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Abstract

Cross-lingual phenomena are quite common
in informal contexts like social media, where
users are likely to mix their native language
with English or other languages. However,
few studies have focused so far on analyz-
ing cross-lingual interactions in voice-assistant
data, which present peculiar features in terms
of sentence length, named entities, and use of
spoken language. Also, little attention has been
posed to European countries, where English is
frequently used as a second language. In this
paper, we present a large-scale empirical analy-
sis of cross-lingual phenomena (code-mixing,
linguistic borrowing, foreign named entities) in
the interactions with Alexa in European coun-
tries. To do this, we first introduce a general,
highly-scalable technique to generate synthetic
mixed training data annotated with token-level
language labels and we train two neural net-
work models to predict them. We evaluate the
models both on the synthetic dataset and on a
real dataset of code-switched utterances, show-
ing that the best performance is obtained by a
character convolution based model. The results
of the analysis highlight different behaviors
between countries, having Italy with the high-
est ratio of cross-lingual utterances and Spain
with a marked preference in keeping Spanish
words. Our research, paired to the increase of
the cross-lingual phenomena in time, motivates
further research in developing multilingual Nat-
ural Language Understanding (NLU) models,
which can naturally deal with cross-lingual in-
teractions.

1 Introduction

The interaction of different languages produces a
variety of linguistic phenomena, the most promi-
nent examples being code-switching and lexical

borrowing. Code-swiching (CS), or code-mixing1,
refers to the alternation of languages within an ut-
terance or a conversation (Poplack, 2004), while
linguistic borrowing occurs when a word is adopted
from a language and integrated into another without
translation. Examples of these are: (i) “Play música
alegre” (ii) “Bravo, that was a great performance”,
with the former being a case of code-switching
and the latter exhibiting lexical borrowing. These
phenomena are particularly frequent in bilingual
countries, where the local language, called frame-
language, is influenced by a second language,
which is instead called the mixing-language. This
phenomenon is abstracted by the Matrix Language
Frame model (Poulisse, 1998) in code-switching lit-
erature. Common pairs of frame-mixing languages
are for example Spanglish (Spanish-English) and
Hinglish (Hindi-English).

Countries for which these phenomena happen
usually undergo a broader influence which also per-
meates their culture, as it happens for example with
American artistic production of cinema and music.
As a side effect, utterances originated in the frame
language are rich in foreign named entities, which
contribute to their linguistic heterogeneity. Voice
assistants operating in these locales have to face a
significant amount of foreign words while being in
most cases trained on monolingual corpora, hence
posing a severe threat to their performance.

Indeed, the growing interest in multi-lingual
models (Devlin et al., 2019; Alexis and Lample,
2019; Conneau et al., 2020) and datasets (FitzGer-
ald et al., 2022; Xu et al., 2020) may help mitigate
the problem. We will use in the rest of the paper

1We will use the terms code-switching and code-mixing
interchangeably, despite they are sometimes used in linguistic
literature to denote different phenomena.
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the term cross-lingual to denote utterances which
contain one or more words from a mixing language
while belonging to a frame language. These may
be caused by any of the mentioned phenomena,
i.e. code-switching, lexical borrowing and foreign
named entities.

A major challenge, both in improving the per-
formances of multilingual models on cross-lingual
data and in their overall evaluation, is the scarcity
of cross-lingual datasets. Nevertheless, while
human annotation is already costly and time-
consuming in general, annotating cross-lingual data
is made harder by the fact that bilingual annotators
are needed for each pair of languages of interest;
these may be especially hard to find for less com-
mon languages. In particular, while there has been
some interest for different kinds of data (e.g. social
media), voice assistant data, which is the focus of
this paper, has been mostly ignored. Although such
datasets may be obtained by crowdsourcing, the
process would be expensive and time-consuming.
This reason leads to the necessity of a procedure
to generate synthetic data over several language
pairs while providing large-scale datasets. These
can be used to train a learning model to infer cross-
lingual utterances. The trained model can finally
be employed on voice assistants data to detect real
cross-lingual utterances.

Our contribution is three-fold: (i) We propose
in section 3 a scalable synthetic data generation
technique to obtain challenging benchmarks which
exhibit a significant ratio of cross-lingual influ-
ences. The method is language agnostic and here
we employ it on four common European languages
(German, French, Italian, Spanish) with English
as mixing language. (ii) We compare the perfor-
mance of different baselines in detecting cross-lin-
gual utterances by solving the more fine-grained
task of word level language identification. To vali-
date the generation procedure, we test the models
trained on the synthetic distribution over a bench-
mark dataset obtained through an extremely precise
heuristic. (iii) Finally, we analyze in section 6 the
phenomenon of cross-lingual influence in a large
set of cross-lingual utterances detected using our
method on Alexa user queries.

2 Related work

Code-switching has received significant interest
both in the linguistic literature (Poplack, 2004,
1980; Lipski, 2005; Bhatt and Bolonyai, 2011) and

de fr it es

code switched 31359 5391 6139 4256
non code switched 63944 18491 20100 23744

Table 1: Size of the four benchmark datasets.

in Natural Language Processing (NLP); (Sitaram
et al., 2019) provide a survey of code-switching
in NLP. From a linguistic point of view, the two
phenomena differ in the fact that the latter occurs in
the lexicon, while code-switching mostly regards
the utterance-construction level (Muysken, 1995).
Despite the apparently different definitions, the two
are not always clearly distinct from one another,
and may be thought of as lying on a continuum
(Sitaram et al., 2019; Bali et al., 2014).

Various efforts have been made to collect code-
switched annotated data over which to perform
core NLP tasks, such as NER (Aguilar et al., 2018;
Singh et al., 2018), POS (Vyas et al., 2014; Barman
et al., 2016) and ASR (Lyu et al., 2015; Deuchar
et al., 2014). Nevertheless, most of the available
resources have been gathered from Twitter, and
therefore do not resemble the distribution of data
encountered by a voice assistant. Few works exist
on generating synthetic CS data: in (Pratapa et al.,
2018), a synthetic dataset is obtained by applying
linguistic theory-based rules, while in (Gupta et al.,
2020) an encoder-decoder architecture is used for
the generation. These approaches, however, fo-
cus on strict code-switching, while we aim to also
encompass lexical borrowing and foreign named
entities.

The de-facto standard way to infer code-
switched utterances is to train models on the task of
word-level language identification. Again, existing
datasets of code-switched text annotated with word-
level language labels have been collected from
Twitter (Patro et al., 2017; Maharjan et al., 2015) or
Facebook (Barman et al., 2014), leaving conversa-
tional data out of the scope. Provided a word-level
annotated dataset, any sequence-labeling algorithm
can be employed to solve the task. Approaches in-
clude conditional random fields (Sikdar and Gam-
bäck, 2016; Shrestha, 2016), recurrent neural net-
works (Chang and Lin, 2014; Samih et al., 2016)
and transfer learning (Aguilar and Solorio, 2020).
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3 Data

3.1 Synthetic data generation

As anticipated in section 1, the cost in time and re-
sources of annotating large-scale datasets by crowd-
sourcing makes synthetic generation the only vi-
able alternative. However, these phenomena show
a significant degree of mutability both in time and
space (Sitaram et al., 2019), making them elusive
to be addressed in a unified manner which is theo-
retically sound. While some have tried to generate
linguistically-correct code-switched data (Pratapa
et al., 2018), we trade off a rigorous formulation
with a simpler one to deal with all the considered
phenomena in a unified manner. Requiring no
real cross-lingual (CL) samples, our scalable ap-
proach generalizes among any pair of languages.
We show that this relaxation does not undermine
the effectiveness of the approach by benchmark-
ing a model trained on such generated data over a
high-precision CL dataset (“benchmark dataset”).
Indeed, our objective is to generate a dataset rich of
cross-linguality which can be used to train a model
able to detect any CL utterance (code-switching,
language borrowing etc.).

The generation follows (Gella et al., 2014),
where each utterance can have at most two lan-
guages and at most one switching point. While
these may not be true in general, they mostly hold
in voice assistant data, where utterances are usually
short.

Slot switching Our procedure leverages slot res-
olution artifacts which are typically available to
conversational agents2: these, in fact, need to
map entities to actionable items, e.g. both ‘chap-
ter’, ‘section’ and ‘paragraph’ are mapped to a
coarser entity type which denotes more generally
a part of a book. Slot resolution artifacts are usu-
ally implemented as human-authored many-to-one
maps, where the fine-grained entities are language-
specific and the coarser entity type is language-
agnostic. The latter can be used as a syntactically
safe switching point to obtain cross-lingual utter-
ances. A cross-lingual dataset can be obtained
from a chosen monolingual dataset in the frame
language by matching instantiations of entity types

2As an alternative, publicly available resources may also
be used: a slot can replaced with a word in the same WordNet
synset (Fellbaum, 1998). WordNet has been translated and
adapted to many languages, like German, French, Italian, and
Spanish (Hamp and Feldweg, 1997; Sagot and Fišer, 2008;
Toral et al., 2010; Gonzalez-Agirre et al., 2012).

in the frame-locale utterances and replacing them
with random instantiations of the same entity type
in the mixing locale. Then, to obtain the token-
level language annotations, it is sufficient to assign
each switched token to the mixing language. For
example, for

(1) “AIT cheIT capitoloIT sonoIT arrivatoIT”

we use the map {capitolo, sezione, paragrafo →
BOOKSECTION} to obtain the language-agnostic
entity ‘BOOKSECTION’ which contains a set of
its instantiations in English (or any other language)
{chapter, section, paragraph → BOOKSECTION},
allowing us to pick one to produce

(2) “AIT cheIT chapterEN sonoIT arrivatoIT”.

We empirically set the mixing probability to 70%
after inspecting a subset of utterances. As the map-
ping from the language-agnostic entities to their
instantiations in a chosen language is not univocal,
we choose one of the latter at random.

Named-entities switching Nevertheless, slot res-
olution artifacts only cover specific slots. Another
common phenomenon is the use of English words
in named entities, such as song names, video names
or app names. To obtain a reliable language anno-
tation for named entities, we use a high-precision
and low-recall heuristic that checks that each to-
ken of the named entity is part of only a specific
language dictionary. For instance, when using IT
as a frame language and EN as a mixing language,
given a song such as “nel blu dipinto di blu” we
check if ‘nel’, ‘blu’, ‘dipinto’, ‘di’, ‘blu’ are all part
of the IT dictionary and none of them is part of the
EN dictionary. Only in that case they are placed
in the IT catalog; if the converse happens, they
are placed in the EN catalog. Entities for which
none of these events happens are not switched. We
populate the language-specific catalogs from the
data and replace the named entities sampling from
either the frame or mixing catalogs of the same
entity type (e.g. “Song” → sample using the song
names catalogs) with a probability proportional to
the catalog size. This method creates fairly rep-
resentative utterances in the context of personal
assistants, since we mainly have short sentences
with cross-linguality concentrated on named enti-
ties and loanwords. While the framework is general
and can be used for any pair of languages, we used
English as mixing language for the four considered
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European languages to mimic the real linguistic
phenomenon. We applied our method to manually
annotated, de-identified and anonymized Alexa ut-
terances. These span more than two years of data
for all the languages considered. Starting from
these data we create our cross-lingual data set. We
generated four datasets of ≈ 100k utterances for
the four corresponding locales, each split in train-
ing, validation and test with a 80-10-10 ratio. This
size was chosen to keep a fairly high variance of
the English words present in the utterances.

It is worth to note that we do not require, and
hence do not expect, the generated utterances to
faithfully resemble the cross-lingual phenomena
that we aim to capture. In fact, adhering to the
definition of cross-linguality that we outlined in
section 1, we more simply aim to generate utter-
ances in a frame language containing one or more
words from a mixing language, possibly preserv-
ing the original syntax and semantics. If we now
consider the set of natural cross-lingual utterances
to be a subset of all the possible cross-lingual utter-
ances, we have that a model capable of detecting
samples from the former should also be able to
detect those from the latter. Given that the set of
natural cross-lingual utterances is constrained by
the linguistic patterns of the considered phenom-
ena, the subset assumption makes intuitive sense
but is not assumed to hold for all distributions. We
show, however, that this assumption is valid enough
to capture most of the cross-linguality in conversa-
tional data, assessing the effectiveness of models
trained on the synthetic distribution on a bench-
mark of real cross-lingual utterances.

3.2 Benchmark dataset

To validate our data generation technique, we need
a ground-truth dataset over which to evaluate the
proposed models after they have been trained on
the generated distribution. Provided that no such
dataset exists for conversational data, we take in-
spiration from (Mendels et al., 2018) to obtain a
high-precision set of utterances from de-identified
and anonymized live traffic. The approach lever-
ages the idea of anchor words, i.e. words belonging
specifically to one language among a large pool of
languages. Provided anchor words for both the
frame and mixing languages, an utterance is code-
switched if it contains both an anchor from the
frame and one from the mixing language. Anal-
ogously to (Mendels et al., 2018), we relax the

definition of anchor word by restricting the pool
of languages to contain only the mixing language,
yielding what are called weak anchor words. This
is motivated by the fact that most foreign words in
the considered frame languages are English, so this
relaxation significantly improves the recall while
keeping its false positive rate minimum. The set of
weak anchor words for the frame language L can
be computed as the set difference between its word
lexicon VL and the lexicon of the mixing language
VL′

AnchorSet(L) = VL \ VL′ . (1)

The set of weak anchor words for the mixing lan-
guage can be computed in the symmetric way.

While this procedure has limitations in terms
of recall, the obtained set of utterances exhibits
almost no false positives. Nevertheless, to obtain
a benchmark dataset over which to evaluate both
False Positive Rate (FPR) and recall of the trained
models, negative samples are also needed. For this
we use the set of utterances for which all the words
are anchor words of the frame language. As be-
fore, although many not code-switched utterances
will be this way ignored, the resulting ones will be
negative samples with extremely high confidence.

To avoid making assumptions on the ratio of
code-switched utterances, the two datasets are
kept separated. The one consisting of only code-
switched utterances is used to compute the recall,
while the one containing only non-code-switched
utterances is used to compute the FPR. Table 1
shows the dimensions of the four datasets.

4 Models

We describe in this section the proposed baselines,
namely an ad hoc deterministic heuristic and two
neural models. These will be trained over the syn-
thetic datasets generated according to section 3 and
used to infer real code-switched Alexa utterances.

We consider as baseline a dictionary-based
heuristic parameterized by two thresholds t1 and t2.
The latter deterministically classifies an utterance
as code mixed if at least t1% of the lemmatized
words do not appear in the frame language vocabu-
lary while appearing in the mixing language vocab-
ulary and no more than t2% appear in the mixing
vocabulary while not belonging to the frame vocab-
ulary. Despite its simplicity, the heuristic allows to
arbitrarily trade-off recall and precision by manu-
ally tweaking the two parameters.
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We then propose two neural models, one char-
acter based and the other transformer based. The
intuition behind the former is that character-level
convolutions (Sitaram et al., 2019) should be able
to capture the distinguishing morphological fea-
tures of the considered languages which are key
to the task. In particular, given an input utterance,
each word is split in characters and embedded via
a trainable embedding layer to obtain w ∈ Rl×d,
where l is the maximum word length encountered
in the data and d = 50 is the chosen embedding
dimension. The embedded word is then passed
through a set of m = 256 1-D convolutional filters
with kernel size k = 3, yielding a tensor ∈ Rm×o,
where o is given by (l − k + 1). At this point,
the maximum is taken along the axis on which the
resulting feature maps are stacked, so to have a
new word embedding tensor e ∈ Ro. Three dif-
ferent sets of filters of different kernel sizes are
then passed over e, having sizes 3, 4 and 5 in our
implementation. Max pooling over time allows to
obtain a fixed-dimension digest for each of the re-
sulting maps, which can be concatenated to form
a single tensor to be fed to a bidirectional LSTM
along with the rest of the utterance. The latter re-
turns a dynamic representation of the word and its
context, which is then mapped to the label space by
a standard fully-connected layer. A visual overview
of the architecture is given in fig. 1. We will refer
to this model as ‘CharBased’. The second pro-
posed neural model leverages multilingual BERT
(Devlin et al., 2019) to obtain contextualized em-
beddings which are then fed to a standard sequence
classification pipeline, as can be seen in fig. 2. In
details, each word is first tokenized and encoded
by the mBERT tokenizer and fed to a pretrained
mBERT model along with the whole utterance. The
embedding is then provided by the last hidden state
of the pretrained model. Since the tokenizer is
based on the Wordpiece model (Schuster and Naka-
jima, 2012), words are often split in subwords: the
word ‘microfono’ for example would be split in
‘micro’ and ‘##fono’. To still obtain word-level
predictions, the resulting embeddings are averaged.
Utterances are finally fed to a bidirectional LSTM
whose output is mapped to the label space again by
a fully-connected layer. We will refer to this model
as ‘BertBased’ in the rest of the paper.

Figure 1: Diagram of the character-convolution-based
model.

Figure 2: Diagram of the contextual model.
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Code-Switching Detection on synthetic data

DE FR IT ES
F1 prec recall F1 prec recall F1 prec recall F1 prec recall

Baseline +0% +0% +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%
CharBased +25.1% +35.9% +9% +23.9% +35.7% +8% +29.4% +40.7% +12.7% +29.7% +40.0% +13.3%
BertBased +26.4% +37.7% +10.5% +25.8% +36.2% +11.2% +30.6% +40.9% +15.1% +31.2% +42.2% +14.1%

Table 2: Evaluation results for the task of code-switched utterance detection of the two neural models expressed
as relative improvement over the threshold based Baseline presented in section 4, performed over a held-out
artificially generated test set.

Code-Switching Detection on benchmark data

DE FR IT ES
recall FPR recall FPR recall FPR recall FPR

Baseline +0% +0% +0% +0% +0% +0% +0% +0%
BertBased +7.7% −22.4% −1.9% −48.4% +2.5% −46.6% −0.2% −35.5%
CharBased +18.4% −21.3% +2.9% −48.7% +7.9% −46.2% +3.4% −35.4%

Table 3: Evaluation results for the task of code-switched utterance detection of the two neural models expressed as
relative improvement over the threshold based Baseline presented in section 4, performed over the benchmark
dataset obtained as in section 3.

DE FR IT ES

DE +16% −1% +53%
FR −15% +31%
IT +54%

Table 4: Relative difference in % of utterances con-
taining cross-lingual phenomena by country. Cell ij
contains the difference in the ratio of cross-lingual utter-
ances between language i and language j.

5 Evaluation

As can be seen in table 2, the two neural models ob-
tain similar results on a held-out test set generated
according to the same procedure presented in sec-
tion 3, with BertBased slightly outperforming
the character based model. On the other hand, ta-
ble 3 shows that the latter obtains the best results on
the benchmark dataset, yielding much higher recall
while maintaining a low False Positive Rate (FPR).
The results are expressed as relative improvements
of the two models over the deterministic heuris-
tic introduced in section 4. Precision and recall
are given in table 3 because they are computed
on two separate datasets to avoid having to pick
an arbitrary ratio between code-switched and non-
code-switched utterances.

6 Results

Object of this analysis are code-switched utterances
detected from real Alexa queries by a model trained
on an artificial dataset generated according to sec-
tion 3. A separate model was trained for each lo-
cale versus English, and the inference was made

on real data coming from the corresponding lo-
cale. As can be seen in table 4, German, French
and Italian exhibit similar ratios of cross-lingual
utterances, with Italy being the country where they
are most common. On the other hand, Spanish
shows a remarkably different situation. As shown
in fig. 4, this difference is mostly attributable to
English words which do not represent named en-
tities: in Spain, people for example do not use
‘timer’, ‘computer’ or ‘film’, as they prefer their
Spanish correspondants ‘temporizadora’, ‘compu-
tatora’ and ‘pelicula’. This phenomenon is con-
firmed in fig. 3, where we see the most common
words causing cross-linguality. Figure 3 also shows
that the distribution is extremely skewed: for in-
stance, ‘timer’ in Italian causes almost the 10% of
all the cross-lingual utterances. This phenomenon
reflects the underlying distribution of voice assis-
tant utterances, where a set of frequent queries
make up for a large part of all of utterances. Fi-
nally, we can see in fig. 5 the way cross-lingual
utterances are distributed in different domains is
common to the different locales. Coherently with
the large amount of foreign named entities causing
cross-linguality, we can see that most utterances
belong to ‘Media & Entertainment’, which is ex-
pected to contain many international artists and
song names. ‘DeviceControl’ also accounts for
a significant part of the utterances; these usually
contain commands, like for example ‘play’, ‘next’,
‘stop’ etc., which are traditionally expressed in En-
glish even in non-English speaking countries.
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Figure 3: Most common English words used when interacting with Alexa in the four considered locales.

7 Conclusions

In this paper, we have presented a large-scale analy-
sis of the cross-lingual phenomena encountered by
voice assistants. We first have proposed an artificial
data generation technique, then we have presented
two neural models that can be trained on the syn-
thetic data to infer real cross-lingual utterances. Fi-
nally, we have employed the top-performing model
to infer such utterances from real data. The fact that
loanwords and foreign named entities cover most
of the found cross-lingual utterances may indicate
that code-switching is rare in voice assistants in
the considered locales. This may be explained by
the fact that users code-switch the most in collo-
quial situations, while their way of speaking when
querying a voice assistant is constrained by its un-
derstanding capacity. Nonetheless, multilingual
models still have a great opportunity of transfer
learning on the large amount of foreign named enti-
ties and loanwords that are present in the data. The
results show that the use of English words in DE,
FR, IT, ES is strongly skewed on popular entities
such as ‘Amazon’, ‘Netflix’, and ‘YouTube’, and
on specific loanwords such as ‘timer’, ‘computer’
and ‘stop’. The use of these popular named en-
tities is consistent across locales and the ratio of
cross-lingual interactions is similar, except for ES,
where users tend to prefer Spanish words to En-
glish loanwords. The analysis also shows that most
of the mixing words are contained in the ‘Media
& Entertainment’ domains and on named entities
such as Service Names, Media names, Item names

and Dish names.

As we have explained in section 3, the current
generation technique does not aim to model the
complex phenomenon of code-switching in a theo-
retically correct manner. The simplicity of the pro-
cedure nevertheless allows it to be repurposed to
focus on the latter. An interesting future direction
could be to limit the attention to code-switching
in the data generation, so that a model trained on
that data could be used to collect a code-switched
dataset of voice assistant queries. Given the low
FPR exhibited by the model, the collected utter-
ances represent an high-quality resource which
could in future be used to train generative mod-
els to produce better synthetic data, which in turn
can be used to train detectors in an iterative manner.

From an architectural prospective, models tack-
ling word-level language identification expressly
designed to solve the task of cross-lingual or code-
switched detection could benefit from the utterance-
level information about their distribution in the
dataset. This could encourage the design of a multi-
headed model tackling both tasks in an end-to-end
approach.

Finally, we aim to expand the set of considered
languages to encompass other frame and mixing
languages, for example considering Hinglish in In-
dia. It might be particularly interesting to compare
the obtained results for Spanish with ones obtained
over Spanish spoken in the United States and in
Mexico, as they may involve more code-switching.
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Figure 5: Distribution of domains in cross-linguistic utterances.
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8 Limitations

An overall limitation of the work stands from the
lack of absolute results, as the latter can only be
disclosed as relative improvements over a baseline
due to internal policy. As stated in sections 1 and 3,
the analysis only regards four European languages
(German, French, Italian and Spanish) with English
as mixing language. Therefore, while the same ap-
proach can be used with different languages, the
reported findings only regard the mentioned ones.
Moreover, the quality of the generated synthetic
data heavily depends on the quality of the slot reso-
lution artifacts presented in section 3. In this work,
these artifacts are human-curated according to the
highest industry standards, but are subject to IP
and hence not publicly accessible. Unfortunately,
this also makes the code non disclosable. Finally,
as discussed in section 3, the data generation tech-
nique may not fully capture the complex linguistic
patterns involved in code-switching. We argue that
it is however enough to encompass a large quantity
of cross-lingual utterances encountered by vocal
assistants, and prove it by showing the efficacy of
the models trained over synth data in dealing with
a high-precision benchmark dataset of real cross-
lingual utterances.
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