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Abstract

Token free approaches have been successfully
applied to a series of word and span level
tasks. In this work, we compare a byte-
level (ByT5) and a wordpiece based (mT5) se-
quence to sequence model on the 51 languages
of the MASSIVE multilingual semantic pars-
ing dataset. We examine multiple experimen-
tal settings: (i) zero-shot, (ii) full gold data and
(iii) zero-shot with synthetic data. By leverag-
ing a state-of-the-art label projection method
for machine translated examples, we are able
to reduce the gap in exact match accuracy to
only 5 points with respect to a model trained
on gold data from all the languages. We addi-
tionally provide insights on the cross-lingual
transfer of ByT5 and show how the model
compares with respect to mTS5 across all pa-
rameter sizes.

1 Introduction

Semantic parsers map natural languages utterances
into logical forms (LFs). In the context of con-
versational agents (Artzi and Zettlemoyer, 2011),
robotics (Dukes, 2014) or question answering sys-
tems (Berant et al., 2013), task-oriented semantic
parsers map user queries (e.g. “set an 8 am alarm”)
to machine readable LFs (e.g. [IN:CREATE_ALARM
[SL:TIME 8 am 11), in the form of structured in-
terpretations that can be understood and executed
by downstream components. Learning parsers re-
quires training data in the form of <utterance, LF>
pairs. Such data is costly to obtain especially at
large scale (Berant et al., 2013), since expert anno-
tators have to derive the correct LFs given an input
utterance. This problem is exacerbated in a multi-
lingual setting, where the availability of annotators,
especially for non top-tier languages, is scarce and
therefore even more expensive.

With the release of MASSIVE (FitzGerald et al.,
2022), the research community has now access to
a massively multilingual semantic parsing dataset
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that can be used to evaluate large language models
fine-tuned on the task and to study cross-lingual
transfer for numerous languages.

On the multilinguality front, token-free mod-
els with byte or character based vocabularies have
gained strength given their competitiveness with
respect to traditional subword-based pretrained lan-
guage models. Models such as ByT5 (Xu et al.,
2020), Canine (Clark et al., 2022) and the Char-
former (Tay et al., 2022) have been applied to pop-
ular multilingual benchmarks obtaining state-of-
the-art results.

In this paper, we perform the first in-depth eval-
uation of a token-free model in the context of mul-
tilingual semantic parsing. We compare the ByT5
and mT5 (Xue et al., 2021) models across different
parameter sizes and data regime settings. In addi-
tion to that, we build a map of the cross-lingual
transfer for all the languages in MASSIVE. Lastly,
we show that with the use of machine translated
synthetic data the accuracy of a state-of-the-art mul-
tilingual parser can be just 5 points lower than the
same parser trained with all the available multilin-
gual supervision. To incentivize research on syn-
thetic data augmentation approaches, we release
the MASSIVE English training utterances trans-
lated to 50 languages.'

2 The MASSIVE Dataset

MASSIVE (FitzGerald et al., 2022) is a semantic
parsing dataset covering 51 languages, 18 domains,
60 intents and 55 slots. The dataset was created
by professional translators starting from the En-
glish SLURP dataset (Bastianelli et al., 2020). A
significant portion of the translations have been
localized too, following the recent trend in multi-
lingual benchmarks of replacing western-centric

'"We release the translations in 50 languages of
the MASSIVE English training examples obtained with
an in-house translation system at https://goo.gle/
massive-translations
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entities with entities that are more relevant for the
target languages (Lin et al., 2021; Ding et al., 2022;
Majewska et al., 2022).

2.1 Pre and Post Processing

The annotated instances in the MASSIVE dataset
come in the following format:

intent: alarm_set

annot_utt: despiértame a las [time :
— nueve de la manana] el [date :
—» viernes]

To shorten the target output and save the model
from generating and potentially hallucinating un-
necessary words, we map the former to the follow-
ing format taken from MTOP (Li et al., 2021):

[IN: ALARM_SET [SL:TIME nueve de la maif
< ana ] [SL:DATE viernes ] ]

For evaluation, we use a simple inverse post-
processing step based on string matching to convert
the model outputs back to MASSIVE format.

2.2 Synthetic Data with Translate-and-Fill

A common approach to create multilingual syn-
thetic data from available examples is to use ma-
chine translation (Moradshahi et al., 2020; Sher-
borne et al., 2020). Utterances are translated and
LF annotations are projected using word aligners
and noise reduction heuristics. We instead adopt
the approach from Nicosia et al. (2021), Translate-
and-Fill (TAF), a label projection method in which
a filler model reconstructs the full LF starting from
an utterance and its LF signature.

We train an mT5-xx1 filler model on English
instances and then directly generate the LFs of
translated examples in a zero-shot fashion. Since
the slot order between English and translated ut-
terances may differ, we canonicalize the generated
synthetic interpretations reordering the slots as they
would occur in the translations. We have also no-
ticed in the filler output that for some languages
the slot boundaries may fall inside words. For lan-
guages with white space tokenization, we move
slot boundaries to word boundaries if needed.

As an example, given an input utterance
“despiértame a las nueve el viernes” and
[IN:ALARM_SET [SL:DATE el vier ] [SL:TIME
nueve 1 ] as LF, the process looks as follows.
First the arguments are reordered according to
the order of appearance in the original sentence:
[IN:ALARM_SET [SL:TIME nueve 1 [SL:DATE
vier ] J. Then slot boundaries that fall within
words are extended, correcting the prediction for
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the second argument from [SL:DATE vier ] to
[SL:DATE viernes 1.

3 Experiments

We use MASSIVE as a test bed for two model fam-
ilies, ByT5 and mT35, evaluating them at all sizes
in three different data settings. We report Intent Ac-
curacy (IA) and Exact Match (EM) accuracy. We
do not perform any hyper-parameter tuning: we
train for 30K steps with a fixed learning rate of
0.0001 and a batch size of 128 for all models but
xx1, for which batch size was reduced to 32. We
run fine tuning on Cloud TPU v3 with an input/-
target length of 1024/512 for By TS5 and 512/512
for mT5. To minimize compute, all the reported
results are from single runs. We experiment with
three different settings, summarized below:

1. Zero-shot setting. Training is performed on
English data only, and the model selection is
done on the English development set. Results
are reported in Table 1.

Gold-data setting. Training is performed on
all the MASSIVE data, that includes 51 lan-
guages. Model selection is performed averag-
ing the accuracy on the multilingual develop-
ment sets. Results are reported Table 2.

. Synthetic data setting (TAF). Training is
performed on English and multilingual data
that is synthetically generated via TAF. Re-
sults are reported in Table 3. Our entry based
on this approach ranked 1st in the Zero-Shot
Task of the MMNLU-22 Multilingual Seman-
tic Parsing competition organized by Amazon
and co-located with EMNLP 2022.%

We can see a pattern that is common to all the ex-
periments: at smaller sizes, ByT5 has much better
EM accuracy then the corresponding mT5 mod-
els. As stated in Xu et al. (2020), this may be
explained by the fact that at these sizes less than
0.3% of ByT5 parameters are locked in embedding
tables and a larger amount of dense parameters is
updated during training. mT5 parameters are in-
stead dominated by the embedding tables, which
are updated less often than the dense layers. In ad-
dition to that, ByT5-large is worse than ByT5-base
at span labeling, which is a word level task. Both
our observations confirm the findings in Xu et al.
(2020).

Zhttps://mmnlu-22.github.io
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Model IA EM

ByTS5-small 49.26 20.36
ByTS5-base 64.3  33.47
ByTS5-large 66.53 28.43
ByT5-xl 80.96 41.7

ByT5-xx1 81.73 38.28
mT5-small  51.75 17.59
mT5-base 5591 17.73
mT5-large  67.23 25.14
mT5-x1 79.97 45.60
mT5-xx1 82.44 50.21

Table 1: Zero-shot *T5 parsers performance when
training on English only.

Model IA EM

ByTS5-small 85.59 66.60
ByT5-base 85.93 67.54
ByTS5-large 84.02 62.92
ByT5-xl 87.01 68.29
ByT5-xxl 87.27 68.66
mT5-small  73.29 46.65
mT5-base 82.03 58.24
mT5-large  85.58 64.13
mT5-x1 87.24 68.47
mT5-xxl1 86.79 63.33

Table 2: *T5 parsers performance when training on all
the available gold data.

In the synthetic data setting (Table 3), IA al-
most matches the IA of models from the gold data
setting. If we consider EM accuracy, we are only
5% points behind the upper bound performance
of the multilingually supervised -xx1 models (see
Table 2). This indicates that synthetic data augmen-
tation is a viable approach for the i18n of semantic
parsers. Please refer to Table 9 in the appendix for
results on individual languages.

4 Additional Experiments and Results

In zero-shot evaluations, English is the most stud-
ied language given the availability of labeled data.
Recent work has shown that this language may not
be the best at cross-lingual transfer (Turc et al.,
2021). Since MASSIVE provides training and
test data for all its languages, we can evaluate the
zero-shot performance of each language. We train
51 ByT5-base model for a fixed number of steps
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Model IA EM

ByT5-small 83.32 59.32
ByT5-base 84.59 61.24
ByT5-large 82.82 58.09
ByT5-xl 85.90 62.98
ByTS5-xx1 86.48 64.18
mT5-small  73.64 43.19
mT5-base 80.79 51.76
mT5-large  83.99 57.43
mT5-xl 86.07 62.33
mT5-xx1 86.69 62.49

Table 3: *T5 parsers performance when training on En-
glish and synthetic TAF data.

(1k steps, 128 batch size) and collect the results
on the development sets in Figure 2. By summing
the EMs on rows we can understand how much a
fine-tuning language (donor) improves the others.
If we sum over columns, we can see how much
transfer a target language (receiver) gets from the
others. We report some statistics about best/worst
donor/receiver languages in Table 4. Interestingly,
English is not among the top donors, while it is
the one that is being improved the most by other
languages. We speculate that the better English
LM representations may already have an intrinsic
notion of semantic concepts that are then quickly
individuated if supervision for such concepts is pro-
vided in other languages. From Figure 2, we see
that some languages (am, sw, km, cy) clearly need
annotated data. We hope that this map could help
prioritize data collection efforts.

MASSIVE examples contain an interesting
piece of metadata that indicates if an utterance has
been translated and localized (i.e. original entities
have been substituted with entities more culturally
relevant for the target language), or translated only.
We split the test sets in two parts according to this
information and report in Figure 1 the EM accura-
cies of the same mT5-xxl model. We examine the
three data settings studied in this paper. Accuracies
on localized utterances are consistently lower. The
performance difference in the synthetic data setting
is relatively small but it still suggests that creating
synthetic examples with entities that are local to
the target language may improve the robustness of
the parser.

In the appendix, we report the accuracy for each
individual intent on the union of the test set ex-
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Figure 1: Differences in EM for an mT5-xx1 model
evaluated on queries of the test set that have been both
translated and localized, vs only translated.

Best to worst

Donor
Receiver

fr, de, es, nl, pL, - - -, mn, am, sw, km, cy

en, de, pt, fr, sv, - - -, zh, am, mn, sw, cy

Table 4: Top-5 Best/worst donor/receiver.

amples from all languages (Table 8). In Table 5,
we report the 6 intents with the lowest accuracy.
Most examples belong to the GENERAL_QUIRKY in-
tent. The latter is likely a bucket intent covering
all the utterances that are generic or out-of-domain
(we could not find an exhaustive description of
this intent in the SLURP dataset(Bastianelli et al.,
2020)). The common parser mistake is to classify
such queries as belonging to a more specific intent
that can plausibly be associated with that query.
Finally, we compare our NMT translations of
the training set with the corresponding gold trans-
lations produced by professional translators. We
summarize the most interesting information in Ta-

Intent IA Support
GENERAL_GREET 19.6 ol
MUSIC_SETTINGS 27.1 306
AUDIO_VOLUME_OTHER 54.9 306
GENERAL_QUIRKY 55.6 8619
TOT_HUE_LIGHTON 61.4 153
MUSIC_DISLIKENESS 74.5 204

Table 5: IA of the ByT5-xx1+TAF model for the lowest
scoring intents (considering all languages).
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Language sets Avg Match (%)

All languages 21.3
All but Indic languages 17.3
Indic languages 50.8

Table 6: Percentages of NMT translations matching hu-
man translations in MASSIVE training set.

ble 6 (full comparison in Table 7 included in the ap-
pendix). Indic languages (*_IN and bn_BD) have
an higher average match than other languages. This
may suggest that translations in these languages are
more unambiguous or that translators may have re-
lied on a MT during the translation task.

5 Related Work

Multilingual models are architecturally similar to
monolingual transformer-based models but they
are pretrained on multilingual corpora. These
models include XLM (Lample and Conneau,
2019), XLM-R (Conneau et al., 2020) and mT5
(Xue et al., 2021), the multilingual version of
T5 (Raffel et al., 2020). They all use a subword
vocabulary, a choice that may result in poor
performance for languages with limited amount of
data (Wang et al., 2021). Token-free models such
as ByT5 (Xu et al., 2020), Canine (Clark et al.,
2022) and Charformer (Tay et al., 2022) were
designed to avoid this issue and have been applied
to popular multilingual benchmarks obtaining
state-of-the-art results. In this work, we compare
the multilinguality and the generative capabilities
of mT5 and ByT5 in a massively multilingual
semantic parsing task.

Data augmentation is the process of creat-
ing synthetic labeled data from available annotated
examples. One approach in the multilinguality
space is to translate annotated data in one language,
e.g. English, to other languages. Neural machine
translation is a strong baseline as it has been shown
in recent cross-lingual evaluation benchmarks
(Hu et al., 2020; Ladhak et al., 2020). While
translation works quite well for classification
tasks where the label is at instance level, sequence
tagging or parsing tasks require an annotation
projection step because labels are at token level.
Translate-and-align methods use bilingual word
aligners, statistical (Brown et al., 1993; Vogel
et al., 1996; Och and Ney, 2000, 2003), and neural
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Figure 2: Zero-shot EM accuracies of individual ByT5-base models fine-tuned on a single language (y-axis) and

evaluated on dev sets from all languages (x-axis).

(Schuster et al., 2019; Chen et al., 2020; Zenkel
et al., 2020). More recent works removes this
explicit alignment requirement (Dong and Lapata,
2018; Zhang et al., 2019; Wiseman et al., 2018). In
our work, we use a label projection method based
on pretrained language models (Nicosia et al.,
2021) that reconstructs a full semantic parse from
an utterance and a signature of the same parse.

6 Conclusions

In this paper, we evaluated ByT5 and mT5 (Xue
et al., 2021) models in a massively multilingual
semantic parsing task, showing that ByTS5 is par-
ticularly competitive at smaller sizes. We have
provided a map of the cross-lingual transfer for all

29

the languages in MASSIVE and demonstrated that
synthetic examples created with NMT are effective
for building accurate semantic parsers.

Limitations

This work uses seq2seq models as parsers. Differ-
ent output formats can yield better or worse results
as shown in Paolini et al. (2021). We do not focus
on tweaking formats or on modeling improvements
such as constrained decoding for a more faithful
generation. We adopt a compact output representa-
tion that reduces the text the model has to generate
(and hallucinations) and gives us competitive re-
sults. In the cross-lingual transfer experiments,
we train each model for a small fixed number of



steps. If we train for longer, the representations
start to change significantly and cross-lingual per-
formances vary quite unpredictably. We leave for
the future an investigation of the learning dynamics
in this setting and the design of possible remedies.
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A Comparing NMT with Gold
Translations

In Table 7, we compare how many times the NMT
translated utterances match the gold translations
produced by professional translators. We restrict
the match to utterances that have been translated
and not localized in the target language, since NMT
cannot perform the localization step. In addition,
we preprocess all compared utterances with uni-
code normalization, we strip whitespaces and punc-
tuation. In general, indic locales have higher match
rates compared to other locales. Please also note
that we translate English to pt_BR (Brazilian Por-
tuguese) and this explains the low match for pt_PT.

B Intent Accuracy Performance

In Table 8, we report the accuracy for each indi-
vidual intent on the union of the test set examples
from all languages using ByT5-xxl + TAF.

C Performance on all Languages

In Table 9, we report Exact Match on all the 51 lan-
guages, for the three different experimental setups
described in Section 3, across two models (mT5
and ByT5) and two model sizes (base and xxl).

32



Intent 1A Support

GENERAL _GREET 19.6 51
MUSIC_SETTINGS 27.1 306
NMT vs Gold Non-localized AUDIO_VOLUME_OTHER 54.9 306
Translations Matches sentences GENERAL_QUIRKY 55.6 8619
Language (%) #) #) TOT_HUE_LIGHTON 61.4 153
MUSIC_DISLIKENESS 74.5 204
kn_IN — 68.7 6524 9497 DATETIME_CONVERT 75.6 765
te_IN  54.1 4841 8941 TOT WEMO_ON 63 510
b”-?ﬁ Zg'g fégf Sggé PLAY_AUDIOBOOK 780 2091
;?—IN 165 201 o807 TRANSPORT_QUERY 781 2601
TN 3se 2878 10070 RECOMMENDATION_EVENTS 783 2193
SRR 6.0 sl 10385 RECOMMENDATION_MOVIES 79.2 1020
- : CALENDAR_QUERY 80.6 6426
ml_IN  34.7 2085 8607
t1PH  34.0 3397 10000 QA_FACTOID 2.4 7191
G oA e 5160 9640 I0T_HUE_LIGHTUP 82.5 1377
TR 391 5008 9330 LISTS_QUERY 82.6 2601
- : AUDIO_VOLUME_UP 83.0 663
SW—:E gg'é gigg Sggi SOCIAL_QUERY 83.9 1275
i‘é—No 538 5109 10083 MUSIC_QUERY 84.0 1785
O : EMAIL_ADDCONTACT 84.5 612
Vi 216 2000 9255 MUSIC_LIKENESS 84.7 1836
ms_MY 31(15 igig g;g; EMAIL_QUERYCONTACT 84.8 1326
J‘l’—éE 510 5017 0613 TAKEAWAY_QUERY 85.0 1785
za—DK 5004 1933 9470 LISTS_CREATEORADD 85.6 1989
0 204 1889 0297 QA_DEFINITION 86.3 2907
s 195 1876 0506 LISTS_REMOVE 86.3 2652
EE—CN 190 1661 77 COOKING_RECIPE 86.6 3672
P 189 1638 2076 NEWS_QUERY 86.9 6324
ft—IT 179 1506 2016 PLAY_MUSIC 87.1 8976
‘- . TAKEAWAY_ORDER 87.3 1122
fIFL 7.5 1669 9558 I10T_HUE_LIGHTDIM 87.4 1071
ruRU 7.4 1550 8912 PLAY_PODCASTS 87.6 3213
hy_AM  16.9 1809 10707 PLAY GAME er7  l7gs
is_I1s  16.1 1491 9270 - :
ALARM_SET 89.5 2091
km KH - 16.1 1491 9276 PLAY_RADIO 90.0 3672
cy-68  15.9 1578 9936 CALENDAR_SET 90.2 10659
sl.sL 147 1313 8913 RECOMMENDATION_LOCATIONS ~90.4 1581
am_ET  14.6 1267 8658
hu WU 14.5 1331 9198 QA_MATHS L
. AUDIO_VOLUME_DOWN 90.7 561
urPK 144 1260 8761 SOCIAL_POST 91.1 4131
‘lje—DE 14.2 1432 9992 TOT_WEMO_OFF 91.3 918
v-Lv. 124 1071 8650 AUDIO_VOLUME_MUTE 91.7 1632
he IL  12.3 1123 9159 ALARM_QUERY 91.8 1734
sq-ﬁ'i g? }?gg Ség? GENERAL _JOKE 92.0 969
iﬁ—TH 1 1041 5304 EMAIL_QUERY 93.0 6069
- 109 1001 o107 TRANSPORT_TICKET 93.1 1785
r‘l’—gg 105 034 3879 CALENDAR_REMOVE 93.4 3417
€. : 034 9302 EMAIL_SENDEMAIL 94.0 5814
pt—:l g'g a1 Ss14 TOT_CLEANING 942 1326
;E-MN 20 e 9896 WEATHER_QUERY 94.6 7956
it o3 718 2686 T10T_HUE_LIGHTOFF 94.8 2193
gy - 704 0487 TRANSPORT _TAXI 95.3 1173
o =1 01 0598 TOT_HUE_LIGHTCHANGE 95.4 1836
- : ALARM_REMOVE 95.5 1071
ko_KR 3.9 341 8804 1326
my_MM 2.0 171 8765 QA_STOCK 95.6
DATETIME_QUERY 95.8 4488
TRANSPORT_TRAFFIC 96.3 765
Table 7: Number of verbatim matches between Gold QA_CURRENCY 96.6 1989
translation and NMT translations. IOT_COFFEE 97.9 1836

Table 8: IA of the ByTS5-xxI+TAF model for all intents
(all languages).
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Zero Shot Synthetic (TAF) Gold
base xxl base xxl base xxl
Language mT5 ByTS mTS ByTS \ mTS ByT5 mTS ByTS \ mTS ByT5S mTS ByTS
af_ZA 21.6 51.1 58.0 59.7 53.7 647 65.6 66.8 59.4 68.5 65.9 69.3
am_ET 4.7 159 40.7 22.0 40.8 544 61.2 61.0 48.7 61.3 62.0 65.8
ar_SA 14.6 27.8 43.6 23.3 45.9 56.1 60.1 60.5 52.3 64.7 61.1 66.0
az_AZ 8.9 31.2 41.8 34.0 46.4 61.6 61.9 63.6 57.0 69.0 62.6 69.6
bn_BD 10.8 19.5 45.9 25.3 51.0 62.1 64.3 65.6 57.6 67.6 64.6 69.5
cy_GB 5.9 16.4 42.8 40.2 35.7  56.1 61.5 64.2 42.1 65.3 61.4 69.2
da_DK 30.2 53.1 60.9 54.2 57.8 67.5 67.3 68.7 64.4 717 67.9 71.3
de_DE 28.3 55.3 59.8 59.5 60.2 67.8 67.5 68.8 64.1 70.4 68.0 70.2
el_GR 174 31.5 57.2 27.9 55.5 64.2 65.5 66.6 62.0 68.3 66.6 68.7
en_US 65.5 72.2 74.0 73.3 68.5 72.6 73.7 73.0 68.9 72.7 73.3 72.6
es_ES 26.1 50.8 55.6 52.2 58.7  65.1 65.0 65.9 61.1 67.2 65.9 66.2
fa_IR 17.6 32.8 54.4 24.0 54.9 62.2 63.2 64.4 59.9 69.1 63.4 69.7
fi_FI 16.3 36.9 52.5 474 51.2 65.9 65.6 68.2 59.4 711 66.8 71.5
fr_FR 29.9 53.5 58.5 54.3 59.3 64.4 65.1 65.6 62.3 66.5 65.8 67.2
he_IL 9.7  21.0 40.4 24.0 50.1 594 61.0 63.2 57.5 67.3 62.3 68.4
hi_IN 14.1 26.3 52.9 26.2 54.4 62.6 64.2 64.4 59.3 66.5 64.5 67.2
hu_HU 17.5 33.5 45.3 32.9 51.8 62.2 64.2 64.2 58.2 68.5 65.2 69.5
hy_AM 11.7  20.5 44.6 24.7 49.8 58.4 60.3 62.2 57.8 67.7 61.7 68.9
id_ID 24.1 48.3 58.6 61.5 59.0 64.6 65.5 67.1 63.4 68.8 66.2 69.0
is_IS 11.6 32.1 47.2 31.7 47.6 60.9 63.4 65.9 54.6 68.5 63.4 69.6
it_IT 25.3 52.5 59.5 59.5 57.2 63.0 64.6 65.5 60.2 67.6 65.7 67.3
ja_JP 26.8 23.3 46.6 29.3 51.0 55.6 57.3 58.8 60.5 65.8 58.7 67.0
jv_ID 10.7 229 4538 46.2 42.5 58.9 62.1 63.9 48.5 66.5 62.6 68.5
ka_GE 9.7 17.9 39.9 22.1 45.4 529 54.8 571 54.5 63.8 56.2 66.8
km_KH 114 18.0 44.8 23.6 39.2 51.8 51.7 557 54.7 63.8 54.3 67.0
kn_IN 8.8 20.2 41.9 25.4 474 58.6 55.8 61.7 52.1 63.8 56.6 65.8
ko_KR 11.0 16.3 49.8 24.8 54.1 61.5 65.6 65.8 60.2 68.7 66.4 703
lv_LV 11.6 40.3 51.9 33.7 52.4 61.2 63.0 64.6 59.0 69.6 64.1 70.4
ml_IN 10.1 194 41.2 25.8 47.9 55.3 55.0 58.5 59.4 68.2 55.6 69.2
mn_MN 7.4 134 38.9 22.2 46.9 57.0 60.2 62.7 53.8 66.1 61.5 68.7
ms_MY 21.7 450 54.8 59.9 57.1 65.7 67.7  68.0 60.6 69.3 68.4 68.9
my_MM 10.7 13.8 48.7 231 51.5 59.8 61.9 66.1 59.3 68.8 64.3 72.6
nb_NO 26.9 50.6 60.7 56.3 60.7  68.0 68.8 70.2 65.0 70.5 69.9 70.7
nl_NL 28.3 55.2 60.1 63.3 60.2 66.5 67.4 67.5 64.7 68.4 68.3 70.0
pl_PL 19.0 47.1 50.7 46.0 56.2 61.8 62.0 63.3 59.7 65.9 62.5 66.5
pt_PT 28.1 52.0 60.8 50.6 61.5 65.9 66.8 67.6 63.6 68.7 67.5 68.2
ro_RO 22.8 45.7 574 52.7 55.8 64.5 65.7 67.1 60.2 68.5 65.9 69.6
ru_RU 19.0 26.1 49.0 26.1 56.9 61.6 63.5 63.8 63.5 68.8 64.0 69.5
sl_SL 15.8 43.7 52.8 47.8 53.2 63.5 64.5 64.8 57.7 68.0 64.5 68.8
sq_AL 15.3 42.1 48.0 39.9 48.8 61.1 61.2 63.5 54.2 68.9 61.3 68.5
sv_SE 26.0 54.4 61.8 53.0 62.6 70.1 70.6 71.1 65.9 72.0 71.2 71.5
sw_KE 9.6 15.6 44.0 41.9 44.2 58.7 58.2 59.6 48.0 66.3 58.6 66.8
ta_IN 10.9 19.9 41.1 24.3 48.2 55.5 56.4 58.3 56.6 64.9 58.0 66.0
te_IN 7.8 21.6 46.4 25.1 43.6 60.0 55.4 62.7 51.4 65.0 55.1 67.5
th_TH 21.8 313 55.0 26.8 474 62.1 62.2 66.9 63.2 72.0 64.6 74.2
t1_PH 18.9 42.0 56.9 58.7 53.2 624 65.7  66.1 56.7 66.5 66.5 68.5
tr_TR 14.4 35.2 48.4 38.5 51.6 64.9 65.5 66.2 58.5 69.4 65.5 69.4
ur_PK 9.7 227 49.2 22.8 50.5 59.5 61.5 61.9 54.1 63.3 62.6 65.7
vi_VN 15.1 35.1 55.9 36.4 49.8 57.5 61.0 62.3 55.5 67.0 62.1 68.2
zh_CN 22.1 17.3 31.7 241 45.6 54.1 53.0 57.9 60.8 65.9 54.9 66.6
zh_TW 21.2 16.5 324 24.2 45.2 51.8 52.0 54.5 58.2 62.2 53.8 63.9
Average 17.7  33.5 50.2 38.3 | 51.8 61.2 62.5 642 | 58.2 67.5 63.3 68.7

Table 9: *T5 parsers Exact Match on individual languages in the Zero-Shot, TAF and Gold settings.
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