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Abstract

Knowledge transfer between neural language
models is a widely used technique that has
proven to improve performance in a multi-
tude of natural language tasks, in particular
with the recent rise of large pre-trained lan-
guage models like BERT. Similarly, high cross-
lingual transfer has been shown to occur in
multilingual language models. Hence, it is of
great importance to better understand this phe-
nomenon as well as its limits. While most stud-
ies about cross-lingual transfer focus on train-
ing on independent and identically distributed
(i.e. i.i.d.) samples, in this paper we study
cross-lingual transfer in a continual learning
setting on two sequence labeling tasks: slot-
filling and named entity recognition. We inves-
tigate this by training multilingual BERT on se-
quences of 9 languages, one language at a time,
on the MultiATIS++ and MultiCoNER corpora.
Our first findings are that forward transfer be-
tween languages is retained although forgetting
is present. Additional experiments show that
lost performance can be recovered with as lit-
tle as a single training epoch even if forgetting
was high, which can be explained by a progres-
sive shift of model parameters towards a better
multilingual initialization. We also find that
commonly used metrics might be insufficient
to assess continual learning performance.

1 Introduction

State-of-the-art models for Natural Language Pro-
cessing (NLP) usually leverage deep neural net-
works. In particular, pre-trained Transformer-
based (Vaswani et al., 2017) language models like
BERT (Devlin et al., 2019) have proven to perform
very well on various NLP tasks, often achieving
state-of-the-art results (Raffel et al., 2020; Brown
et al., 2020). These models are pre-trained in a
self-supervised way on large text corpora and rely
on knowledge transfer to solve downstream tasks,

∗These authors have contributed equally. The order is
alphabetical.

where the pre-trained model is fine-tuned on the
target task. Multilingual versions of these mod-
els have also been trained and demonstrate high
cross-lingual transfer as well (K et al., 2020; Wang
et al., 2020; Conneau et al., 2020; Xue et al., 2020).
Given the interest in these models for cross-lingual
transfer, it is of great importance to better under-
stand this phenomenon as well as its limits.

In this work, we analyse the cross-lingual trans-
fer capabilities of multilingual BERT and we work
on sequence labeling, where each token of a sen-
tence must be annotated with a specific label. This
problem regroups various NLP tasks like Named
Entity Recognition (NER), Part-Of-Speech (POS)
Tagging, text chunking and slot-filling. We focus
our study on two of these tasks using two multi-
lingual corpora1: MultiATIS++ for slot-filling (Xu
et al., 2020) and MultiCoNER for NER (Malmasi
et al., 2022a,b). Experimenting on different cor-
pora allows us to identify which observations may
generalize and which ones may be corpus specific.

While most cross-lingual transfer studies about
slot-filling or NER focus either on joint training or
training on a source and a target language (Xu et al.,
2020; Schuster et al., 2019; Arkhipov et al., 2019;
Mueller et al., 2020; Wang et al., 2020), our main
contribution is a study with special focus on con-
tinual cross-lingual transfer, where the model per-
forms one single task but is progressively adapted
over a sequence of languages.

We believe this experimental setup to be inter-
esting not only as a novel way of studying cross-
lingual transfer but also because it is better suited
to real case scenarios. Indeed, adaptation to new
data over time is a highly desirable feature of most
NLP models: oftentimes, collecting data and an-

1We do not work on the recent MASSIVE (FitzGerald
et al., 2022) corpus as we consider it too similar to Multi-
ATIS++. We also avoid Universal Depedencies (Nivre et al.,
2020) because we consider POS tagging to be too simple for
this type of study. Moreover, the amount of per-language data
in the latter could bias the transfer we observe.
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Figure 1: Depiction of a training sequence across 4
languages. For each language in the given order, we
train the model on its training set, select the best epoch
on the development set and then test on all test sets
independently.

notating them is expensive, which makes training
data scarce or incomplete at the beginning of a
project. Additionally, model requirements might
also evolve with time based on the needs of the
users. This means that the model has to adapt se-
quentially as training data becomes available. An
example of this could be a dialogue system that is
gradually deployed in different countries. Unfortu-
nately, naive solutions to adapt a previously trained
model are costly, as they require either re-training
from scratch or maintaining many distinct models.

On the other hand, progressively training on mul-
tiple datasets that become available one by one is
at the heart of continual learning (Hadsell et al.,
2020), where the goal is for a model to improve
itself both on past and new data. We refer to these
datasets and the order in which they appear as a
training sequence (f.i. see Figure 1). Traditional
training schemes assume that training examples (in
our case annotated sentences) are independent and
identically distributed (i.i.d.), which does not usu-
ally hold when data becomes available sequentially.
Moreover, access to previous data is not allowed2,
as this represents a linear use of resources with re-
spect to the length of the sequence, which can in
theory be infinite. In this context, transfer is gener-
ally divided in two: forward and backward (Hadsell
et al., 2020; Lopez-Paz and Ranzato, 2017; Arora
et al., 2019), defined in our case as improvement
on future and already acquired languages respec-
tively. The biggest challenge of continual learning
systems is catastrophic forgetting (Hadsell et al.,
2020; French, 1999), which is defined as a strong
performance loss in previously acquired knowledge

2Access to previous data is sometimes allowed if lim-
ited (Robins, 1995)

Language
Utterances

Labels
train dev test

MultiATIS++
Hindi 1,440 160 893 75
Turkish 578 60 715 71
Others 4,488 490 893 84

MultiCoNER
All 15,3K 800 ≥138K 6

Table 1: Number of sentences per subset and num-
ber of unique labels (without B and I prefix) for each
language in MultiATIS++ (Xu et al., 2020) and Multi-
CoNER (Malmasi et al., 2022a).

(i.e. negative backward transfer). While previous
studies on continual learning tend to focus on the
domain axis for the slot-filling task (Lee, 2017;
Madotto et al., 2020), or on the class axis for the
NER task (Monaikul et al., 2021; Xia et al., 2022),
we concentrate on the axis of language adaptation.

Similar work also investigates cross-lingual
transfer of multilingual BERT fine-tuned on se-
quence labeling tasks, namely NER and POS-
Tagging (Liu et al., 2021). They focus on preserv-
ing masked language modeling performance and
cross-lingual ability after fine-tuning on one of the
two tasks on English only, with a method devel-
oped as part of continual learning. Conversely, our
work focuses on fine-tuning on a single task over a
sequence of many languages.

In this paper, we first describe in Section 2 and 3
the task, the corpora and the model we are working
with. Then in Section 4 we define the different
continual learning metrics that we use in our ex-
periment. Our study is guided by the following
research questions, as presented in Section 5: does
cross-lingual transfer exist during continual train-
ing or does catastrophic forgetting prevent it? How
much transfer can we expect relative to monolin-
gual and multilingual i.i.d. training? In Section 6
we perform an extensive analysis on MultiATIS++
in order to understand how transfer is affected by
the training sequence. Finally, in Section 7 we
investigate whether lost performance (due to for-
getting) can be recovered and at what cost.

2 Task and corpora

2.1 Sequence labeling

In sequence labeling, each token of a sentence must
be annotated with a specific label. Hence, it is
appropriate to identify concepts or entities in sen-



17

Find Denverme cheapest

O B-cost_relativeOO

one

B-round_trip

way

I-round_trip

fare I can get from

O O O O O

Boston

B-fromloc.city_name

to

O B-toloc.city_name

the

Figure 2: Example of slot filling IOB (Ramshaw and Marcus, 1995) labels for an utterance of MultiATIS++ (Xu
et al., 2020) in English. Label “O” (from outside) denotes that no concept is mentioned, “B” (from beginning)
denotes the first word of a concept and “I” (from inside) the continuation of a concept. Different slot types are
shown in different colors.

tences. In our case, the labels to predict are the
same across languages so that the task remains un-
changed over the continual learning process.

Sequences are labeled using the IOB for-
mat (Ramshaw and Marcus, 1995), where labels
consist of a prefix (B,I or O) and an optional type
that categorizes the identified concept. While O
indicates that the token is not part of a concept (O
for outside), B and I indicate that it is the begin-
ning or continuation of a concept, thus allowing the
identification of multi-token concepts. An example
of this labeling scheme is shown in Figure 2.

This task is usually evaluated using the slot
micro F1 score (Tjong Kim Sang and Buchholz,
2000).

2.2 MultiATIS++

The MultiATIS++ multilingual corpus comes from
the Air Travel Information System (ATIS) cor-
pus (Hemphill et al., 1990), consisting in utterances
of users asking for flight information. The corpus
focuses on the slot-filling task, which is related to
task-oriented dialogue systems. It enables the sys-
tem to identify the important concepts mentioned
by the user that are needed to successfully con-
tinue the dialogue. These concepts are related to
the system’s domain and to the tasks that the sys-
tem should perform. This corpus is the manual
translation of the original English (EN) ATIS sen-
tences into 6 different languages: Spanish (ES),
Portuguese (PT), German (DE), French (FR), Chi-
nese (ZH) and Japanese (JA). It also includes two
additional languages: Hindi (HI) and Turkish (TR),
that were added as part of MultiATIS in (Upadhyay
et al., 2018).

Contrary to the translations added in Multi-
ATIS++, the number of utterances of Hindi and
Turkish translations are not as many as for the other
languages. More details on the composition of Mul-
tiATIS++ are shown in Table 1.

2.3 MultiCoNER

The MultiCoNER corpus was proposed as part
of the SemEval 2022 Task 11 (Malmasi et al.,
2022a,b) and focuses on the NER task. While it is
usually a generic task consisting in identifying en-
tities like people, organizations, locations or dates
in written texts, this corpus focuses on detecting
ambiguous and complex entities in short and low-
context settings. These entities are person, loca-
tion, group, corporation, product and creative work.
MultiCoNER also aims at stimulating the research
on multilingual models, as it contains annotations
in 11 languages. For a fair comparison with Mul-
tiATIS++, we restrict these experiments to also
contain 9 languages, namely Bengali (BN), Ger-
man (DE), English (EN), Spanish (ES), Hindi (HI),
Korean (KO), Dutch (NL), Turkish (TR) and Chi-
nese (ZH). More details on the composition of Mul-
tiCoNER are shown in Table 1. In the rest of the
paper and for both corpora we denote the train, dev
and test sets of a given language i with a subscript
(e.g. traini).

3 Model

We use the multilingual BERT (Devlin et al., 2019)
base model, consisting of 12 multi-head attention
layers with 12 heads and hidden size of 768 (177M
parameters). This model was trained on large
Wikipedia dumps from 104 different languages us-
ing masked language modelling and next sentence
prediction objectives.

As we use the model for sequence labeling, we
append a two-layer feed-forward classifier with
hidden size 768 and ReLU (rectified linear unit)
activation (Nair and Hinton, 2010). The input of
the classifier are the last layer word hidden states
after applying dropout with p = 0.1.

Following (Xu et al., 2020), we train the
model on MultiATIS++ using the Adam opti-
mizer (Kingma and Ba, 2015) with a learning
rate of 10−5 and a batch size of 32 utterances for
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50 epochs (unless stated otherwise), selecting the
model with the highest slot F1 on the correspond-
ing dev set. We train the model on MultiCoNER the
same way, except for the learning rate (optimized
on dev and set to 5 × 10−5) and the number of
epochs, which is set to 15. We evaluate the model
on all testi sets for every language i using the slot
F1 calculated with the seqeval library (Nakayama,
2018).

4 Continual Learning Metrics

Cross-lingual transfer can be defined as the per-
formance improvement of a model on a particular
language based on knowledge of other languages.
This can take several forms depending on the train-
ing structure. In an i.i.d. context, where all data
are available from the start, we think of transfer in
terms of joint training. If training on language i and
j jointly (multilingual) yields better performance
on j than training only on j (monolingual), then
there is transfer from i to j.

However, continual learning adds a different di-
mension. Indeed, when training on a language
sequence we can identify two types of transfer: for-
wards and backwards (Hadsell et al., 2020; Lopez-
Paz and Ranzato, 2017). Forward transfer denotes
the performance and learning efficiency improve-
ment on a given language thanks to previously ac-
quired knowledge of other languages. Conversely,
backward transfer denotes the performance im-
provement on a previously acquired language when
learning a new one. More formally, and similarly
to Lopez-Paz and Ranzato (2017), given a sequence
of L languages, we define the performance ma-
trix P ∈ RL×L, where Pij is the performance of
language i after learning language j. In this con-
text, backward transfer of i is defined as:

BTi = PiL − Pii (1)

Negative backward transfer is also called forget-
ting, as it denotes performance loss on previous
languages. Since P11 is equivalent to monolingual
performance mono1, we can define backward trans-
fer of the first language after learning language j:

BT1j = P1j −mono1 (2)

Conversely, we define forward transfer as:

FTmono
i = Pii −monoi (3)

where monoi denotes monolingual performance
on language i. By comparing performance with a
different baseline like multilingual, we can measure
how close forward transfer is to joint transfer:

FTmulti
i = Pii −multii (4)

where multii denotes the multilingual performance
on language i. These definitions will be useful for
the analysis in Section 6.

5 Cross-lingual Transfer

Does transfer exist during continual training or
does catastrophic forgetting prevent it?

Before studying the continual learning scenario,
we first measure transfer when training the model
on all languages at once (i.e. joint transfer). Then,
having this frame of reference, we investigate trans-
fer when training the model on each language se-
quentially (i.e. continual transfer).

5.1 Joint Transfer

In order to measure transfer in unstructured i.i.d.
training, we train the model on all languages to-
gether (multilingual) and compare the performance
we obtain with monolingual training. Note that
multilingual training corresponds to concatenating
all traini for training and all devi for validation. We
report the mean and standard deviation of test slot
F1 per language across 5 runs to reduce the effect
of randomness.

Results on MultiATIS++ are reported in Ta-
ble 2. We observe that multilingual is always
stronger than monolingual (except for Chinese and
Japanese), which confirms the existence of joint
cross-lingual transfer. European languages (Ger-
man, English, Spanish, French and Portuguese)
show modest but visible gains from transfer,
whereas Asian languages (Chinese and Japanese)
do not seem to benefit from it. However, trans-
fer for the two low resource languages (Hindi and
Turkish) is outstanding, with an absolute 4.8% and
13.9% improvement. As noted in (Do et al., 2020),
MultiATIS++ translations keep the same (unrealis-
tic) slot values for particular labels (e.g. American
departure city and destination city in Turkish ut-
terances). We suspect this may be the reason why
transfer is particularly high in this corpus. The fact
that the corpus contains less training data for Hindi
and Turkish than for the other languages might also
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Training DE EN ES FR PT ZH JA HI TR Model Cost Data Cost
Time Space Space

Monolingual 94.4 (0.2) 95.6 (0.1) 88.9 (0.4) 93.2 (0.1) 90.3 (0.6) 93.3 (0.4) 93.1 (0.4) 82.4 (0.5) 71.3 (0.9) ≤224K 1.6B ≤4K
Multilingual 95.0 (0.2) 96.0 (0.2) 90.4 (0.4) 94.0 (0.3) 91.4 (0.2) 93.6 (0.2) 93.0 (0.1) 87.2 (0.3) 85.2 (0.6) 1.7M 178M 33K
Joint transfer +0.6 +0.4 +1.5 +0.8 +1.1 +0.3 -0.1 +4.8 +13.9 - - -

Continual (PLL) 94.9 (0.2) 95.9 (0.1) 89.9 (0.5) 93.9 (0.3) 91.3 (0.3) 93.9 (0.3) 93.1 (0.3) 85.6 (0.7) 84.0 (0.6) ≤224K 178M ≤4K
FTmono

1L +0.5 +0.3 +1.0 +0.7 +1.0 +0.6 +0.0 +3.2 +12.7 - - -
Continual (P1L) 94.0 (0.7) 95.5 (0.2) 89.2 (0.5) 91.4 (1.7) 88.4 (4.9) 92.0 (1.0) 91.7 (0.7) 80.5 (1.8) 68.1 (3.5) ≤224K 178M ≤4K
BT1L -0.4 -0.1 +0.3 -1.8 -1.9 -1.3 -1.4 -1.9 -3.2 - - -

Table 2: Slot F1 performance on MultiATIS++ on testi sets for monolingual, multilingual and continual experiments.
The latter are calculated as the average of the first (P1L) or last (PLL) language (indicated by the column) at the end
of the sequence. See Equations 2 and 3 for the definition of BT1L and FTmono

1L . Reported values are the average of
5 runs with standard deviation shown in parenthesis. Model time cost denotes the cost of adding a new language to
the model measured in iterations. Model space cost is the size of the model measured in number of parameters.
Data space cost represents the maximum number of training sentences stored in memory at the same time.

Training BN DE EN ES HI KO NL TR ZH Model Cost Data Cost
Time Space Space

Monolingual 41.6 (3.2) 64.1 (0.8) 61.3 (0.6) 59.0 (0.8) 43.1 (1.2) 56.7 (0.7) 61.4 (0.9) 45.7 (0.7) 57.6 (0.8) 765K 1.6B 15K
Multilingual 44.9 (1.6) 66.9 (0.4) 64.4 (0.7) 63.8 (0.4) 46.4 (1.2) 59.4 (0.8) 66.5 (0.5) 50.6 (1.0) 58.2 (1.0) 6.9M 178M 138K
Joint transfer +3.3 +2.8 +3.1 +4.8 +3.3 +2.7 +5.1 +4.9 +0.6 - - -

Continual (PLL) 43.4 (1.8) 66.0 (0.6) 63.0 (0.6) 62.1 (0.9) 44.2 (1.0) 57.0 (0.7) 64.6 (0.6) 50.1 (0.8) 56.2 (1.3) 765K 178M 15K
FTmono

1L +1.8 +1.9 +1.7 +3.1 +1.1 +0.3 +3.2 +4.4 -1.4 - - -
Continual (P1L) 31.7 (4.5) 50.9 (1.5) 52.5 (2.6) 51.1 (2.3) 32.2 (2.4) 43.2 (2.4) 55.4 (3.4) 37.4 (1.9) 40.0 (2.8) 765K 178M 15K
BT1L -9.9 -13.2 -8.8 -7.9 -10.9 -13.6 -6.0 -8.3 -17.6 - - -

Table 3: Slot F1 performance on MultiCoNER on testi sets for monolingual, multilingual and continual experiments.
Same comments from Table 2 apply.

explain why joint transfer is much higher for these
two languages.

Table 3 shows results on MultiCoNER. Monolin-
gual results are much lower than in MultiATIS++
even if the number of labels to predict is much
lower, suggesting that MultiCoNER is more diffi-
cult than MultiATIS++. Although the corpus is not
parallel, we observe significant joint cross-lingual
transfer (except for Chinese where it is negligible).
This is somehow surprising considering that only
a maximum of 8% of entity mentions appearing
in the test set of a given language are common to
those appearing in the train set of other languages.

However, multilingual training assumes that all
languages are available at once. As mentioned
before, this is not always true in practice, since ut-
terances may be scarce and annotations expensive.
Moreover, given N the maximum number of utter-
ances per language and L the number of languages,
training on a new language has time cost O(LN),
as the whole model needs to be trained from scratch.
A naive solution is to use multiple monolingual
models, raising however the space cost to O(LN).
Reducing both costs to O(N) motivates our deci-
sion to structure training as a sequence.

5.2 Continual Transfer

Given a training sequence (a list of languages in a
given order), continual learning consists in training
the model on traini (and validating on devi) for
each language i in the given order, as depicted in
Figure 1. Although having all languages at once is
not required and the language addition cost is the
lowest, this approach is prone to forgetting previ-
ously learned languages.

In the experiments of this section, we report for
both forward and backward transfer the average
performance per language. The experiments con-
sist of 3 sequences per language and per transfer
type repeated 5 times to reduce the effect of ran-
domness, making a total of 54 sequences and 270
experiments. These 3 sequences per language are
chosen randomly and maximizing the Kendall rank
correlation coefficient (Abdi, 2007) as a distance
criterion so that they are as dissimilar as possible.

We first investigate whether forward transfer ex-
ists in continual training by looking at the aver-
age PLL performance (e.g. model4 evaluated on
English in Figure 1) against monolingual and mul-
tilingual. Notice that we look at the performance
of the last language, as this allows us to measure
whether the model leverages past knowledge to
learn a new language. This has the advantage of
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isolating the effect of forward transfer from that of
backward transfer. When generating the sequences
we also make sure that each language appears at
the end of the sequence the same number of times.

Similarly, we look at backward transfer by com-
paring the average P1L performance (e.g. model4
evaluated on Spanish in Figure 1) against mono-
lingual, making sure that each language appears
at the beginning of the sequence the same num-
ber of times. This way we can determine whether
the initial performance (equal to monolingual) im-
proves with the introduction of new languages to
the model. We also look at the performance of
the first language, so that the effect of backward
transfer is isolated from that of forward transfer.

Notice that whether we focus on the first or the
last language, we always look at the performance
at the end of the training sequence so that the com-
parison to multilingual is fair.

Results on MultiATIS++ are reported in Table 2.
We observe that continual training benefits from
cross-lingual forward transfer. Indeed, PLL is on
average closer to multilingual than to monolingual
performance. However, although transfer is present
for the last language, P1L suffers from the opposite
effect, even falling under monolingual performance.
Our results show that contrary to what we expected
from the identical slot values of MultiATIS++ (e.g.
American departure city and destination city in
Turkish utterances), the naturally occurring cross-
lingual transfer completely vanishes in previous
languages.

Similar observations can be made from Multi-
CoNER continual experiments from Table 3. Al-
though forward transfer is high in general, it is
also lower than the standard deviation for Bengali,
Hindi and Korean, and even negative for Chinese.
The negative backward transfer values also show
that the model forgets a lot about the first language
it learnt.

Overall we can see that continual training ben-
efits from forward transfer, although still not per-
forming as well as the multilingual topline, whereas
forgetting is clearly present.

6 Training Sequence

How is transfer affected by the training sequence?

In order to better understand the effect of the
training sequence on transfer, we first look at mea-
sures of forward transfer at each position relative to

monolingual and multilingual. Secondly, we study
the impact of the training sequence length on back-
ward transfer measured on the first language. This
analysis is conducted only on MultiATIS++ due to
time and computational constraints. In the figures
of this section, the mean, median and percentiles do
take into account eventual outlier languages, while
the minimum and maximum do not.

When considering forward transfer, Figure 3a
shows that apart from the first position (equal to
monolingual), the model consistently benefits from
transfer at any point in the sequence, as perfor-
mance is higher than monolingual. Interestingly,
due to some outlier languages (generally Hindi and
Turkish), we observe that the means are poor esti-
mates of the distribution when measuring FTmono

i .
This is an indicator that commonly used continual
transfer metrics might over- or underestimate real
performance when transfer is not uniformly dis-
tributed among languages. Indeed, these metrics
usually consist of averages across the adaptation
axis (Lopez-Paz and Ranzato, 2017). In Figure 3b,
we also observe that performance gets closer to
multilingual as the sequence advances, although it
rarely outperforms it.

As per backward transfer, Figure 4 shows that
performance of the first language is in general
worse than monolingual for any given sequence
length. In particular, we observe that performance
loss is not strictly monotonic, which means that
measuring forgetting between the beginning and
the end of the sequence may not be sufficient to ex-
plain how the model forgets. Note that a sequence
of L = 7 would have shown less forgetting than a
sequence of L = 5.

Furthermore, as hinted by continual experiments
from Table 2, we observe that backward transfer
deteriorates as forward transfer improves with the
length of the sequence. Since negative backward
transfer (i.e. forgetting) tends to be linked to a loss
of previously acquired knowledge, it is surprising
that new language performance keeps increasing
while performance of known languages decreases.
Our results indicate that the preserved knowledge
that facilitates the acquisition of a new language in
multilingual BERT for slot filling is not the same
knowledge that preserves previous language perfor-
mance. This might be explained by a progressive
shift of model parameters towards a better multi-
lingual initialization for the ATIS task that might
however fail to retain the specificities of previous
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Figure 3: Distributions of forward transfer on testi relative to monolingual and multilingual for different positions i
in the sequence. We average over 54 sequences and 5 runs. Note that forward transfer is 0 when performance is
equal to (a) monolingual and (b) multilingual. Outliers not shown for readability.
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Figure 4: Distributions of first language backward trans-
fer BT1j = P1j − mono1 (higher is better) on test1
for different sequence lengths j. We average across 54
sequences and 5 runs. Note that BT1j = 0 if perfor-
mance is equal to monolingual. Outliers not shown for
readability.

languages. This hypothesis motivates our next re-
search question.

7 Fast Recovery

Can lost performance due to forgetting be recov-
ered?

Given that forward transfer does not seem to
be affected by forgetting, we investigate in this
section whether performance lost as a result of
forgetting can be recovered quickly after con-
tinual training. The ability to recover is espe-
cially interesting for MultiCoNER where forget-
ting is pretty high, but we still conduct exper-
iments on both corpora. To investigate if this
is possible, we first set out to discover whether
the model shifts towards a better multilingual ini-
tialization. Hence we compare the multilingual
performance of the initial model0 (consisting of
BERT and a random classifier) against modelL, the
model at the end of training sequence (e.g. model4
in Figure 1). In particular, we train both mod-

els on all languages jointly for different numbers
of epochs and evaluate on each language. Notice
that modelL comes from our continual P1L exper-
iments (see Table 2). The results are presented in
Tables 4 and 5.

The comparison between model0 multilingual
and modelL multilingual for both corpora shows
two interesting results. On one hand, we ob-
serve that even one epoch of multilingual training
for modelL achieves better performance than the
monolingual baseline (model0 monolingual) and is
even close to the multilingual topline (model0 mul-
tilingual)3, both of which are trained on the maxi-
mum number of epochs (50 or 15). This means that
modelL is capable of achieving good multilingual
performance with very little training, hence can-
celing the effect of forgetting. On the other hand,
we see that modelL multilingual performance is
greatly superior to model0 multilingual with a sin-
gle training epoch. This is not surprising given
that the classifier is initialized randomly in model0,
but it shows that the model is capable of retaining
knowledge from previous languages, although it is
not clear whether that knowledge is preserved in
the classifier or in BERT.

We dive deeper into this question by training
modelL with a random classifier in the same man-
ner (see modelL + rnd clf multi. in Table 4). We
observe that performance is still greatly superior to
model0 multilingual with a single epoch. However,
performance is not as high as modelL multilingual
(although slightly in MultiCoNER), which keeps its
continually trained classifier. This indicates most
of the knowledge retained from previous languages
is stored in BERT, and that the knowledge stored

3 Except for Chinese on MultiCoNER, which is not sur-
prising considering that its joint transfer is negligible.
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Model Epochs DE EN ES FR PT ZH JA HI TR

model0
multi. (i.i.d.)

1 82.7 (1.2) 83.6 (0.7) 78.2 (0.3) 80.7 (0.7) 79.4 (0.5) 83.5 (0.7) 82.7 (1.0) 79.6 (0.7) 69.8 (1.5)
5 94.7 (0.2) 95.3 (0.2) 89.9 (0.2) 93.2 (0.2) 90.7 (0.2) 94.0 (0.2) 93.2 (0.5) 85.9 (0.3) 83.6 (0.7)
50 95.0 (0.2) 96.0 (0.2) 90.4 (0.4) 94.0 (0.3) 91.4 (0.2) 93.6 (0.2) 93.0 (0.1) 87.2 (0.3) 85.2 (0.6)

modelL
multi.

1 94.8 (0.3) 95.9 (0.2) 89.7 (0.6) 93.8 (0.3) 91.2 (0.4) 93.6 (0.5) 93.3 (0.3) 85.7 (0.9) 82.8 (1.3)
5 94.9 (0.2) 95.9 (0.2) 90.0 (0.5) 93.9 (0.3) 91.3 (0.4) 93.7 (0.4) 93.3 (0.3) 86.0 (0.8) 83.4 (1.0)

modelL
+ rnd clf multi.

1 93.1 (0.5) 93.7 (0.5) 87.9 (0.5) 91.1 (0.5) 88.5 (0.6) 92.6 (0.5) 92.3 (0.6) 83.4 (0.8) 80.8 (1.3)
5 94.8 (0.2) 95.8 (0.2) 89.9 (0.5) 93.6 (0.3) 91.1 (0.4) 93.7 (0.4) 93.3 (0.3) 86.3 (0.6) 84.1 (0.8)

model0
mono. (i.i.d.)

50 94.4 (0.2) 95.6 (0.1) 88.9 (0.4) 93.2 (0.1) 90.3 (0.6) 93.3 (0.4) 93.1 (0.4) 82.4 (0.5) 71.3 (0.9)

modelL
mono.

1 95.1 (0.2) 95.8 (0.2) 90.2 (0.4) 93.6 (0.4) 91.2 (0.4) 93.5 (0.5) 93.4 (0.2) 86.3 (0.6) 79.1 (1.5)
5 95.0 (0.2) 95.8 (0.2) 90.0 (0.4) 94.0 (0.2) 91.3 (0.2) 93.8 (0.4) 93.4 (0.2) 86.7 (0.4) 81.6 (0.8)
10 95.1 (0.2) 95.8 (0.2) 90.0 (0.5) 93.9 (0.3) 91.3 (0.4) 93.8 (0.4) 93.4 (0.2) 86.7 (0.4) 82.2 (0.9)

Table 4: Slot F1 performance on testi sets for MultiATIS++ fast recovery experiments. modelL monolingual
performance is averaged over 3 sequences (the P1L experiment ones starting with the language in question),
while modelL multilingual is averaged over all 27 sequences from P1L experiments. Both model0 and modelL
experiments are averaged over 5 runs (standard deviation in parenthesis).

Model Epochs BN DE EN ES HI KO NL TR ZH

model0
multi. (i.i.d.)

1 36.2 (1.4) 63.1 (0.8) 61.6 (0.6) 60.5 (0.6) 40.5 (1.4) 56.9 (0.4) 63.5 (0.7) 45.5 (0.6) 53.1 (2.4)
5 43.0 (1.1) 66.6 (1.0) 63.9 (0.2) 63.7 (0.6) 45.4 (1.5) 58.9 (0.7) 66.3 (0.7) 49.7 (1.4) 57.7 (1.5)
15 44.9 (1.6) 66.9 (0.4) 64.4 (0.7) 63.8 (0.4) 46.4 (1.2) 59.4 (0.8) 66.5 (0.5) 50.6 (1.0) 58.2 (1.0)

modelL
multi. (i.i.d.)

1 42.7 (1.7) 65.8 (0.7) 63.6 (0.7) 63.0 (0.8) 44.8 (1.4) 58.8 (1.0) 65.9 (0.8) 49.8 (1.0) 56.7 (1.3)
5 43.8 (1.4) 66.4 (0.6) 64.1 (0.5) 63.5 (0.6) 45.4 (1.1) 59.2 (0.8) 66.4 (0.5) 50.6 (0.9) 57.6 (1.2)

modelL
+ rnd clf multi.

1 42.6 (1.8) 65.5 (0.7) 63.3 (0.6) 62.7 (0.8) 44.7 (1.3) 58.7 (0.8) 65.7 (0.7) 49.6 (1.2) 56.6 (1.4)
5 43.7 (1.4) 66.3 (0.6) 63.9 (0.6) 63.4 (0.7) 45.2 (1.1) 59.1 (0.8) 66.2 (0.6) 50.4 (1.0) 57.6 (1.1)

model0
mono. (i.i.d.)

15 41.6 (3.2) 64.1 (0.8) 61.3 (0.6) 59.0 (0.8) 43.1 (1.2) 56.7 (0.7) 61.4 (0.9) 45.7 (0.7) 57.6 (0.8)

modelL
mono.

1 41.8 (2.4) 65.5 (0.7) 63.7 (0.8) 61.6 (0.5) 44.2 (1.1) 57.6 (0.4) 64.6 (0.7) 49.5 (1.0) 56.0 (0.9)
5 43.6 (1.8) 66.5 (0.5) 64.0 (0.6) 62.4 (0.6) 45.4 (0.7) 57.9 (0.5) 65.0 (0.8) 50.7 (0.7) 58.3 (0.9)

Table 5: Slot F1 performance on testi sets for MultiCoNER fast recovery experiments. Same comments from
Table 4 apply.

in the classifier is dependent on the corpus.

Overall, these results lead us to think that for
the sequence labeling task, continual training over
the language sequence does indeed shift model
parameters to a better multilingual initialization.
As a result, we explore the possibility to leverage
this phenomenon in order to quickly recover lost
language specificities due to forgetting for both
corpora. To do this, we train modelL on the first
language of the sequence a second time (i.e. as if
it were an (L+ 1)th language) and evaluate on the
first language only. As shown in Tables 4 and 5,
when comparing modelL monolingual to model0
monolingual (equal to first language performance
P11), we see that the performance of the first lan-
guage can be recovered and improved upon with as
little as a single training epoch3. These results are
outstanding for MultiCoNER considering the high
forgetting that we previously observed. On Mul-

tiATIS++, modelL monolingual even achieves 50-
epoch model0 multilingual performance in most
cases after only one epoch, with the remaining lan-
guages still showing a big improvement. In partic-
ular, Hindi and Turkish improve an absolute 3.9%
and 7.8% from model0 monolingual respectively.

Note that for MultiATIS++ increasing the num-
ber of recovery epochs for the first language does
not bring considerable improvements. The only ex-
ception to this observation is Turkish, which might
be explained by the small size of its training set. In
MultiCoNER however, performance still improves
after 5 epochs, getting closer to the multilingual
topline. Surprisingly, modelL monolingual is even
on par with the multilingual topline for Turkish and
Chinese. Although the cost of adding a language
remains O(N), the ability to recover all languages
raises costs to O(LN), making it expensive to use
in practice. The design of a strategy taking full



23

advantage of these recovery capabilities to limit
forgetting with lower cost is left for future work.

8 Discussion

To summarize, we observe a high level of cross-
lingual transfer in the i.i.d. setting when learning
the sequence labeling task on all languages jointly
for both corpora. In a real low resource scenario
where data and annotations are scarce, it may be
difficult or even impossible to implement either
a monolingual or multilingual adaptive approach,
as time/space complexity is high and not all lan-
guages might be available at once. In a continual
learning setting where languages are learned in se-
quence, these costs are the lowest and cross-lingual
transfer is retained in the form of forward transfer.
However, forgetting occurs for the first language of
the sequence since performance consistently drops
below monolingual.

When looking at continual cross-lingual transfer
across the entire sequence, we obtain two surpris-
ing results. First, commonly used continual transfer
metrics may not be a reliable estimate of the perfor-
mance distribution across languages when transfer
is not evenly distributed. Since even in other adapta-
tion axes a considerable variability across datasets
is to be expected, we believe a statistic like the me-
dian might be a better choice, as we believe it better
represents expected performance at any given point.
Second, as the sequence progresses, forward trans-
fer improves, while backward transfer diminishes.
This might indicate that model parameters remain
a good initialization for future languages but that
previous language specificities might be lost.

Motivated by this hypothesis, we compare the
model at the beginning and at the end of the train-
ing sequence. Our results suggest that knowledge
from past languages is mostly stored in BERT (as
opposed to the task-specific classifier) and that the
model may indeed shift towards a better multilin-
gual initialization, making it suitable to quickly
recover the performance lost as a result of forget-
ting. We then measure the recovery capabilities
of the model with respect to the first language of
the sequence. We empirically show that lost per-
formance can be recovered with as little as a single
training epoch even if forgetting is high (like in
MultiCoNER). Performance can even greatly im-
prove and approach the i.i.d. multilingual topline
after only one training epoch for MultiATIS++ and
5 epochs for MultiCoNER.

In light of the above, we believe that effective
continual learning methods for this task would ben-
efit from leveraging recovery capabilities (either
for a single language or many languages jointly) to
limit the effect of forgetting, while preserving or
even boosting forward transfer.

9 Conclusion

In this paper, we presented an analysis of cross-
lingual transfer in continual learning for the se-
quence labeling task using multilingual BERT (De-
vlin et al., 2019) as well as the MultiATIS++ (Xu
et al., 2020) and MultiCoNER (Malmasi et al.,
2022a) corpora.

Our main finding suggests that although forget-
ting is present, cross-lingual transfer is retained
in the form of forward transfer, which allows the
model to have substantial recovery capabilities.
Moreover, we empirically show that: 1) high for-
ward transfer is linked to a progressive shift of
model parameters towards a better multilingual ini-
tialization, and 2) that most knowledge from past
languages is stored in the word representation en-
coder (BERT) and not in the task-specific classifier.
Finally, we also find that current continual learning
metrics may need to be adapted if we want to bet-
ter estimate the distribution of transfer across the
adaptation axis.

As future work, we would like to reduce train-
ing costs by leveraging fast recovery for continual
learning across languages. Another interesting re-
search direction would be a study on the continual
acquisition of languages not already present in mul-
tilingual BERT.

Reproducible Research

In the spirit of reproducible research, we re-
lease our code as open source available at
github.com/juanmc2005/ContinualNLU.
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