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Abstract

In this paper, we describe our approach for
the task of homophobia and transphobia detec-
tion in English social media comments. The
dataset consists of YouTube comments, and it
has been released for the shared task on Homo-
phobia/Transphobia Detection in social media
comments. Given the high class imbalance, we
propose a solution based on data augmentation
and ensemble modeling. We fine-tuned differ-
ent large language models (BERT, RoBERTa,
and HateBERT) and used the weighted major-
ity vote on their predictions. Our proposed
model obtained 0.48 and 0.94 for macro and
weighted F1-score, respectively, ranking at the
third position.

1 Introduction

Despite the progress on LGBT+ rights, Internet still
remains a hostile environment for LGBT+ people.
The growing number, intensity, and complexity of
online hate cases is also reflected in the real world:
Anti-LGBT+ hate crimes increased dramatically in
the last three years.1 In 2020, the UK’s LGBT+
anti-violence charity (Galop) presented a report
about online hate crimes regarding homophobia,
biphobia, and transphobia.2 They surveyed 700
LGBT+ people distributed through online commu-
nity networks of LGBT+ activists and individuals.
The results are worrisome: 8 out of 10 people ex-
perienced online hate speech in the last five years,
and 1 out of 5 said they had been victims of online
abuse at least 100 times. Transgender people ex-
perience online harassment at a higher rate (93%)
than cisgender ones (70%). It is also alarming
that 18% of people claimed that online abuse was
linked with offline incidents. These statistics show

1https://www.theguardian.com/world/20
21/dec/03/recorded-homophobic-hate-crime
s-soared-in-pandemic-figures-show

2https://www.report-it.org.uk/files/o
nline-crime-2020_0.pdf

a worrying picture of the everyday experience that
LGBT+ people are living.

Natural language processing (NLP) has emerged
as a significant field of research for combating on-
line hate speech because of its ability to automate
the process at scale while, at the same time, de-
creasing the labor and emotional stress on online
moderators (Chaudhary et al., 2021). Despite the
interest of the NLP community in creating datasets
and models for the task of hate speech detection, no
research effort has been made to cover homopho-
bia and transphobia specifically. This is a problem
because Nozza (2021) has demonstrated that hate
speech detection models do not transfer to different
hate speech target types.

The shared task of Homophobia and Transpho-
bia Detection (Chakravarthi et al., 2022) enabled
researchers to investigate solutions for this prob-
lem with the introduction of a novel dataset. The
dataset comprises around 5k YouTube comments
manually annotated with respect to the presence of
homophobia and transphobia. The corpus shows
a high imbalance with respect to the non-hateful
class, which covers 95% of the dataset. In this pa-
per, we propose an approach designed to overcome
the problem of class imbalance. We use ensemble
modeling to combine different fine-tuned large lan-
guage models. We also perform data augmentation
from an external dataset to include more homo-
phobic and transphobic instances. However, data
augmentation results in lower performance, and we
did not use it for the submission.

Our system ranked third for the English track
with a macro F1-score of 0.48 and a weighted F1-
score of 0.94.

2 Data

The shared task on homophobia and transphobia de-
tection in social comments released three different
datasets in English, Tamil, and code-mixed Tamil-
English (Chakravarthi et al., 2021). The dataset
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Train Dev Test

Size 3,164 792 990

# Non-anti-LGBT+ content 3,001 732 924
# Homophobic 157 58 61
# Transphobic 6 2 5

Table 1: Statistics of the English dataset.

Train

Size 3,678

# Non-anti-LGBT+ content 3,043
# Homophobic 626
# Transphobic 9

Table 2: Statistics of the augmented dataset.

comprises YouTube comments of videos from pop-
ular YouTubers that talk about LGBT+ topics. The
comments have been labelled according to three
classes: Non-anti-LGBT+ content (N), Homopho-
bic (H), Transphobic (T). In Table 1 we show the
distribution of the English dataset, which is the
portion we investigate in this paper.

The numbers clearly show a strong imbalance of
the dataset distribution. On average, the class Non-
anti-LGBT+ content covers 94% of the instances,
while there are only 6% of homophobic instances
and 0.3% of transphobic ones.

2.1 Data Augmentation

The low number of instances associated with the
hateful classes (homophobic and transphobic cate-
gories) may prevent the model from distinguishing
them. In order to overcome this issue, we decide
to test data augmentation techniques. Including
additional hateful instances can increase model per-
formance, even if the definition of hate speech or
targets does not match exactly. We perform data
augmentation by sampling additional data from
the Multilingual and Multi-Aspect Hate Speech
(MLMA) (Ousidhoum et al., 2019) corpus. This
dataset consists of tweets with various hate speech
targets. In order to perform data augmentation,
we selected hateful English tweets and sexual ori-
entation as the target attribute based on which it
discriminates against people. This process allows
us to obtain 514 tweets. We proceed by mapping
every non-hateful tweet to the Non-anti-LGBT+
content class and every hateful tweet to the Homo-
phobic one. Then, we filtered all the homophobic
tweets containing the word "trans", and we asso-
ciated them with the label Transphobic. Table 2

Param Value

Batch Size 128
Warm Up Steps 50
Learning Rate 1e-3
Learning Epochs 10
Optimizer AdamW
Betas 0.9 and 0.999
Max Length 200

Table 3: Main models’ parameters.

shows the statistics of the augmented dataset. Note
that the MLMA dataset comprises tweets and not
YouTube comments.

2.2 Data Preprocessing

Social media textual data strongly differ from for-
mal text, such as newspaper articles (Nozza et al.,
2017). They contain slang, emojis, hashtags, URLs,
and misspellings. In order to improve the quality
of the data, we apply preprocessing techniques.
First, we convert the text to lowercase and remove
characters that are not words (e.g., numbers and
punctuation). Then, we replace URLs, mentions,
and emoticons with placeholder tags. Finally, we
replace emojis with their textual description (e.g.,
rolling on the floor laughing) following (Corazza
et al., 2020).

3 Experimental Settings

3.1 Fine-tuned Models

We use different large language models (LLMs) ex-
ploiting the HuggingFace library (Wolf et al., 2020).
We selected two popular LLMs (BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019)). We
choose these models based on their performance
and their low hurtful sentence completion (HON-
EST) score (Nozza et al., 2021, 2022b). We also se-
lected HateBERT (Caselli et al., 2021), a re-trained
BERT model for abusive language detection in En-
glish. Caselli et al. (2021) demonstrate that Hate-
BERT has superior abilities for tasks of abusive
detection, yielding much better results than BERT.

Each model has been fine-tuned for the task of
homophobia and transphobia detection. We train
each model with the same parameters (Table 3).

3.2 Ensemble Modeling

Ensemble modeling consists in creating a meta-
classifier that treats the predicted label of distinct
machine learning classifiers as a vote towards the
final label that is to be predicted. This paper in-
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vestigates two frameworks for ensemble: majority
voting and weighted voting. Moreover, we focus
only on hard voting, i.e., we consider only the pre-
dicted class as a vote and not its probability value
(which is known as soft voting).

Majority voting Majority voting is the simplest
case of ensemble learning. We consider the pre-
diction of each classifier Cj as a vote, and then we
take the predicted class with the highest votes. The
predicted class label ŷ can be defined as:

ŷ = mode {C1(x), C2(x), . . . , Cm(x)}

where x is the data instance.

Weighted Voting We use the weighted majority
vote by associating a weight wj with classifier Cj

to predict the class label ŷ:

ŷ = argmax
i

m∑

j=1

wjχA (Cj(x) = i)

where χA is the characteristic function
[Cj(x) = i ∈ A], and A is the set of unique
class labels.

Here, as weight we use the recall metric for the
homophobic class for each classifier. The recall
metric represents the percentage of homophobic
posts correctly classified by our algorithm.

4 Experimental Results

Table 4 shows the precision, recall, and F1-score
on the test set disaggregated by class: Non-anti-
LGBT+ content (N), Homophobic (H), Transpho-
bic (T). We report the results for each fine-tuned
LLMs tested (BERT, RoBERTa, and HateBERT)
and the respective version fine-tuned on prepro-
cessed data (prep). Finally, we provide the re-
sults of our ensemble classifiers using majority and
weighted voting on the previous 6 models. From
the scores, it is possible to observe that behavior re-
garding the non-hateful and the transphobic classes
are stable for each metric and model. This is due to
the class imbalance. Indeed, the Non-anti-LGBT+
content reaches high F1-scores, with a stable 0.97.
In contrast, no posts have been predicted as trans-
phobic in the test set, resulting in 0 F1-score. We
argue that this is a direct consequence of the lim-
ited number of training examples (0.19%), which
prevents the models from learning the phenomena.
The homophobic class shows more variable perfor-
mance, with an average of 0.43 and a maximum of

precision recall F1-score

BERT N 0.95 0.99 0.97
H 0.70 0.34 0.46
T 0.00 0.00 0.00

BERT+prep N 0.95 0.99 0.97
H 0.72 0.21 0.33
T 0.00 0.00 0.00

RoBERTa N 0.95 0.99 0.97
H 0.60 0.25 0.35
T 0.00 0.00 0.00

RoBERTa+prep N 0.95 0.99 0.97
H 0.71 0.36 0.48
T 0.00 0.00 0.00

HateBERT N 0.95 0.98 0.97
H 0.61 0.36 0.45
T 0.00 0.00 0.00

HateBERT+prep N 0.95 1.00 0.97
H 0.79 0.25 0.38
T 0.00 0.00 0.00

Majority Voting N 0.95 0.99 0.97
H 0.76 0.36 0.49
T 0.00 0.00 0.00

Weighted Voting N 0.95 0.99 0.97
H 0.78 0.34 0.48
T 0.00 0.00 0.00

Table 4: Results of the different fine-tuned LLMs pre-
dictions on the test set for the classes Non-anti-LGBT+
content (N), Homophobic (H), Transphobic (T). Prepro-
cessing is denoted with prep.

macro
F1-score

weighted
F1-score

BERT 0.48 0.94
BERT+prep 0.43 0.94
RoBERTa 0.44 0.92
RoBERTa+prep 0.48 0.95
HateBERT 0.47 0.93
HateBERT+prep 0.45 0.94

Majority Voting 0.49 0.94
Weighted Voting 0.48 0.94

Table 5: Macro and weighted F1-score on test set.

macro
F1-score

weighted
F1-score

BERT+data 0.42 0.92
BERT+data+prep 0.46 0.93
RoBERTa+data 0.45 0.93
RoBERTa+data+prep 0.45 0.93
HateBERT+data 0.42 0.92
HateBERT+data+prep 0.47 0.93

Majority Voting+data 0.46 0.93
Weighted Voting+data 0.46 0.93

Table 6: Macro and weighted F1-score on test set with
data augmentation approach.
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0.49 obtained by majority voting. Highest scores
for this class are highlighted in bold in Table 4.

Concerning the different LLMs, the best results
are obtained by RoBERTa+prep and HateBERT.
We did not observe a consistent effect regarding pre-
processing, which has decreased the performance
for BERT and HateBERT and has improved the
one of RoBERTa. Results also demonstrate the
superiority of ensembling methods, in particular,
majority voting.

Table 5 reports macro and weighted F1-score.
The model obtaining the highest macro F1-score
(the score considered by the shared task) is majority
voting. Note that we submit to the shared task the
weighted voting run cause of its best performance
in the dev set.

Finally, we tested the performance of the data
augmentation approach (Table 6). Differently from
our expectations, we notice a slight decrease in the
performance. This is probably due to the different
nature of the social media considered in the studies
(i.e., Twitter vs. YouTube), resulting in shorter
texts comprising emojis, URLs, and user mentions.

5 Related Work

In the last years, many shared tasks have been or-
ganized with the aim of detecting hate speech on
social media comments (Kumar et al., 2018; Basile
et al., 2019; Zampieri et al., 2020, inter alia). While
the majority of them focus on English, some ef-
forts have been made to include other languages
(e.g., Italian, Arabic) (Bosco et al., 2018; Fersini
et al., 2018; Wiegand et al., 2018; Fersini et al.,
2020b; Mubarak et al., 2020; Mulki and Ghanem,
2021, inter alia). Chaudhary et al. (2021) proposed
a one-of-a-kind shared task for Homophobia and
Transphobia detection on social comments for three
languages (English, Tamil, and code-mixed Tamil-
English).

Several NLP approaches have been proposed
for the task of hate speech detection (Qian et al.,
2018; Indurthi et al., 2019; Vidgen et al., 2021;
Fersini et al., 2020a; Attanasio and Pastor, 2020;
Kennedy et al., 2020; Attanasio et al., 2022b, inter
alia). While ensemble modeling has been proven
to be effective for several tasks in NLP (Garmash
and Monz, 2016; Nozza et al., 2016; Fadel et al.,
2019; Bashmal and AlZeer, 2021), a limited num-
ber of research work have investigated its poten-
tiality for hate speech detection (Plaza-del Arco
et al., 2019; Ramakrishnan et al., 2019; Zimmer-

man et al., 2018).
Only recently, researchers have focused on

detecting and measuring harmfulness against
LGBTQIA+ community members in NLP. Some
research work investigated bias in co-reference res-
olution (Cao et al., 2020), conversational language
models (Barikeri et al., 2021), and LLMs (Nozza
et al., 2022b). In a similar spirit, Dev et al. (2021)
discussed the harms of treating gender as binary
in English language technologies, and pointed to
the complexity of gender representation. Focusing
on the notion of referential gender, Lauscher et al.
(2022) presented an overview on phenomena relat-
ing to 3rd person pronouns and discussed how NLP
can and should model pronouns.

6 Conclusion

This article describes our approach for the shared
task of Homophobia and Transphobia on social me-
dia comments. We propose to couple ensemble
learning and data augmentation to address the prob-
lem of class imbalance of the dataset. We found
that augmenting the dataset with a corpus from a
different domain was ineffective. Our submitted
model consists of the weighted majority vote of
different fine-tuned LLMs (BERT, RoBERTa, and
HateBERT) ranked at the third position out of 13
submissions. In the future, we aim to explore how
fine-tuned LLMs are biased towards members of
the LGBT+ community and propose a bias mitiga-
tion solution following (Nozza et al., 2019, 2022a;
Attanasio et al., 2022a).
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Glavaš. 2021. RedditBias: A real-world resource for
bias evaluation and debiasing of conversational lan-
guage models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1941–1955, Online. Association for
Computational Linguistics.

Laila Bashmal and Daliyah AlZeer. 2021. ArSarcasm
shared task: An ensemble BERT model for Sarcas-
mDetection in Arabic tweets. In Proceedings of the
Sixth Arabic Natural Language Processing Workshop,
pages 323–328, Kyiv, Ukraine (Virtual). Association
for Computational Linguistics.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti.
2019. SemEval-2019 task 5: Multilingual detection
of hate speech against immigrants and women in
Twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 54–63, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

Cristina Bosco, Dell’Orletta Felice, Fabio Poletto,
Manuela Sanguinetti, and Tesconi Maurizio. 2018.
Overview of the EVALITA 2018 hate speech de-
tection task. In Proceedings of the Sixth Eval-
uation Campaign of Natural Language Process-
ing and Speech Tools for Italian. Final Workshop
(EVALITA 2018), volume 2263, pages 1–9, Turin,
Italy. CEUR.org.

Qingqing Cao, Aruna Balasubramanian, and Niranjan
Balasubramanian. 2020. Towards accurate and reli-
able energy measurement of NLP models. In Pro-
ceedings of SustaiNLP: Workshop on Simple and Effi-
cient Natural Language Processing, pages 141–148,
Online. Association for Computational Linguistics.

Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
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