on learning cross-lingual structure (Heredia and
Altarriba, 2001; Wu et al., 2019; Auer, 2013),
we further explore the use of code-switch and
delexicalization as anchor points to bridge the
transfer learning among languages.

3 Method

3.1 Data Augmentation

Generated Parallel Corpus To train a zero-shot
learning model, using English data is not sufficient,
as can be seen in the low baseline results in Ta-
ble 1. To address the problem, we propose to utilize
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Method Intent  Slot F1  Exact Match
Baseline 70.6 % 50.3 % 38.7 %
GPC 797 % 58.8 % 40.3 %
GPC+DE 81.1 % 58.84 % 40.3 %

Table 1: This table shows the comparison between using
generated parallel corpus (GPC), delexicalization (DE)
and not using delexicalization. Baseline results are for
our implementation of Zero-shot Intent and Slot Predic-
tion algorithm by FitzGerald et al. (2022). We see that
augmenting the training data with the generated parallel
corpus (GPC) gives us a significant boost to intent and
slot accuracy. When we add delexicalized utterances in
addition to GPC, (GPC + DE), we get a further boost to
intent accuracy, but not much to slot accuracy.

Full-Dataset
Method Intent Slot F1  Exact Match
Baseline | 85.10 % 73.60 % 63.70 %
BOS 85.72 % 75.01 % 65.12 %
BOS+LO | 85.87% 74.75 % 65.20 %

Table 2: Objective Functions Results. We evaluated
three objective functions with the full dataset (instead
of zero-shot learning). Baseline results are for our im-
plementation of Intent and Slot Prediction algorithm
by FitzGerald et al. (2022). BOS means the Bag of
Slot and LO means the language word order prediction.
These objective functions give slight improvement to
slot accuracy.

Google Translator to translate English data to the
other 50 languages and create an annotated parallel
corpus. While translating an utterance is simple,
translating annotated utterances is difficult since the
alignment of the slots like “time” and “date” is not
always straightforward. Our solution is to delexi-
calize the slots in the given utterance (described in
Section 3.2) and use the delexicalized utterance as
input to Google Translator. Next, we create a look-
up table to map the delexicalized slots and the slot
values. We then translate the original slot values
into the target language. Finally, we use the lookup
table to substitute the translated slots values into
the corresponding delexicalized tags in the trans-
lated utterance. This process results in a translated
annotated utterance in the target language. Each
annotated English utterance is thus translated into
each of the 50 target languages while preserving
the intent and slot annotations.

Augmentation for Low-Performing Languages
Low-performing languages decrease the total per-
formance dramatically. Augmenting data for low-



Language Order Order-Specific Models All Language Model
Intent Slot F1  Exact Match | Intent Slot F1  Exact Match
ALL - - - 85.66 % 75.12 % 65.35 %
SVO 86.23 % 74.54 % 64.84 % 86.18% 74.65 % 65.00 %
SOV 75.69 % 63.67 % 50.53 % 85.11 % 74.50 % 64.60 %
VSO 66.55 % 64.69 % 43.20 % 84.00% 72.43 % 62.14 %
Uncategorized | 77.88 % 69.72 % 54.25 % 86.03% 7441 % 64.74 %
None 8231 % 70.73 % 58.76 % 86.37 % 74.49 % 65.47 %

Table 3: Languages Word Order Results. Order-Specific Models mean the models are trained on a specific language
word order class and evaluated in the same class. All Language Model is trained jointly with all languages and
evaluated on a specific language word order. Using all languages improves accuracy.

performing languages is one possible approach to
address this issue. We collect the lowest perform-
ing ten languages and reweight the data by 2x and
5X.

3.2 Code Switching

To align model representation across languages,
researchers (Lee et al., 2019) have used the notion
of “code-switching,” where they randomly switch
the language of a small percentage of the words in
the training corpus. We used a similar approach in
our model training process. We identified common
stop words across languages and used their English
translations for random code-switching. For non-
space separated languages ("zh-CN", "zh-TW", "ja-
JP"), we do code-switching with 8%, while the
rest languages are with 16% of the words. Code-
switching potentially creates anchor points (the
common sequences in different languages) across
multiple languages and assists transfer learning.

3.3 Delexicalized Training Data

Earlier, we used slot delexicalization to generate
the parallel multilingual corpus for training data
augmentation. In this section, we use delexicaliza-
tion for a different purpose. We use slot delexical-
ization to learn slot usage patterns. We delexical-
ized the slots randomly. The various slot values are
replaced by slot types. For example, the annotated
utterance "Wake me up at [time : five am] [date
: this Friday]" is delexicalized to "Wake me up
at TIME_SLOT DATE_SLOT". We delexicalize
utterances in each language to learn shared features
in the multilingual dataset. We delexicalize the
input utterance slots with a probability of ¢ = 0.1
while training.

3.4 Objective Functions

We represented the problem as a multi-task recog-
nition problem. The models were initialized with
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a pre-trained XLM-Roberta (XLM-R) (Conneau
et al., 2020) language model and fine-tuned it on
the MASSIVE dataset (mas). We then trained four
different classification heads from scratch: intent
and slots prediction, bag of slot labels, and lan-
guage order prediction in parallel.

Intent and Slot Prediction Our model is aimed
to do intent classification and slot-filling tasks in
the zero-shot scenario. We used the training pro-
cess described in mas. We use the English subset
of the data and augment it with our (generated) an-
notated parallel corpus as described in Section ??.
For intent classification, the model predicts the
intent by using the pooled output from the XLM-
R encoder which is the sentence-level embedding
vector. Then, the model predicts slot logits (as a
sequence labeling task) using XLM-R encoder rep-
resentations of each token in the utterance. Then
the CrossEntropy loss function is used to compare
the intent and slot logits with ground truth labels to
get the intent and slot loss.

Bag of Slot Labels (BOS) Since each utterance
has 51 translated versions, we leverage the con-
straint that all 51 utterances have the same in-
tent and slot labels. We batched the English ut-
terance and the corresponding utterances in other
languages into one block. The meaning of the utter-
ances in the unit is the same. The only difference is
that they are written in different languages. We ex-
pect the predictions within a unit to be as similar as
possible. Thus, in this block of parallel multilingual
utterances, ideally, each of the utterances should
predict the same slot labels. (Although the slot la-
bels across languages may not be aligned at each
token, the set of B-SLOTNAME and I-SLOTNAME
slot tags (in the BIO format) in each utterance in-
side a batch is the same as others. We represent the
bag of slot labels as a Dy;,s dimensional binary
vector with each location indicating which slots la-



bels are present in an utterance, where Dy is the
number of slot labels.) We collect 51 predictions
as the output of intent classification and slot filling.
Then we apply the CrossEntropy loss between the
51 intent predictions with ground truth.

Since the number of words in an utterance across
the 51 languages and their word order might be dif-
ferent, computing loss per token does not work
since the tokens are not aligned across languages.
Thus, we get the mean of 51 languages’ slot pre-
dictions and calculate the frequency of each slot
type among these 51 utterances. Computing the
CrossEntropy loss between the mean slot label pre-
dictions and the frequency might align the slot label
predictions across the 51 predictions.

Language Word Order Prediction (LO) Word
order is important in language. There are com-
plicated rules for ordering words in different lan-
guages: two same utterances in different languages
might generate large differences in the word’s po-
sition in the sentence. Some languages start a
sentence with the subject (S) following the verb
(V) and the object (O). Others might start with the
verb and end with the object. Therefore, we create
another head to predict the language word order
given an input utterance, training on the MASSIVE
dataset. There are 5 kinds of word order in the
MASSIVE dataset, SVO, SOV, VSO, none type,
and uncategorized. We compute the CrossEntropy
loss function between the order prediction and the
ground truth. This loss function acts as one of the
multitask among our objective functions.

4 Experiments and Results

4.1 Impact of Generated Parallel Corpus

The original baseline zero-shot algorithm de-
scribed in mas uses only the English subset of the
MASSIVE dataset and fine-tunes the multilingual
XLMR model. We first explore the impact of aug-
menting the English subset of MASSIVE dataset
with our generated (annotated) parallel corpus. In
Table 1 we can see that our data augmentation in-
creases the intent accuracy by 9.1% absolute and
improves the average slot F1 score by 8.5%.

4.2 Augmenting Delexicalized Utterances

Next, in addition to augmenting the data with the
generated parallel corpus, we added the delexical-
ized utterances. Table 1 shows that after applying
the delexicalization technique, the intent accuracy
increased by an absolute 2%. However, delexi-
calization barely improves the slot F1 score. The
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delexicalized data represents utterance templates,
which the model learns, and perhaps helps with the
intent accuracy. It is unclear why the slot accuracy
was not impacted, perhaps a higher probability of
delexicalization will help.

4.3 Objective Functions Comparison

In this experiment, we evaluate three objective func-
tions by training on the full dataset from the MAS-
SIVE (not zero-shot) training setup and testing on
the corresponding test set, as shown in Table 2. The
baseline results of the Intent and Slot prediction ob-
jective function are our implementation of (FitzGer-
ald et al., 2022).

After including the Bag of Slot (BOS) objective
function, the Slot F1 score increased by 2%. The
main reason is that our model is capable of lever-
aging the shared information among 51 languages.
However, adding the language word order predic-
tion (LO) did not improve the performance. We
found that the accuracy of language word order
prediction is close to 100% and the loss is close
to 0. The implication is that the XLMR model
has learned to classify the language word order
very well. However, the constraint of predicting
language word order barely influenced the overall
result.

4.4 Language Word Order Prediction Results

In this experiment, instead of training all languages
jointly, we trained five different models correspond-
ing to the language word order. In FitzGerald
et al. (2022) the authors classified the language
word order into five classes, SVO, SOV, VSO, Un-
categorized, and None. According to results pre-
sented in Table 3, training a single SVO class model
gets a similar performance as training on all lan-
guages jointly, while other classes get worse re-
sults. The main reason is that languages in the
SVO class, like English, Spanish, etc., dominated
the dataset. XLMR pretrained model is capable of
understanding languages in the SVO class well. As
for other language word orders, there might be a
low-resource data problem while training the pre-
trained model that gives rise to a huge accuracy
difference with respect to SVO class languages. In
addition, training with all languages gives us better
performance than training with only one language.
The reason might be that training jointly makes the
model leverage common characteristics amongst
different language word orders.



Method Full-Dataset
Training Method Test Dataset Intent Slot F1 =~ Exact Match

Amazon XILM-Base full-training MMNLU test  85.10% 73.60 % 63.70 %

Amazon XLM-Base zero-shot MMNLU test 70.6 %  50.30 % 38.70 %
XLM-Base

+BOS+DE zero-shot MMNLU-22 test 81.55% 59.26 % 40.49 %

XLM-Base+GPC
+BOS+DE+Ensemble zero-shot MMNLU-22 test 88.13 % 59.42 % 42.08 %

Table 4: Ensemble Result on MMNLU-22 Test Split. We evaluated our final model (the model with BOS and
DE in training, Ensemble in post-processing) with MMNLU-22 test split, which is the test split of MMNLU-22
competition zero-shot track. The model was trained with the GPC dataset. The result of Amazon XLM-Base’s
model using full data training and the result of Amazon XLM-Base using zero-shot training on en-US are referred
from the original MMNLU paper FitzGerald et al. (2022). BOS means the Bag of Slot, DE means delexicalized,
and GPC means generated parallel corpus. The ensemble strategy gives significant improvement to intent accuracy
on MMNLU-22 test set, making it even higher than Amazon’s full-training dataset baseline results on MMNLU test

set.
4.5 Post Processing with Ensemble Method

To leverage the characteristic of the parallel dataset,
we experimented with an ensemble technique.
Since for each utterance we have 50 translations
with the same intent, we make each language vote
for an intent and select the intent with the most
votes as the final intent for all 51 languages. As
a result (shown in Table 4), our model, including
three objective functions and the voting technique,
achieves 88.13%, 59.42%, and 42.08% for intent
accuracy, slot F1 score, and exact match accuracy,
respectively in MMNLU-22 test split!. In fact,
intent accuracy achieves a significant boost with
6.61% in comparison to the result without ensem-
ble strategy. We also see that the resulting intent
accuracy is higher even than Amazon’s baseline
full-training data set. The slot F1 score, though sig-
nificantly higher than Amazon’s zero-shot baseline,
is still much lower than the full-training data set
results. This is probably due to using translations
of English slot values to target languages. In our
experiment, we used the translations from English
to the target languages. However, to apply the vot-
ing technique in practice, we need to translate the
utterance in the input language to all other target
languages to elicit our model’s multi-perspective on
other languages and get a robust prediction through
the ensemble. This work is currently in progress.

'The website of the competition with leaderboard:
https://eval.ai/web/challenges/challenge-page/
1697/1leaderboard/4061
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5 Discussion and Future Work

How good is the delexicalized slot translation? One
approach to quantify this would be to generate an
annotated translation from English to language ¢
using Google translator and then translate it back
to English and then compute a BLEU score.

Our zero-shot ensemble method using generated
parallel corpus gives us better intent accuracy than
the baseline full-set result in (FitzGerald et al.,
2022). However, the slot accuracy is still much
lower. One of the reasons could be that the slot
values don’t translate well to other languages. For
example, a Christian name is not something that
will be common in Chinese data. Using language-
specific values probably will yield better results.

The ensemble method in a real-world setting re-
quires us to translate utterance ¢ in language i, to
all other 50 languages. This requires to generate n?
translation, which is expensive on Google Trans-
late. For our experiment, we instead used the trans-
lations from English. One issue with this approach
could be that English-to-target language transla-
tion might be of better quality than the translation
of input language to a target language. Doing the
full experiment will be conclusive. Another draw-
back of the ensemble approach is the need for n
real-time translations and n parallel real-time runs.
However, one way to reduce this complexity is to
find a small subset of languages that we can use for
voting purposes.

6 Conclusion

We presented a zero-shot, multilingual, joint intent-
detection and slot-filling algorithm based on XLM-


https://eval.ai/web/challenges/challenge-page/1697/leaderboard/4061
https://eval.ai/web/challenges/challenge-page/1697/leaderboard/4061

R Transformer and Amazon’s MASSIVE dataset.
We showed that our delexicalized translation ap-
proach to generating a parallel corpus for data aug-
mentation is a viable approach for training zero-
shot algorithms. We showed that training using
data from all language order types gives superior
accuracy than using only a single language order
type data in most cases — n MASSIVE data, the
SVO category performed equally well when us-
ing just the SVO subset. Furthermore, our exper-
iments showed that using an ensemble approach
with translations of the input utterance can lead to
a significant gain in accuracy.
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