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Abstract

Despite achieving state-of-the-art zero-shot per-
formance, existing vision-language models still
fall short of few-shot transfer ability on domain-
specific problems. Classical fine-tuning of-
ten fails to prevent highly expressive models
from exploiting spurious correlations in the
training data. Although model-agnostic meta-
learning (MAML) presents as a natural alter-
native for few-shot transfer learning, the ex-
pensive computation due to implicit second-
order optimization limits its use on large-scale
vision-language models such as CLIP. While
much literature has been devoted to exploring
alternative optimization strategies, we identify
another essential aspect towards effective few-
shot transfer learning, task sampling, which
is previously only be viewed as part of data
pre-processing in MAML. To show the impact
of task sampling, we propose a simple algo-
rithm, Model-Agnostic Multitask Fine-tuning
(MAMF), which differentiates classical fine-
tuning only on uniformly sampling multiple
tasks. Despite its simplicity, we show that
MAMF consistently outperforms classical fine-
tuning on five few-shot image classification
tasks. We further show that the effectiveness of
the bi-level optimization in MAML is highly
sensitive to the zero-shot performance of a task
in the context of few-shot vision-language clas-
sification. The goal of this paper is to provide
new insights on what makes few-shot learning
work, and encourage more research into inves-
tigating better task sampling strategies.

1 Introduction

While existing machine learning models have
achieved human-level performance at various in-
dividual tasks, they generally lack the ability of
fast adaptation and generalization. In recent years,
transfer learning has been proven to be effective on
a wide range of Computer Vision (He et al., 2016;
Dosovitskiy et al., 2020) and Natural Language
Processing (Devlin et al., 2019; Lewis et al., 2020)
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tasks. Specifically, recent advances in large-scale
vision-language models (Radford et al., 2021; Jia
et al., 2021; Li et al., 2022; Alayrac et al., 2022)
have demonstrated strong zero-shot ability on a
wide range of tasks. However, these models still
have certain limitations on concepts that require
extensive domain knowledge, such as Fungi Clas-
sification. We identify two major limitations in
current few-shot transfer learning literature, from
both evaluation and algorithm perspectives.

Limitation on evaluation: In current transfer
learning paradigm, the testing instances of a down-
stream task are drawn from the same distribution as
the training set. This evaluation setting can fail to
faithfully reflect whether a model has truly learned
a new concept, since modern deep neural networks
can easily memorize and exploit spurious corre-
lations from the training set (Brown et al., 2020).
Thus, we first propose a new evaluation scheme
for few-shot transfer learning where we replace
the original testing phase with mera-testing (Sec-
tion 3). With meta-testing, the testing distribution
are distinguished from the training.

Limitation on algorithm: To make an arbitrary
pretrained vision-language model learn new con-
cepts with few examples, model-agnostic meta-
learning (MAML) (Finn et al., 2017) presents as
a natural candidate. One major limitation of the
original MAML method is the expensive compu-
tation overhead due to implicit second-order opti-
mization. Most follow-up work (Finn et al., 2017;
Nichol et al., 2018; Rajeswaran et al., 2019; Raghu
et al., 2020; Von Oswald et al., 2021) has focused
on improving the optimization strategy. However,
we found that they all achieved comparable per-
formance despite of using different optimization
algorithms. This observation motivates us to ask:
If the specific choice of optimization method is not
the key to the empirical success of MAML, what
would be?

Inspired by related work in the area of multitask
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Figure 1: Task sampling and optimization schemes of different algorithms. Evaluation with meta-testing is applied
in all of our experiments (b,c,d). Please find the detailed formulation in Section 3.

learning (Maurer et al., 2016; Tripuraneni et al.,
2020), we conjecture that rask sampling itself is
an essential ingredient in learning new concepts
efficiently. To verify this hypothesis, we propose
a simple fine-tuning algorithm, Model-Agnostic
Multitask Fine-tuning (MAMF), which simplifies
MAML by using only first-order gradient-based
optimization while keeping the uniform task sam-
pling procedure intact. The goal is NOT to propose
yet another complex algorithm, but to investigate
what is the most important aspect for effective few-
shot transfer learning. We compare MAMF with
Classical Fine-tuning, which does not perform uni-
form task sampling, and first-order MAML (FO-
MAML) (Finn et al., 2017), which adopts complex
bi-level optimization upon sampled tasks. Our em-
pirical result demonstrates the importance of uni-
form task sampling and reveals limited effective-
ness of the bi-level optimization of MAML in the
context of few-shot transfer learning. We hope our
work encourages more research into exploring bet-
ter task sampling strategies for improving few-shot
transfer learning and meta-learning algorithms.

2 Problem Formulation

We are interested in a few-shot classification prob-
lem where we have a pretrained vision-language
model f with initial parameters 8. Let 7" be a
training task sampled from a distribution p(7"),
and 7' be a testing task sampled from p(7%%),
where a task is defined to an induced sub-problem
by restricting the output space from the original
problem. Specifically, for an original classifica-
tion problem with M classes in total, we define a
task as a sub-problem where the output space is
a subset of N classes randomly sampled from the
M classes. We further denote N and N** as the

number of classes in each training and testing task.
T' and T* as the total number of sampled tasks
respectively. The Classical Fine-tuning setting is
depicted in Figure 1 (a), where we have T = 1
training tasks with N" = M classes, and 7% = 1
testing tasks with N*® = M classes. That is, both
training and testing sets are treated as one single
task containing data points from all M classes.

3 Reformulating Classical Fine-tuning
Evaluation with Meta-testing

Our goal is to enable and evaluate a model’s ca-
pability of generalizing to new concepts with few
examples. The Classical Fine-tuning setting is not
sufficient since the training and testing data points
are drawn from the same distribution. Therefore,
we propose to replace the original joint testing in
Classical Fine-tuning with meta-testing.
Meta-testing is first introduced by related work
in meta-learning (Thrun and Pratt, 2012; Vinyals
et al., 2016; Finn et al., 2017). As shown in the
testing phase of Figure 1 (b,c,d), we first sample
T* tasks (T > 1), each containing data points
from N classes (1 < N < M). For each sam-
pled testing task 7'*, we further randomly split
the data points into two disjoint sets, i.e., support
set A and query set B, with corresponding loss
L;ts 4 and Lr+s g. Then we further update the
model parameters on the support set and evaluate
on the query set. By randomly sampling multiple
tasks during meta-testing, we can distinguish the
testing distribution from training, which largely
prevents the model from exploiting spurious cor-
relations in the training set. Essentially, we make
the original problem more challenging by requir-
ing the model to quickly generalize to potentially
unseen task distributions during testing. The objec-



tive is to find an updated model parameter 6 that
minimizes the expected loss on all testing tasks

Erts op(rts) |:£Tts (0)} . Specifically, under this set-
ting, MAML'’s objective can be written as follows:
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where Uﬁ} 4 1s the optimization procedure that
updates the initial parameter @ for one or more
steps on the support set of a training task 7.

4 Model-Agnostic Multitask Fine-tuning

As shown above, previous MAML-like methods
update model parameters iteratively via a complex
bi-level optimization scheme (Finn et al., 2017,
Raghu et al., 2020; Rajeswaran et al., 2019), which
is computationally expensive. We hypothesize that
the rask sampling process itself is more impor-
tant than specific choice of optimization method.
To verify this hypothesis, we propose a simple
algorithm, Model-Agnostic Multitask Fine-tuning
(MAMF ), where we keep the uniform task sampling
strategy as MAML but perform simple first-order
gradient-based optimization on each task sequen-
tially. Unlike MAML, MAMEF does not further
split the tasks into support and query sets. The
objective of MAMEF can be written as:

mginETtsz(Tts) [ﬁfts,B (UifS,A(§)>]
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where 6y = 6 and Ui_’t’r is the optimization proce-
dure that updates thelparameters from the previ-
ous task on the current training task 7/". MAMF
can also be viewed as a simplified version of Rep-
tile (Nichol et al., 2018), where we further elim-
inate the hyper-parameter of step size. The goal
is to keep the algorithm as simple as possible to
distinguish the impact of task sampling. Figure 1
depicts a comparison of different data sampling
and optimization schemes of different algorithms.

5 Experiment

5.1 Experimental Setup

We aim to investigate two main questions experi-
mentally under a few-shot vision-language trans-
fer learning setting:
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* Q1: Is the uniform task sampling during train-
ing important?

* Q2: Is the bi-level optimization in MAML
consistently effective?

To answer the first question, we compare MAMF
with Classical Fine-tuning where the only differ-
ence is the additional uniform task sampling. For
the second question, we compare FOMAML!' and
MAMEF.

We perform comprehensive experiments on five
few-shot image-classification datasets with various
domains, including ClevrCounting (Johnson et al.,
2017), Amazon Berkeley Objects (ABO) (Collins
et al., 2021) Material, Fungi (Su et al., 2021), Mini-
Imagenet (Vinyals et al., 2016), Caltech-UCSD
Birds 200 (CUB) (Welinder et al., 2010). We
compare different learning algorithms by apply-
ing them to a large-scale vision-language model,
i.e., CLIP (Radford et al., 2021). We adopt
the contrastive classification framework following
(Radford et al., 2021) where we directly match
prompted label text with encoded images. This
framework allows us to avoid the label permutation
problem raised by (Ye and Chao, 2021). Details on
the datasets and the classification framework can
be found in Appendix A and B.

Given a dataset with M classes in total, we
experiment with various task configurations re-
garding the number of sub-sampled classes N,
where 2 < N' < M. That is, during meta-
testing, each task can be formulated as a N'*-
way classification and we randomly sample 7%
such tasks. During training, for Classical Fine-
tuning, we set the training task configuration as
N = M, T" = 1; for MAMF and FOMAML,
weset N = Nt = N, Tt =T =T, where T
is determined based on N to cover all classes with
a high probability. Implementation details can be
found in Appendix C.

5.2 Results

Answer to Q1: Uniform task sampling is im-
portant. As depicted in Figure 2, comparing the
performance of MAMF (red line) and Classical
Fine-tuning (yellow line), MAMEF consistently out-
performs Classical Fine-tuning on all five datasets.
Recall that the only difference between MAMF and
Classical Fine-tuning is whether they perform uni-
form task sampling during training. This empirical

"We use the first-order variant of MAML for apple-to-
apple comparison with MAMF.
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Figure 2: Average accuracy on development sets (dashed line) and test sets (solid line) of five datasets. The
x-axis shows the task configurations where (N, T') refers to sampling 7 tasks for N-way classification. Zeroshot
refers to zero-shot CLIP without any fine-tuning during either training or meta-testing. Classical refers to classical
fine-tuning which treats the entire training set as a single task. Both FOMAML and MAMF sample N-way T tasks
during training. MAMF consistently outperforms Classical on all datasets. Detailed scores can be found in Table 3.

result shows that task sampling itself serves as an
important procedure for learning new concepts in a
few-shot setting, even if with its simplest form, i.e.
uniform sampling.

Answer to Q2: MAML is not effective on learn-
ing initially challenging problems. One unex-
pected observation from Figure 2 is that, although
FOMAML has the same task sampling procedure
and more sophisticated optimization method than
MAMPF, it is outperformed by MAMF on many
tasks. We find that the effectiveness of FOMAML
is highly sensitive to the zero-shot performance of
the target task. Whenever the task is initially more
challenging, i.e., with lower zero-shot performance,
FOMAML tends to be less effective. For example,
on CUB (Figure 2 e) where the zero-shot accuracy
ranges from 0.5 to 0.8, FOMAML outperforms
other algorithms in most cases. However, on Clevr-
Counting (Figure 2 a) where the zero-shot accuracy
ranges from 0.3 to 0.75, MAMF and even Classical
Fine-tuning consistently outperform FOMAML. To
further visualize this correlation, we plot a Winner
Map (Figure 3) which depicts the best-performing
method for each task configuration on all datasets.
We can see a clear pattern showing that FOMAML
is only effective when the zero-shot performance is
already high, while MAMF dominates on initially
more challenging tasks.
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Figure 3: Each thick shaded line represents a dataset
split, e.g., test set of ClevrCounting. Each dot corre-
sponds to one task configuration in Figure 2 such as
(N = 5,T = 10). The color of a dot represents the
best-performing algorithm. MAMF tends to outperform
other algorithms when the problem is initially more
challenging, i.e., when zero-shot accuracy is lower.

6 Conclusion

In this paper, We demonstrate the importance of
task sampling by proposing a simple yet effective
fine-tuning method MAME. We further show novel
insights on the limited effectiveness of the bi-level
optimization. We hope our work encourage more
research on improving few-shot transfer learning
via better task sampling beyond uniform sampling.
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A Dataset Details

In this work, we compare few-shot image classi-
fication performance on five datasets representing
various concepts including: ClevrCounting (John-
son et al.,, 2017), Amazon Berkeley Objects
(ABO) (Collins et al., 2021) Material, Fungi (Su
et al., 2021), Mini-Imagenet (Vinyals et al., 2016),
Caltech-UCSD Birds 200 (CUB) (Welinder et al.,
2010). We randomly split each dataset into disjoint
training, development, and test sets, and perform
subsampling to frame the experiments in a few-shot
setting. Specifically, for ABO Material, we con-
struct a subset of the original dataset by clustering
images according to their Material attribute. We
then manually filter out noisy samples that have
multiple major materials. Table 1 shows the statis-
tics of each dataset.

We selectively add data augmentation? for dif-
ferent datasets. By default we use RandomResized-
Crop, RandomHorizontalFlip and Normalize for
all our five datasets. We further add ColorJitter
for Mini-Imagenet and ClevrCounting. We disable
ColorlJitter for CUB, Fungi, and ABO Material
since the color feature is essential for doing classi-
fication on these datasets. Following the original
CLIP paper (Radford et al., 2021), the input images
are resized to 224 x224.

https://pytorch.org/vision/stable/
transforms.html
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Dataset M s 8% Sk
ClevrCounting 10 60 10 10
Fungi 20 60 10 10
ABO Material 9 50 15 15
Mini Imagenet 10 60 10 10
CUB 10 60 10 10

Table 1: Dataset statistics. M is the total number of
classes; S'" is the number of training samples per class;
St and S% are the number of support set and query set
samples per class during meta-testing respectively.
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Figure 4: An illustration of the contrastive classification
framework. We show a 10-way classification task on the
Clevrcounting dataset. Each entry in the matrix is the
similarity score (dot product) of an image embedding I
and a text embedding T.
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B Contrastive Image Classification
Framework

We compare three algorithms (Classical Fine-
tuning, MAML Fine-tuning, and MAMF) using
an a contrastive classification framework based on
pretrained CLIP (Radford et al., 2021). Instead of
using a linear output layer mapping to NV logits cor-
responding to N class labels, we directly compute
the similarity between candidate text embeddings
representing each class with the image embedding.
Specifically, we create the text representation for
each class by using template prompts filled with la-
bel names. A full list of templates we use for each
dataset can be found in Table 2. Figure 4 shows
an example task from the ClevrCounting dataset,
where each class is represented as a string such as
“An image with 2 objects". We then compute the dot
product of each <image, text> embedding pairs.
For each row, the label with the highest similarity
score is selected as the final prediction.
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Dataset Text Input Template Example
ClevrCounting An image of <8> objects.

Fungi A photo of <mycena pura>.
ABO Material ~ An image of a product made of <glass>
Mini Imagenet A photo of <walker hound>.

CUB A photo of <baltimore oriole>.

Table 2: Example templates with filled labels for all five
datasets.

C Implementation Details

We use the pretrained CLIP3(Radford et al., 2021)
with a ViT-B/32 Vision Transformer as image en-
coder and a masked self-attention Transformer as
text encoder. The image embedding size is 768 and
the text embedding size is 512. During training, we
take the pre-projection image/text representation
from the pretrained image/text encoder and feed
them into a newly initialized* image/text projection
layer. We choose the pre-projection representation
as prior work (Chen et al., 2020) has shown that
in such contrastive models the hidden layer before
the last projection head serves as a better represen-
tation. Finally, we obtain an image embedding and
a text embedding with the same size of 512. Note
that for the Zeroshot baseline, we use the original
projection layer and directly test on the query set
in meta-testing without any fine-tuning. We train
the model using cross-entropy loss for all three al-
gorithms. We use the Adam optimizer (Kingma
and Ba, 2015) with learning rate 1le — 6 during
training and le — 7 during meta-testing. No weight
decay is used for all algorithms during training and
meta-testing. We use the MAML wrapper from
learn2learn’ (Arnold et al., 2020) for training using
first-order MAML.

D Detailed Results

Table 3 shows the detailed accuracy and standard
deviation on the development sets and test sets of
all the datasets shown in Figure 2 in the main paper.
The (N, T) column represents the task configura-
tions, where IV stands for an NV-way classification
task and 7" stands for the total number of sampled
tasks. Since the tasks are randomly sampled from

*https://huggingface.co/openai/
clip-vit-base-patch32

“We use the Kaiming initialization implemented by
Pytorch: https://pytorch.org/cppdocs/api/
function_namespacetorch_1_1Inn_1_1linit_
1ac8a913c051976a3f41£f20df7d6126e57.html

Shttps://github.com/learnables/
learn2learn
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the class distribution, in order to cover all classes
with high probability during testing, we set the
log(0.001)
log(IAfﬁ%)’
where M is the total number of classes. That is,
with probability higher than 0.999, we can cover
all classes if sampling 7" tasks. Columns with name
Zeroshot, Classical, MAMF, and FOMAML repre-
sent models using Zeroshot CLIP, Classical Fine-
tuning, Model-Agnostic Multitask Fine-tuning and
first-order MAML respectively. The superscript on
each accuracy percentage number indicates stan-
dard deviation across five random runs.

number of sampled tasks to be: T' =


https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://pytorch.org/cppdocs/api/function_namespacetorch_1_1nn_1_1init_1ac8a913c051976a3f41f20df7d6126e57.html
https://pytorch.org/cppdocs/api/function_namespacetorch_1_1nn_1_1init_1ac8a913c051976a3f41f20df7d6126e57.html
https://pytorch.org/cppdocs/api/function_namespacetorch_1_1nn_1_1init_1ac8a913c051976a3f41f20df7d6126e57.html
https://github.com/learnables/learn2learn
https://github.com/learnables/learn2learn

Table 3: Detailed average accuracy (%) and standard deviation on the development set and test set of all five datasets. The (N,
T) column represents the task configurations consistent with the x-axis in Figure 3 in the main paper. Note that for the ABO
Material dataset, we have 9 classes in total, so a task has up to 8-way classification. And for the Fungi dataset, which has 20
classes in total, we test on 10-way to 19-way classification tasks.

Dataset (N, T) Zeroshot Classical MAMF FOMAML Dataset (N, T) Zeroshot Classical MAMF FOMAML

(2,27) 68.5%¢ 9538 96.0'% 96.124 (2,27) 67.026 95.206 094,82 9404
(3,17) 60.6%° 91.63° 92,924 96.1'° (3,17) 53.0%° 93.6°° 93.2°°% o91.7%3
ABO (4,12) 49.6%* 88.6%% 90.197 94,21 ABO (4,12) 42.1%>® 89.5%° 91.3*2 88.1'7
Material  (5,9) 45.71¢ 87.31'5 89.0'2 93.3°7  Material (5,9) 37.4%2° 86.8%2 89214 89.0'*
Test  (6,6) 40.3%! 82.1%! 86.52° 90,514 Dev  (6,6) 31.5'% 84.4'% 88.132 85.3%°

(7,5) 37.8%% 83330 85410 91,67 (7,5) 28.6%° 84.0'5 84.8'2 84.23!
8,3) 33.2°7 81.3°% 83.6'¢ 8§9.8°° 8,3) 23.927 80.1'* 81.9'% 81.6'2
(2,31) 74.1>% 89.5''7 89.8'> 85522 (2,31) 75.7%* 90.1>7 917> 87.3'4
(3,19) 57.3%1 82.5%3 83838 74745 (3,19) 62.61° 81.22° 83.6>° 78.6%°

Clevr- (4,14) 50.12° 76.42° 78.0>® 74.1'%  Clevr- (4,14) 55.7%° 79.120 814%1 73.8%3
Counting (5,10) 41.0*° 67.9%° 73.0>% 60.2°° Counting (5,10) 46.6>7 69.7*% 71.5%! 56.1°°
Test (6,8) 38.92¢ 64.9%° 70.53° 64.950 Dev  (6,8) 41.0'* 67.3%2% 69.252 62.0%6

(7,6) 31.9°° 59433 6417 60.0%° (7,6) 36.3'° 59.0*% 65.0*2 57.31°
8,4) 31.0'% 56.45% 60.3%2 42.95;6 8,4 35.312 57.9%6 62335 42.1%2
9,3) 28.1'2 56531 59748 33632 9,3) 33.123 53233 53826 36.3!26
(2,31) 80.0>¢ 91.2¢ 9628 96.12° (2,31 7834t 90.4'° 97.8%° 975t
(3,19) 68.91¢ 86.15¢ 95.1°9 97,133 (3,19) 68.123 88.77! 96.823 97.5%°
4,14) 63.9>% 79.8%* 93.826 9749 4,14) 64.3'° 83.9%¢ 095228 96,828

CUB (5,10) 58.5%% 77.3%3 85506 0644 CUB (5,10) 59.7%% 78.9%% 87.0%%2 97.4%2
Test  (6,8) 54.72° 79.455 88.830 93,556 Dev  (6,8) 56.5%3% 79.1°6 94631 95252

(7,6) 535 77.07°% 88.3%° 98303 (7,6) 53.320 77.8%4 88439 08.8°0
8,4) 52.9%% 71.67* 80.9>% 98.1°° 8,4) 51.8%7 75.07% 79.9*7 99.4°4
9,3) 50.2'% 69.95! 80.74! 98.1°7 9,3) 50.12° 64.4%3 80.7%% 98.8°°
(2,31) 87.1%* 93.91° 93.9'5 97214 (2,31) 85.5%7 93.6°7 93.230 96.4°4
(3,19) 79.4>3 90.0'¢ 92.315 93926 (3,19) 78.03* 89.0''° 91.3'5 95408

Mini (4, 14) 74.4>Y 86.7'* 92314 89.9%1 Mini (4, 14) 74.4*% 85.4%% 90.3%7 90.4°7
ImageNet (5,10) 71.0%2* 86.5%7 89.214 92.0°7 ImageNet (5,10) 69.6>7 85.7%% 89.0'2 93.1%:¢
Test (6,8) 67.73% 8351 89.216 86.128 Dev  (6,8) 66.22% 83.01! 88.5'5 89.0%2

(7,6) 62.6%° 82.3'° 89,03 87.3%! (7,6) 63.323 78926 86.3°% 86.82°
8,4) 57.8°% 79.42° g836%* 87790 8,4) 63.732 78750 8447 89,00
9,3) 58.1%¢ 78231 82.0%° 88.7'° 9,3) 58.5%% 78219 81.51° 86.43!
(10,8) 15.2°% 60.2° 67.926 64.727 (10,8) 16.7%* 54.4%! 60.8%° 58.1!°
(11,8) 14.1°° 57.222 66317 64.1'4 (11,8) 15.4%% 53.92° 60.6'° 5755
(12,8) 12.8°7 58.1'° 65.6>¢ 61.12° (12,8) 14.1°% 51.5%° 59,626 57627
(13,7) 12.4°%7 558%! 64227 59.9%3 (13,7) 12.5%° 49.6*! 56.0° 54.0%°

Fungi (14,6) 11.5%% 51.5*% 6172 b54.1*3  Fungi (14,6) 12.000 47433 556%* 53.226
Test (15,5) 11.8°% 53717 59238 p570!3 Dev  (15,5) 11.2°%! 48.6°° 53.9%7 54.6%%

(16,4) 11.1°° 52.426 55915 53525 (16,4) 11.1°% 50.03° 51.1%2% 50.3**
(17,4) 11.2°% 48.8%! 543 52510 (17,4) 10.4'° 445%* 51221 50107
(18,3) 9.5%% 50.3%° 54.1%' 51.5%4 (18,3) 10.6°% 42.9%! 50218 45720
(19,2) 9.5%7 48.73% 53133 45.1%! (19,2) 10.0'* 45.8%% 47.8'6 41.430°
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