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Abstract

We present the results of the Workshop on
Multilingual Information Access (MIA) 2022
Shared Task, evaluating cross-lingual open-
retrieval question answering (QA) systems in
16 typologically diverse languages. In this task,
we adapted two large-scale cross-lingual open-
retrieval QA datasets in 14 typologically di-
verse languages, and newly annotated open-
retrieval QA data in 2 underrepresented lan-
guages: Tagalog and Tamil. Four teams sub-
mitted their systems. The best constrained
system uses entity-aware contextualized rep-
resentations for document retrieval, thereby
achieving an average F1 score of 31.6, which
is 4.1 F1 absolute higher than the challenging
baseline. The best system obtains particularly
significant improvements in Tamil (20.8 F1),
whereas most of the other systems yield nearly
zero scores. The best unconstrained system
achieves 32.2 F1, outperforming our baseline
by 4.5 points. The official leaderboard1 and
baselines2 models are publicly available.

1 Introduction

Open-retrieval3 question answering (QA) is a
task of answering questions in diverse domains
given large-scale document collections such as
Wikipedia (Chen and Yih, 2020). Despite the rapid
progress in this area (Chen et al., 2017; Karpukhin
et al., 2020; Lewis et al., 2020b), the systems
have primarily been evaluated in English, yet open-
retrieval QA in non-English languages has been
understudied (Longpre et al., 2021; Asai et al.,
2021a). Moreover, due to the task complexity,
cross-lingual open-retrieval QA has unique chal-
lenges such as multi-step inference (retrieval and

1https://eval.ai/web/challenges/
challenge-page/1638/leaderboard

2https://github.com/mia-workshop/
MIA-Shared-Task-2022

3Also sometimes referred to as open-domain QA; we use
open-retrieval as it is not ambiguous with the sense of “cover-
ing many domains.”

answer selection) and cross-lingual pattern match-
ing (Lewis et al., 2020a; Schäuble and Sheridan,
1997), whereas other multilingual NLP tasks have
their inputs specified at once (e.g. natural language
inference) and typically only need to perform infer-
ence on one language at a time.

In this work, we introduce the MIA 2022 shared
task on cross-lingual open-retrieval QA, which tests
open-retrieval QA systems across typologically di-
verse languages. Compared to previous efforts on
multilingual open-retrieval QA (Forner et al., 2008,
2010), this shared task covers a wider set of lan-
guages (i.e., 16 topologically diverse languages)
and orders of magnitude more passages in retrieval
targets (i.e., 40 million passages in total), and con-
stitutes the first shared task for massive-scale cross-
lingual open-retrieval QA. Four teams submitted
systems, three of which significantly improve the
baseline system based on a state-of-the-art multilin-
gual open-retrieval QA system (Asai et al., 2021b).

Our analysis reveals that the system performance
varies across languages even when the questions
are parallel (as in one of our two settings), and
several findings from the submitted systems shed
light on the importance on entity-enhanced rep-
resentations, leveraging more passages and data
augmentation for future research in multilingual
knowledge-intensive NLP. Our analysis suggests
that (i) it is still challenging to retrieve passages
cross-lingually, (ii) generating answers in the tar-
get language whose script differs from the script
of evidence document is nontrivial, (iii) and po-
tential answer overlaps in existing datasets may
overestimate models’ performance.

We formally introduce our task in Section 2, fol-
lowed by data collection process for 16 languages
in Section 3. We then introduce our baseline sys-
tems in Section 4 and the submitted systems. Sec-
tion 5 presents our meta analysis of the systems
performances, and we conclude by suggesting fu-
ture improvements in this area.
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2 Task Descriptions

We first formulate cross-lingual open-retrieval QA
and introduce metrics used to evaluate systems’ per-
formance. We then present two submission tracks:
constrained and unconstrained tracks.

2.1 Task Formulation

Cross-lingual open-retrieval QA is a challenging
multilingual NLP task, where given questions writ-
ten in a user’s preferred language, a system needs
to find evidence from large-scale document col-
lections written in many different languages. The
final answer needs to be in the user’s preferred lan-
guage which is indicated by their question, as in
real-world applications. We follow the general def-
inition of Asai et al. (2021b), where a system can
retrieve evidence from documents in any languages,
not limiting the retrieval target to certain languages
as in Forner et al. (2008). For instance, a system
needs to answer in Arabic to an Arabic question,
but it can use evidence passages written in any lan-
guage included in a large-document corpus such as
English, German, Japanese and so on. In real-world
applications, the issues of information asymmetry
and information scarcity (Roy et al., 2022; Blasi
et al., 2022; Asai et al., 2021a; Joshi et al., 2020)
arise in many languages, hence the need to source
answer contents from other languages—yet we of-
ten do not know a priori in which language the
evidence can be found to answer a question.

2.2 Evaluation Metrics

Systems are evaluated using automatic metrics:
token-level F1 and exact match (EM). Although
EM is often used as the primary evaluation met-
ric for English, the risk of surface-level mismatch-
ing (Min et al., 2020a) can be more pervasive in
cross-lingual settings. Therefore, we use F1 as
the primary metric and rank systems using the F1
scores. Evaluation is conducted using language-
specific tokenization and evaluation scripts pro-
vided in the MIA shared task repository.4 We use
data from XOR-TyDi QA and MKQA (detailed in
Section 3), and due to different characteristics these
datasets have, we macro-average scores per lan-
guage set on each dataset, and then macro-average
those scores to produce an F1 score for XOR-TyDi

4For non-spacing languages (i.e., Japanese, Khmer, and
Chinese), we use off-the-shelf tokenizers including Mecab,
khmernltk and jieba to tokenize both predictions and ground-
truth answers.

QA and an F1 score for MKQA to compute the
final scores for ranking.

2.3 Tracks

For the shared task, we defined two tracks based on
the resource used to train systems: constrained and
unconstrained settings. Systems trained only on
the official training data qualify for the constrained
track, while systems trained with additional data
sources participate in the unconstrained track.

Constrained Track. To qualify as a constrained
track submission, participants are required to use
the official training corpus, which consists of exam-
ples pooled from XOR-TyDi QA and Natural Ques-
tions (Kwiatkowski et al., 2019). See more data
collection details in Section 3. No other QA data
may be used for training. We allow participants
to use off-the-shelf tools for linguistic annotations
(e.g. POS taggers, syntactic parsers), as well as
any publicly available unlabeled data and models
derived from these (e.g. word vectors, pre-trained
language models). In the constrained setup, par-
ticipants may not use external blackbox APIs such
as Google Search API and Google Translate API
for inference, as those models are often trained on
additional data, but they are permitted to use them
for offline data augmentation or training.

Unconstrained track. Any model submissions
using APIs or training data beyond the scope of
the constrained track are considered for the un-
constrained setting. Participants are required to
report the details of their additional resources
used for training, for transparency. For instance,
a submission might use publicly available QA
datasets, such as CMRC 2018 (Cui et al., 2019)
and FQuAD (d’Hoffschmidt et al., 2020), to create
larger-scale training data.

3 Shared Task Data

The MIA shared task data is derived from two
large-scale multilingual evaluation sets: XOR-
TyDi QA (Asai et al., 2021a) and MKQA (Longpre
et al., 2021). We first discuss the source datasets,
and then discuss how the target languages are se-
lected, and how the data is split into training and
evaluation sets. Table 1 shows the included lan-
guages, their language groups, the size of train-
ing, development and test data, and the number of
Wikipedia passages available in each language.
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Language Family # of examples # Wiki. passages

Language Family Branch Train Development Test

Arabic (ar) Afro-Asiatic Semitic 18,402 3,145 5,590 1,304,828
Bengali (bn) Indo-European Indo-Iranian 5,007 2,248 5,203 179,936
English (en) Indo-European Germanic 76,635 1,758 5,000 18,003,200
Spanish (es) Indo-European Italic 0 1,758 5,000 5,738,484
Finnish (fi) Uralic Finnic 9,762 2,732 1,368 886,595
Japanese (ja) Japonic Japonic 7,815 2,451 6,056 5,116,905
Khmer (km) Austroasiatic Khmer 0 1,758 5,000 63,037
Korean (ko) Koreanic Han 4,319 2,231 6,048 638,864
Malay (ms) Austronesian Malayo-Poly. 0 1,758 5,000 397,396
Russian (ru) Indo-European Balto-Slavic 9,290 2,776 6,910 4,545,635
Swedish (sv) Indo-Europea Germanic 0 1,758 5,000 4,525,695
Chinese (zh) Sino-Tibetan Sinitic 0 1,758 5,000 3,394,943
Telugu (te) Dravidian South-Central 6,759 2,322 6,873 274,230

Surprise Languages
Tagalog (tl) Austronesian Malayo-Poly. 0 0 350 –
Tamil (ta) Dravidian Southern 0 0 350 –

Table 1: List of the languages, their families and amount of data available in the MIA shared task data. The last two
languages are surprise languages hidden from the participants.

3.1 Source Datasets

XOR-TyDi QA (Asai et al., 2021a) is a cross-
lingual open-retrieval QA dataset covering 7 lan-
guages built upon TyDi QA (Clark et al., 2020).
Asai et al. (2021a) collect answers for questions
in TyDi QA that are unanswerable using the same-
language Wikipedia. As the questions are inher-
ited from TyDi QA, they are written by native
speakers to better reflect their own interests and
linguistic phenomena, and they are not parallel
across languages. We use data for the XOR-full
setting, where some questions can be answered
based on the target language’s Wikipedia (monolin-
gual) while others require evidence only presented
in English Wikipedia (cross-lingual). We use all of
the 7 languages covered by XOR-TyDi QA: Ara-
bic (ar), Bengali (bn), Finnish (fi), Japanese (ja),
Korean (ko), Russian (ru), Telugu (te).

MKQA (Longpre et al., 2021) comprises the
largest set of languages and dialects (26) for open-
retrieval QA, spanning 14 language families. There
are 10k question and answer pairs per language.
The questions are human-translated from English
Natural Questions (Kwiatkowski et al., 2019) and
the answers are re-annotated for higher quality –
chosen independently of any web pages or docu-
ment corpora. From MKQA, we sample the 6,758
parallel examples which are answerable. We select
12 of the 26 languages to lower the computational
barrier: Arabic (ar), English (en), Spanish (es),
Finnish (fi), Japanese (ja), Khmer (km), Korean
(ko), Malay (ms), Russian (ru), Swedish (sv), Turk-

ish (tr), and traditional Chinese (zh-cn).

3.2 Language Selection
We select a subset of languages from each resource
(i) to cover a wide range of languages and typo-
logical features with a sufficient scale, and (ii) to
compare participating model performance between
questions that are translated from English and ones
that are naturally generated by native speakers. The
natively-written questions from XOR-TyDi QA al-
low measuring systems’ quality on questions that
are likely to serve information need expressed by
speakers of each language, whereas the human-
translated questions of MKQA allow measuring
the performance on the target script and language,
holding constant the question content. For this
reason, we include 5 languages present in both
XOR-TyDi QA and MKQA to compare the gap be-
tween cultural and linguistic model generalization:
Arabic, Finnish, Japanese, Korean, and Russian.

Surprise languages. In addition, we newly an-
notated data in Tagalog (tl) and Tamil (ta), where
little work studies open-retrieval QA (Liu et al.,
2019). For each language, we sample 350 MKQA
English examples, where the answer entities have
an Wikipedia article in the target language. The
350 questions are all translated using Gengo’s hu-
man translation,5 but the answers are automatically
translated using Wikidata. This annotation results
in 350 well-formed examples in Tagalog (tl) and
Tamil (ta). Surprise languages are released two

5https://gengo.com/
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weeks before the system submission deadline to
test systems’ ability to perform zero-shot trans-
fer (Hu et al., 2020) to unseen languages that are
substantially different from the languages they are
trained on. Except for one system, all of the sub-
missions directly apply their systems to the new
languages without any training or adding new tar-
get languages’ Wikipedia.

3.3 Data Statistics

Table 1 presents the list of the languages and statis-
tics of the train, development and test set data in
each target language.

Training data. Our training data consists of Nat-
ural Questions (Kwiatkowski et al., 2019) for En-
glish and XOR-TyDi QA for the other languages
in the shared task.6 In the constrained track (Sec-
tion 2.3) only this data source is permitted for pro-
viding QA supervision, though other tools are per-
missible for data augmentation.

Evaluation data. Our evaluation sets span 16
languages: 7 from XOR-TyDi QA and 12 from
MKQA with an overlap of five languages and two
surprise languages newly annotated for this shared
task following MKQA annotation schema. We
found that the original XOR-TyDi QA validation
and test splits have different proportions of the in-
language and cross-lingual questions, resulting in
large performance gaps between dev and test sub-
sets as reported by Asai et al. (2021b). We re-split
XOR-TyDi QA so that the validation and test sets
have similar ratios of the two question types of in-
language and cross-lingual questions. In-language
questions are answerable from Wikipedia in the
question’s language, and are often easier to answer
while the other category requires cross-lingual re-
trieval between the target language and English,
and are more challenging. Further, we add aliases
that can be retrieved via the Wikimedia API to the
gold answers, following MKQA, thereby avoiding
penalizing models for generating correct answers
with surface-level differences. For MKQA we split
the answerable examples into a validation set of
1,758 questions and a test set of 5,000 question.
We add the newly annotated data for the surprise
languages (Tamil and Tagalog) to the test set only.

6See the training data linked at https://github.
com/mia-workshop/MIA-Shared-Task-2022#
training-data

3.4 Limitations

False negatives in evaluations. First, because
the original source questions and answers are from
TyDi QA or Natural Questions, their answers are
annotated based on a single Wikipedia article in
English or the question language. MKQA an-
swers are re-labeled by English speakers without
any Wikipedia or web corpus, but small portion
of the answers can be geographically incorrect for
that regions of the languages the data is translated
into (e.g., when the first harry potter movie was
released?). As we generalize the task setting to
cross-lingual open retrieval, there are inconsistent
contents across articles in different languages lead-
ing to many possible answers. However, because
we only have one answer, this can penalize correct
answers (Palta et al., 2022). It is a common issue
that open-retrieval QA datasets do not comprehen-
sively cover all valid answers (Min et al., 2020a;
Asai and Choi, 2021), and this can be more preva-
lent in multilingual settings due to transliteration
of entities or diverse ways to express numeric in
some languages (Al-Onaizan and Knight, 2002).

English American-centric biases. Second, the
MKQA questions as well as the new data anno-
tated for this shared task are translated from En-
glish. This annotation scheme enables us to scale
up to many typologically diverse languages, but
the resulting questions are likely to be Western- or
specifically American-centric, rather than reflect-
ing native speakers’ interests and unique linguistic
phenomena (Clark et al., 2020). We try to reduce
such English-centric bias by only using the ques-
tions whose answer entities are also included in
Tamil or Tagalog Wikipedia, though this constrains
the distribution to simple factoid questions. We
also found that in some languages, MKQA answers
have high overlap with their English counterparts.

4 Baseline Models

We use a state-of-the-art open-retrieval QA model
as our baseline. We open source the code, trained
checkpoints, training data, and intermediate/final
prediction results.7

4.1 Modeling

Our baseline model is based on CORA (Asai et al.,
2021b), which has two components: mDPR for

7https://github.com/mia-workshop/
MIA-Shared-Task-2022
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document retrieval and mGEN for answer genera-
tion. Both mDPR and mGEN are based on multi-
lingual pretrained models to process data written
in many different languages without relying on ex-
ternal translation modules.

Given a question q
L written in a language

L, mDPR R retrieves top N passages: P =
p1, . . . , pN = R(qL). mDPR includes all of the
target languages’ Wikipedias as its retrieval target,
except for the two surprise languages. mGEN G
takes as input q and P and generates an answer aL

in the target language: aL = G(q,P). mDPR is a
multilingual extension of DPR (Karpukhin et al.,
2020), which employs a dual-encoder architecture
based on BERT (Devlin et al., 2019) and retrieves
top passages based on the dot-product similarities
between encoded representations. During training,
mDPR optimizes the loss function as the negative
log likelihood of the positive passages. mGEN sim-
ply concatenates the question and a set of top K
passages, and the fine-tuned multilingual encoder-
decoder model generates a final answer in the tar-
get language. Unlike some prior work in English
conducting end-to-end training of the retriever and
reader (Lewis et al., 2020c; Guu et al., 2020), we
train mDPR and mGEN independently. Note that
during mGEN training, we use the passages re-
trieved by the trained mDPR, as in Izacard and
Grave (2021a).

4.2 Training and Hyperparameters

We use the official training data for training. We
also leverage the long answer annotations in the
Natural Questions dataset and the gold paragraph
annotations of XOR-TyDi QA to create mDPR
training data, released at the shared task reposi-
tory.8 After training mDPR, we run it on the shared
task training data questions to obtain top passages,
and then use those retrieved passages to train the
mGEN model: mGEN is trained to generate the
gold answer given an input query and top retrieved
passages.

mDPR uses multilingual BERT-base uncased
(Devlin et al., 2019), and mGEN is fine-tuned from
mT5-base (Xue et al., 2021). For mDPR, we use
the same hyperparameters as in DPR (Karpukhin
et al., 2020), and train it for 30 epochs, and take the
last checkpoint. For mGEN, we follow Asai et al.
(2021b) hyperparameters.

8https://github.com/mia-workshop/
MIA-Shared-Task-2022#training-data

4.3 Pre-processing Knowledge Corpus.

Following DPR and mDPR, we split each article
into 100-token chunks based on whitespace. For
non-spacing languages (e.g., Japanese, Thai), we
tokenize the articles using off-the-shelf tokeniz-
ers (i.e., MeCab for Japanese9 and Thai NLP for
Thai10). We exclude passages with less than 20 to-
kens. Total numbers of passages for each language
are listed in Table 1.

5 Shared Task Submissions

Four teams submitted their final systems to our
EvalAI (Yadav et al., 2019) leaderboard,11 three
of which significantly outperformed the original
baseline described in Section 4. We summarize the
submitted systems here and refer readers to their
system description paper for details.

5.1 Constrained Systems

mLUKE+FiD. Tu and Padmanabhan (2022)
adapt the retrieve-then-read baseline system with
several improvements, including (a) using an
mLUKE encoder (Ri et al., 2022) for dense re-
trieval, (b) combining sparse and dense retrieval,
(c) using a fusion-in-decoder reader (Izacard and
Grave, 2021b), and (d) leveraging Wikipedia links
to augment the training data with additional target
language labels.

For retrieval, Tu and Padmanabhan (2022) use
the 2019/02/01 Wikipedia snapshot as their docu-
ment corpora, matching the baseline. They include
the Wikipedia snapshots for Tamil and Tagalog to
evaluate on the surprise languages. Their sparse
retriever searches the monolingual corpora only,
while their dense retriever searches all corpora.

CMUmQA. Agarwal et al. (2022) build a four-
stage pipeline for a retrieve-then-read approach,
based on the CORA open-retrieval system (Asai
et al., 2021b) that searches evidence documents in
any language for target questions (many-to-many
QA; Asai et al., 2021b), without relying on trans-
lation. They first apply an mBERT-based DPR
retrieval model, followed by a reranker (Qu et al.,
2021) with XLM-RoBERTA (Conneau et al., 2020).
While it is computationally intractable to use for

9https://taku910.github.io/mecab/.
10https://github.com/PyThaiNLP/

pythainlp.
11https://eval.ai/web/challenges/

challenge-page/1638/leaderboard
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System Macro F1 Language F1
Total XOR MKQA Arabic Bengali Finnish Japanese Korean Russian Telugu

(a) mLUKE-FID 31.61 40.93 22.29 45.33 30.48 41.01 43.45 31.21 42.62 42.40
(b) CMUmQA 31.53 40.20 22.87 55.06 30.56 41.25 42.44 28.76 42.56 40.75
(c) ZusammenQA 27.00 37.95 16.04 49.66 33.99 39.54 39.72 25.59 40.98 36.16
(d) Baseline 27.55 37.95 17.14 51.66 31.96 38.68 40.89 25.35 39.87 37.26
(e) Texttron 32.02 45.50 18.54 56.37 42.43 43.13 44.71 34.37 47.79 49.72

Table 2: Final results on the XOR-TyDi QA subsets of the MIA 2022 shared task. The grayed entry indicates an
unconstrained setting.

sys Language F1
ar en es fi ko ma ja km ru sv tr zh tm ta

(a) 12.67 39.63 30.85 25.22 12.81 29.09 20.49 2.36 18.82 29.62 26.16 22.60 20.75 20.95
(b) 13.94 42.58 32.11 26.75 14.59 31.13 22.72 8.71 22.36 31.48 26.59 18.00 2.74 26.42
(c) 8.73 35.32 25.54 20.42 6.78 24.10 14.27 6.06 12.01 25.97 20.27 13.95 0.00 11.14
(d) 9.52 36.34 27.23 22.70 7.68 25.11 15.89 6.00 14.60 26.69 21.66 13.78 0.00 12.78
(e) 13.62 33.24 28.98 25.26 13.07 29.04 23.11 3.96 20.11 29.75 28.15 11.30 0.00 0.00

Table 3: Final results on the MKQA subsets of the MIA 2022 shared task. The grayed entry indicates an
unconstrained setting.

retrieval, the reranker has the advantage of encod-
ing a question and a passage together, rather than
independently. An mT5-based fusion-in-decoder
is then applied to generate an answer. As the final
step of their pipeline, Wikidata is used to trans-
late English entities in the answer into the target
language, if any.

ZusammenQA. Hung et al. (2022) follow the
retrieve-then-read system, but with the expansion
of several components, along with training meth-
ods and data augmentation. Their retriever ensem-
bles supervised models (mDPR and mDPR with a
MixCSE loss; Wang et al., 2022) along with unsu-
pervised sparse (Oracle BM-25) and unsupervised
dense models (DISTIL, LaBSE, MiniLM, MPNet).

The reader system is based on mGEN, but with
domain adaptation by continued masked language
modeling on the document corpora, to better adapt
to Wikipedia and the target languages. The train-
ing data is augmented using Dugan et al. (2022)
that generates question-answer pairs from raw doc-
ument corpora and translates them into multiple
languages.

5.2 Unconstrained Systems

Texttron. This unconstrained submission also
follows the retrieve-then-read structure: the re-
trieval model performs dense passage retrieval with
XLM-RoBERTa Large (Conneau et al., 2020), and
the reading model uses mt5 large. The retrieval

text is split into paragraphs (as opposed to 100-
word text segments) extracted by the WikiExtrac-
tor package. The retrieval model is trained on a
combination of three types of custom training data:
target-to-target (both the query and retrieved para-
graphs are in the target language), target-to-English
(the query is in the target language and the retrieval
paragraphs are in English), and English-to-English
(both the query and retrieved paragraphs are in
English). These data are created based on BM25
retrieval and query translation.

Texttron also used multiple stages of training and
negative sample mining to tune their final dense
retriever with hard negatives: a combination of
BM25 and examples from the previous iteration of
retrieval that had low token overlap with the gold
answers. No system description was available.

6 Main Results

Tables 2 and 3 show final results on XOR-TyDi
QA and MKQA subsets, respectively. Three sys-
tems are submitted in the constrained setting, while
Texttron is an unconstrained submission.

Macro performance. Texttron, mLUKE +
mFiD, and CMUmQA significantly improve the
baseline performance. Among the constraint sub-
missions, mLUKE + mFiD yields the best perfor-
mance. While several systems achieve higher than
40 average F1 on XOR-TyDi QA, only two sys-
tems achieve higher than 20 average F1 on MKQA,
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demonstrating how difficult it is to build a sys-
tem that performs well in many languages with-
out language-specific supervision. Texttron signifi-
cantly outperforms other baselines on XOR-TyDi
QA while CMUmQA shows the best MKQA per-
formance among the submitted systems.

Language-wise performance. The performance
varies across different languages. Among XOR-
TyDi QA, all of the systems struggle in Korean and
Bengali, while in Arabic, Japanese and Russian,
they generally show relatively high F1 scores.

On MKQA, where all of the questions are paral-
lel, the performance still significantly differs across
languages. Almost all of the systems report lower
than 10 F1 in Khmer and Tamil, which are less
represented in existing pretraining corpora (Xue
et al., 2021) and use their own script systems—with
the notable exception of mLUKE + FiD, which
achieves 20.8 F1 on Tamil. mLUKE+FiD achieves
substantially better performance than other systems
in Tamil. This is partially because they also include
the Tamil Wikipedia passages for passage retrieval,
while other systems, including the baseline, do not.
As discussed in Asai et al. (2021b), all systems
show lower scores in the languages that are dis-
tant from English and use non-Latin scripts (e.g.,
Cyrillic for Russian, Hangul for Korean).

7 Analysis

We provide further analysis on the submitted sys-
tems. In Section 7.1 we provide a brief summary of
the findings from the submitted system descriptions.
Section 7.2 provides performance comparison over
answer-type, and answer overlap with English or
training data. We then analyze the degree of an-
swer agreements among the submitted systems to
understand which questions remain challenging in
Section 7.3. We further conduct manual error anal-
ysis in five languages in Section 7.4.

7.1 Summary of Findings

In this section, we highlight several effective tech-
niques from the submitted systems. Overall, a sur-
prisingly wide range of complementary, and po-
tentially additive, methods all reported strong ben-
efits, including: (i) larger and longer pre-trained
models for retrieving and reading, (ii) a reranking
step with fusion-in-decoder multi-passage cross-
encodings, (iii) iterative dense retrieval tuning with
progressively harder negative example mining, (iv)

using entity-aware retrieval encodings, (v) com-
bining dense and sparse retrievers, (vi) data aug-
mentation, and (vii) leveraging Wikidata answer
post-processing for language localization. We dis-
cuss some of these below.

These findings highlight various techniques mi-
grating the performances in English retrieval sys-
tems. And most of all, they emphasize that cross-
lingual retrieval still poses the major bottleneck
to the end-to-end task, while large multilingual
fusion-in-decoder reader systems can operate well
when given sufficient evidence. These findings sug-
gest multilingual retrieval is the most important
avenue for future research, especially on questions
not easily answered by English Wikipedia. More-
over, retrieving evidence cross-lingually is keys for
other knowledge intensive NLP tasks such as fact
verification (Thorne et al., 2018) and knowledge-
grounded dialogues (Dinan et al., 2019) beyond
open-retrieval QA.

Entity representations. Using entity-aware rep-
resentations for the passage retriever’s encoders
gives a large performance improvement; As shown
in analysis by Team Utah (Tu and Padmanabhan,
2022), replacing mBERT encoders in DPR with
mLUKE improves by 1.22 F1 on XOR macro-
average and 1.85 MKQA macro F1. We hypoth-
esize that the mLUKE may capture better cross-
lingual entity alignment than mBERT as it lever-
ages inter-language links in Wikipedia during pre-
training. This sheds light on the potential effective-
ness of multilingual entity contextualized represen-
tations for cross-lingual passage representations,
which is an under-explored direction.

Combining dense and sparse retrievers & hard
negatives. Texttron and Team Utah combine both
BM25 and mDPR, while ZusammenQA explore a
diverse set of unsupervised and supervised retrieval
approaches including BM25 and LaBSE (Feng
et al., 2022). Team Utah shows that combining
BM25 with mDPR helps, while ZusammenQA
shows that only using BM25 gives significantly
lower scores than the original baseline (Hung et al.,
2022), as BM25 does not have cross-lingual phrase
matching capabilities. Texttron iteratively trained
their dense retriever, mining increasingly hard neg-
ative examples using BM25 and query translation,
filtered using simple heuristics.

Fusion-in-Decoder and passage reranking.
Team Utah and CMUmQA demonstrate that
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Fusion-in-Decoder architectures outperform sim-
ply concatenating passages as in mGEN (Fusion-
in-Encoder). While Fusion-in-Encoder simply con-
catenates retrieved passages in a retrieved order,
Fusion-in-Decoder encodes each of the retrieved
passages independently and then concatenate them.
This may help the model to pay more attentions to
the passages that are ranked lower by the retriever
but indeed provides evidence to answer. Recent
work in open domain QA also demonstrates that
the Fusion-in-Decoder architecture is more com-
petitive than prior systems that simply concatenate
passages (Fajcik et al., 2021; Asai et al., 2022).

Team Utah show increasing the number of pas-
sages improves performance, while CMUmQA
show that cross-encoder reranking is particularly
beneficial for Fusion-in-Decoder.

Data augmentation. ZusammenQA introduces
data augmentation using Google Translate to trans-
late the training data into target languages. AUG-
QA translates question-answer pairs into target lan-
guages, while AUG-QAP translates question, an-
swer and the original training data passages into the
target languages. They found that the AUG-QAP
and AUG-QA both improve performance from their
direct counterpart without data augmentation.

Wikipedia answer localization. CMUmQA and
others used Wikidata entity maps to localize an-
swers to the correct target script following Long-
pre et al. (2021). This process was particularly
effective for localizing short answers into a target
language from English due to the overwhelming
English bias of retrieval and generative systems
finetuned on English. As a result, CMUmQA ob-
tains the best MKQA performance among the sub-
mitted systems.

7.2 Performance Comparison

In this section, we group questions based on sev-
eral factors (e.g., answer types) and compare the
models’ performance across different sub-groups.

Answer types. MKQA provides answer cate-
gories for each question. We analyze the per-
category model performance to understand what
types of questions remain challenging. The original
MKQA source data except for the unanswerable
subsets has the following answer type distributions:
Entity (42%), Date (12%), Number (5%), Number
with Unit (4%), Short Phrase (3%), Boolean (yes,
no; 1%), Unanswerable (14%), and Long Answers

en es ja zh

Number with units 7.77 3.56 1.94 3.88
Entity 58.18 53.19 34.42 15.75
Number 27.07 29.83 21.27 25.70
Date 28.14 28.49 6.10 11.37
Short phrases 8.60 7.81 5.08 5.08
Binary 32.99 31.96 79.38 75.25

Table 4: The percentage of the exact match per answer
types in English (en), Spanish (es), Japanese (ja) and
Chinese (zh).

(13%). The Unanswerable and Long Answers cate-
gories are excluded from the MIA 2022 shared task
evaluation data.

We present the percentage of the questions where
any of the submitted system predictions match
the annotated gold answers in English, Spanish,
Japanese and Chinese in Table 4. In all of the lan-
guages, the systems show relatively higher exact
matching rate in Entity types questions except for
Chinese and Japanese. In those languages, many
of the entity names are written in their own script
systems (e.g., Chinese characters, katakana), which
is challenging to be generated from the evidence
passages written in other languages; it is known
to be challenging to translate an entity name from
one language to another using different script sys-
tems (Wang et al., 2017). In English and Span-
ish, the systems show significantly higher accuracy
on entity and date than in Japanese or Chinese,
while the systems struggle in Boolean questions.
XOR-TyDi QA Japanese subset shows higher per-
centage of boolean questions than other subsets,
which potentially helps the systems in Japanese
and Chinese MKQA boolean questions. All of the
systems show significantly lower performance in
short phrase questions, indicating the difficulty of
generating phrase length answers beyond simple
factoid questions with entity or date answers.

Answer overlaps with English. We analyze per-
formances across languages by examining the re-
lationship between the final performance and the
number of the questions whose answers are the
same as English answers. Figure 1a shows the
performance of the best constrained track submis-
sion, mLUKE + FiD and answer overlap with the
English subsets for each MKQA language except
for Khmer and two surprise languages. We ob-
serve a clear correlation between the answer over-
lap and final performance among those languages.
The model performs well on the languages where
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(a) MKQA performance vs. answer overlap with English an-
swers.
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(b) XOR-TyDi QA performance vs. answer overlap be-
tween train and test sets.

Figure 1: Performance vs. answer overlap between train and test sets.

many answers are the same as English answers.
Finnish, on the other hand, shows relatively lower
performance compared to other languages with
high answer overlap (i.e., Malay, Swedish, Span-
ish). Among the languages with low answer over-
lap, on the Japanese and Chinese sets, the system
shows relatively high F1 scores compared to the
other languages with lower than 40% overlap (i.e.,
Russian, Korean, Arabic). This is likely because
Chinese and Japanese show higher accuracy on
Boolean type questions than other languages as
discussed above.

Answer overlap with training data. Prior work
shows that the high overlap between train and test
data can result in the overestimated performance
of the systems (Lewis et al., 2021). In XOR-TyDi
QA, the questions are annotated by native speakers
of the target languages, so the percentage of the
train-test overlap can vary across languages. We
calculate the percentage of the answers for the test
data questions that also appear as gold answers
in XOR-TyDi QA training data. We then check
whether the degree of the answer overlap between
the train and test sets correlate with the final XOR-
TyDi QA test performance.

Figure 1b shows the performance and train-test
overlap percentage. Although we can see the per-
centage of overlap between train and test data
varies across languages, it is not particularly corre-
lated with the final performance. For instance, Ben-
gali actually shows relatively high overlap between
train and test data (over 25% answer overlap), but
the performance is much lower than Telugu, whose
answer overlap ratio is close to that of Bengali.
We also found that the percentage of the Boolean
questions (yes, no) significantly differs across lan-
guages: in Japanese, around 10% of the questions
are Boolean questions, while in Telugu, almost no

questions are Boolean. The original TyDi QA data
is annotated by different groups of annotators for
each language, and thus such question distributions
can differ (Clark et al., 2020).

XOR-TyDi QA vs. MKQA. Arabic, Japanese,
Korean, and Finnish are included both in MKQA
and XOR-TyDi QA, but their performance on the
two subsets significantly differ; In general, the
XOR-TyDi QA F1 scores are much higher than
MKQA (e.g., Japanese: 44.71 vs. 23.11). We
hypothesize that this happens because we do not
have training data for MKQA and all MKQA
questions tend to require cross-lingual retrieval as
the questions are translated from English and an-
swers are American-centric. In contrast, half of
the questions in XOR-TyDi QA are from TyDi
QA, and the answers are grounded to their own
languages’ Wikipedia. Cross-lingual retrieval is
generally more challenging than monolingual re-
trieval (Zhang et al., 2021). In addition, all of the
XOR-TyDi QA cross-lingual questions are labeled
“unanswerable” in TyDi QA, and can be more diffi-
cult to answer than its monolingual counterparts.

To further test this hypothesis, we evaluate the
submitted systems’ performance on XOR-TyDi
QA’s cross-lingual and monolingual subsets in Ta-
ble 5. We can clearly see that all of the baseline’s
performance deteriorates on the cross-lingual sub-
sets, while they show high F1 scores across lan-
guages on the monolingual subsets.

7.3 Prediction Agreement

We analyze how often all of the systems agree on
the same answers on the MKQA test data in five
languages. In particular, we compare all of the four
system predictions on the English, Japanese, Chi-
nese, Spanish and Turkish subsets of the MKQA
test data, and check the prediction agreements
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(a) MKQA Answer agreement. (b) Per-category agreement (En). (c) Per-category agreement (Ja).

Figure 2: Answer agreements of the four submitted systems.

Avg. Arabic Bengali Finnish Japanese Korean Russian Telugu
Sys. cl m cl m cl m cl m cl m cl m cl m cl m

(a) 27.2 58.8 28.3 64.8 29.4 63.3 30.3 51.3 29.5 55.9 22.2 53.2 24.9 55.8 25.9 67.6
(b) 21.4 54.2 22.2 65.2 21.7 44.6 24.1 51.7 27.4 55.2 19.5 49.3 19.1 50.8 16.0 62.2
(c) 20.3 52.5 21.5 64.6 20.5 42.3 25.5 50.9 26.3 53.1 17.6 44.9 16.0 51.2 14.7 60.3
(d) 19.5 49.7 22.4 59.0 19.0 51.5 23.8 46.9 25.2 50.2 15.3 38.8 16.9 47.0 14.0 54.2

Table 5: Final results on MIA 2022 Shared Task XOR-TyDi QA cross-lingual (“cl”) / monolingual subsets (“m”).
Systems (a), (b), (c) and (d) are Texttron, mLUKE-FID, CMUmQA, and ZusammenQA, respectively.

based on the number of the unique predictions
among the union of the predictions. We can see
that in English and Spanish, the agreement is high
(e.g., in 40% of the questions, all or three of the
four systems agree on the same answers), while the
agreement is lower in other languages, particularly
in Japanese and Chinese.

To understand the phenomena, we breakdown
the prediction agreement statistics in English and
Japanese into different answer categories. Fig-
ure 2b and Figure 2c show per-category prediction
agreements in English and Japanese, respectively.
While in English, systems show high agreements in
date, entity and number type questions, in Japanese,
the agreement rate is lower across category, poten-
tially because of their diverse formats of number
and dates, as well as the transliteration of the entity
names.

7.4 Error Analysis
We conduct a set of error analysis in five languages
(i.e., English, Japanese, Korean, Chinese and Tel-
ugu) on randomly sampled 30 questions, where
none of the submission systems’ predictions ex-
actly match any of the ground truth answers.

Error types. We classify the errors into follow-
ing categories: (i) incorrect predictions, (ii) an-
swers are semantically correct in different lan-
guages (incorrect languages), (iii) incorrect gold
answers, (iv) semantically-equivalent predictions in
the target language but are penalized because gold
answers do not cover all of the potential gold an-
swers (not comprehensive gold answers), (v) ques-

tions are open-ended or ambiguous (e.g., entity
ambiguity), (vi) questions’ granularity is unclear
(unclear question granularity; e.g., year v.s. month,
kilometers v.s. meters), (vii) questions are highly
subjective (e.g., who is the best singer ever), (viii)
temporal or geographical dependency in questions.

The first two error types, (i) and (ii), reveal the
limitations of models. The error type (iii) and (iv)
are considered answer annotation errors (Min et al.,
2020a; Asai and Choi, 2021). The last four error
types (v), (vi), (vii) and (viii) requires some spec-
ifications or context (Zhang and Choi, 2021; Min
et al., 2020b).

Error analysis schema. We recruit native speak-
ers of the five target languages and ask them to
classify the errors into the aforementioned cate-
gories. We present the predictions of all of the
systems as well as the intermediate retrieval results
of the top constrained system (Team Utah).

Error analysis results. Table 6 provides the er-
ror analysis result. Besides modeling errors, we
found that the original annotations themselves ex-
hibit some issues, which underestimates models’
performance. Across languages, annotators found
non-negligible proportion of the errors happen as
the original gold answers do not cover all of the
possible answer aliases or the answer granularity
is unclear. For instance, an English question asks
“what is the temperature at the center of earth” and
the gold answer is 6000 °C. Several systems answer
in Fahrenheit or Kelvin, and got zero F1 score. Sev-
eral questions are also temporal or geographical de-
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English Arabic Japanese Korean Chinese

(i) incorrect predictions 12 9 23 16 12
(ii) incorrect languages 0 2 3 0 2
(iii) incorrect gold answers 2 4 5 1 0
(iv) not comprehensive gold answers 10 1 7 5 6
(v) ambiguous question 3 7 6 15 5
(vi) unclear question granularity 3 2 1 2 0
(vii) subjective question 0 0 0 0 0
(viii) temporal or geographical dependency in questions 4 4 1 4 5

Table 6: Error analysis on sampled questions where all of the submissions unanimously fail to predict the correct
answers. We show the percentage of the errors in each category.

pendent such as “who was the last person appointed
to the u.s. supreme court” orクリミナル・マイ
ンドの新シーズンが公開されるのはいつか
(when is the next season of Criminal Minds will
be released?). Although situation-grounded QA
has been recently studied (Zhang and Choi, 2021),
there’s little work that analyzes this phenomena in
multilingual settings, where the particularly geo-
graphical dependence can be even more prevalent.
Question ambiguity is also common in multilingual
QA.

8 Conclusion and Discussions

We have presented the MIA 2022 Shared Task on
cross-lingual open-retrieval QA systems in 16 ty-
pologically diverse languages, many of which are
unseen during training. Several submissions im-
proved significantly over our baseline based on a
state-of-the-art cross-lingual open-retrieval QA sys-
tem and investigated a wide range of techniques.
Those results shed light on the effectiveness of sev-
eral techniques in this challenging task, such as
entity-enhanced representations, sparse-dense re-
trieval, and better interactions between passages.
We further conducted detailed performance anal-
ysis on different subsets of the datasets, such as
languages, answer types, the necessity of cross-
lingual retrieval as well as detailed error analysis.
We also suggest several bottlenecks in the area.
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