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Abstract
Clinical phenotyping enables the automatic extraction of clinical conditions from patient records, which can be beneficial
to doctors and clinics worldwide. However, current state-of-the-art models are mostly applicable to clinical notes written in
English. We therefore investigate cross-lingual knowledge transfer strategies to execute this task for clinics that do not use the
English language and have a small amount of in-domain data available. We evaluate these strategies for a Greek and a Spanish
clinic leveraging clinical notes from different clinical domains such as cardiology, oncology and the ICU. Our results reveal
two strategies that outperform the state-of-the-art: Translation-based methods in combination with domain-specific encoders
and cross-lingual encoders plus adapters. We find that these strategies perform especially well for classifying rare phenotypes
and we advise on which method to prefer in which situation. Our results show that using multilingual data overall improves
clinical phenotyping models and can compensate for data sparseness.
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1. Introduction

Clinical phenotyping from text. Clinical informa-
tion extraction has the potential to support clinicians
in their daily work. Phenotyping—the extraction of
patient conditions from text—in particular, can help
clinicians to summarize patient states and to find simi-
lar patients more easily. Recent years have seen many
advancements in automatic phenotyping from clinical
text (Mulyar et al., 2019} [Zhang et al., 2021)), most of
them based on neural networks. Especially domain-
specific pre-training of such networks has shown to
be of great benefit in clinical information extrac-
tion (L1 et al., 2020; |Gu et al., 2020). However, current
state-of-the-art models are mostly exclusively applica-
ble to English text, due to the large amount of both
labeled and unlabeled clinical text resources in English.

The need for cross-lingual transfer. We want to in-
vestigate how to leverage the clinical knowledge en-
coded in English and other languages to the benefit of
(low-resource) target languages. This scenario is com-
monly described as cross-lingual knowledge transfer
(Ponti et al., 2020). Medicine is increasingly trans-
formed by globalisation (Labonté et al., 2011) and
knowledge collected in different languages has signif-
icant impact on local decisions (as seen during the
Covid-19 pandemic). However, cross-lingual knowl-
edge transfer in the clinical domain remains largely un-
explored. Our work takes the perspective of clinicians
working with non-English clinical notes. In particu-
lar we evaluate on medical texts based on Spanish and
Greek in which there are far less such resources openly
available.

Which cross-lingual approach works best in the
clinical domain? Differences between languages
(and clinics) regarding patient distributions, documen-
tation styles or typologies make clinical knowledge
transfer challenging. We evaluate three current ap-
proaches for cross-lingual transfer to find out which
method handles these challenges best: 1) Translating
Greek and Spanish notes into English before using a
medical-specific English encoder, comparable to work
by [Isbister et al. (2021). 2) Using multi-lingual en-
coders (Conneau et al., 2020), which allow knowledge
transfer between languages, but are not pre-trained on
medical data. 3) Expanding multi-lingual encoders
with adapters (Pfeiffer et al., 2020b)), which have shown
promising results on other cross-lingual tasks (Le et al.,
2021) while being more resource efficient.

Cross-lingual transfer for rare phenotypes. Some
phenotypes are more common in some parts of the world
than in others. Distributing such knowledge to other re-
gions is an important goal of medical knowledge trans-
fer. Cross-lingual transfer is especially promising for
these scenarios in which few examples exist in the tar-
get language. Therefore, we analyse in particular how
the long-tail of phenotypes benefits from all evaluated
cross-lingual approaches.

Contributions.

1. We compare state-of-the-art methods for cross-
lingual knowledge transfer regarding their perfor-
mance in the clinical domain. To this end, we
analyse whether the incorporation of clinical notes
written in different languages improves the results
of clinical phenotyping.
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2. We evaluate methods on three datasets in Span-
ish, Greek and English (for transfer only) and infer
which methods are best suited for different scenar-
ios when working with non-English clinical notes.
Our analysis further reveals which combinations
of languages are most beneficial.

3. We show in particular that the performance on the
long tail of phenotypes benefits from the usage of
additional data in different languages.

We publish the code for all experiments to ensure
reproducibilityﬂ

2. Related Work

Phenotyping from clinical notes. Clinical phenotyp-
ing is the task of extracting patient conditions from Elec-
tronic Health Record (EHR) data. In this work, we focus
on clinical notes—discharge summaries in particular—as
information source, since they summarize the current
state of a patient. |Solt et al. (2009) proposed rule-
based algorithms to solve the task, while [Yao et al.
(2019;Wang et al. (2019) applied Convolutional Neural
Networks. Recently, large pre-trained language mod-
els have shown to outperform these earlier approaches
(Mulyar et al., 2019). However, such language models
are mostly used to process English clinical text data, for
which large corpora such as PubMed Central exist. In
contrast, we examine ways of solving the task in lan-
guages without a variety of openly available medical
text data and evaluate how to transfer (clinical) knowl-
edge from one language to another.

Models with cross-lingual abilities. In recent years,
a variety of multi- and cross-lingual language mod-
els have been introduced (Hu et al., 2020). For this
work, cross-lingual models are of special interest due
to their inherent ability to transfer knowledge between
languages (Mann and Yarowsky, 2001). To this end,
Chung et al. (2020) propose to cluster and merge the vo-
cabularies of similar languages for joint learning. The
LASER model (Artetxe and Schwenk, 2019)) is trained
on parallel data of 93 languages with a shared BPE
vocabulary. XLM (Conneau and Lample, 2019) addi-
tionally pre-trains BERT with parallel data. Building
on these approaches, the XLM-R model (Conneau et
al., 2020)), pre-trained on 100 languages, performs es-
pecially well on low-resource languages, which leads
us to examine whether it is also of use in the clinical
domain. [Pfeiffer et al. (2020b) introduced language
adapters to cross-lingual models. Using adapters has
shown to improve performance on multiple tasks while
being more parameter-efficient. Thus, we investigate
whether they are also beneficial to cross-lingual clini-
cal phenotyping.

1https ://github.com/neuronl1682/
cross-lingual-phenotype-prediction
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Language transfer via translations. In contrast to
model-based approaches, |Isbister et al. (2021) propose
the use of translations for knowledge transfer between
languages. While |Artetxe et al. (2020) highlight that
translations can have a regulating effect, they also show
how translation errors can accumulate throughout the
pipeline. These contrasts lead us to evaluate both the
use of cross-lingual and translation based approaches to
improve clinical phenotyping of low-ressource datasets.

Cross-lingual knowledge transfer in the medical do-
main. While there is a number of monolingual pre-
trained language models for the medical domain in
languages other than English (Carrino et al., 2021),
the effect of cross-linguality on medical text has been
rarely studied. [Schifer and Friedrich (2020) enrich a
translated version of the Spanish CodiEsp dataset with
English data to improve the performance in ICD code
prediction. |Schneider et al. (2020) use a pre-trained
multi-lingual BERT model to further train on Brasilian
clinical notes. We are the first to conduct an extensive
analysis over multiple cross-lingual approaches regard-
ing their usefulness for the clinical domain.

3. Task and Datasets

This section describes the clinical phenotyping task and
introduces the three datasets used for evaluating cross-
lingual transfer methods.

3.1. Phenotyping Task

The goal of clinical phenotype prediction is to support
medical doctors to automatically categorise patients by
the clinical conditions reported in a clinical note. This
task is crucial e.g., for understanding the full picture of
occurring diseases at a clinic, enabling further studies
using specific patients, and predicting disease devel-
opment and outcome. Here, we use the pre-defined
CCSRE] categorization where each category represents
a set of ICD codes. Each category may represent a dis-
ease or a set of e.g., different arrhythmias or ill defined
diseases.

3.2. Datasets

We use three datasets namely MIMIC-III (Johnson et
al., 2016), CodiEsp (Miranda-Escalada et al., 2020)
and AHEPA-cardio. These datasets consist of clinical
notes that originate from different clinics in different
countries i.e. USA, Spain and Greece. The languages in
which the notes are written belong to the same language
family (indo-european) but are classified into different
language branches (Germanic, Italic and Greek). Greek
is also typologically different from the other two.

Furthermore, we choose medical data from diverse
medical contexts. MIMIC-III originates from the ICU,
CodiEsp from different clinics and AHEPAcardio from
the cardiology department. The narrative and style of

2https ://hcup-us.ahrq.gov/toolssoftware/
ccsr/ccs_refined. jsp
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Figure 1: Schematic demonstration of our approaches. We compare cross-lingual with monolingual approaches.
For the knowledge transfer we use sequential transfer learning starting from Mimic (high-resource dataset). We
distinguish between cross-lingual encoders, cross-lingual encoders plus adapters and English domain-specific

encoders with prior translation.

the texts is therefore different. This is also reflected in
the length of the texts (see Table [I). Our rationale is
that the medical knowledge in these datasets is diverse
and complementary.

Mimic III - English Language. We use the freely-
available MIMIC-III v1.4 database (referred to as Mimic
in the following). It contains de-identified Electronic
Health Records (EHR) data including clinical notes in
English from the Intensive Care Unit (ICU) of Beth
Israel Deaconess Medical Center in Massachusetts be-
tween 2001 and 2012. We focus our work on discharge
summaries in particular and the diagnosis information
associated with an admission. Similar to previous work
(van Aken et al., 2021) we use discharge summaries and
only keep the most informative sections regarding the
phenotyping task including Chief Complaint, History
of Present Illness, Physical Exam, Social/Family His-
tory and Brief Hospital Course. We further filter out
re-admissions, duplicates and notes about newborns.

CodiEsp - Spanish Language. The CodiEsp dataset
consists of 1,000 clinical case studies manually selected
by doctors and cover a diverse set of medical special-
ties, including oncology, urology, cardiology, pneu-
monology and infectious diseases. The case studies
are annotated regarding the diagnoses mentioned in the
text. The notes are provided in both the original Spanish
language and an English translation. For the translation
of the notes the authors used a machine translation sys-
tem which was fine-tuned on biomedical data (Soares
and Krallinger, 2019).

AHEPAcardio - Greek Language. The AHEPAcar-
dio dataset (referred to as Ahepa in the following) is
a collection of around 2,400 discharge summaries and
originates from the cardiology clinic of the AHEPA
University Hospital in GreeceE] The discharge sum-
maries date from 2013 to 2020 and are annotated re-
garding clinical diagnoses found in the text by a team
of medical doctors.

3The publication of parts of the data is currently under
review.
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Mappings to 334 CCSR Target Labels. We map
all three datasets into a common label space of CCSR
codes using the official mappinﬂ We limit our CCSR
target space to labels in the Spanish dataset CodiEsp,
since it has the biggest variety of CCSR codes. This
results in 334 clinical disease categories for CodiEsp,
from which 60 appear in Ahepa and 326 in Mimic.
We use iterative stratification (Sechidis et al., 2011} to
split each of the datasets in train/dev/test depending on
the medical conditions of the patients. This leads to a
representative group of patients in each of the splits for
every clinic separately. In Table [I] we note the number
of clinical notes i.e., the number of patients in each
of the sets. Note that not all labels appear in each of
the splits. The occurence of labels ranges from one
to thousand. For example, several types of cancers
appear only once and medical conditions that appear
most are Other general signs and symptoms, Essential
Hypertension and Respiratory signs and symptoms in
CodiEsp, Mimic and Ahepa respectively.

Clinical Note Statistics

Train Dev  Test @ Length
CodiEsp 656 165 175 351
Ahepa 1,592 402 393 257
Mimic 24,758 6,187 6,182 649

Table 1: Split details of each dataset: CodiEsp, Ahepa
and MIMIC. Average length of each note is measured
in words.

4. Methods

The task of clinical phenotyping has been rarely inves-
tigated in a multilingual scenario. We compare and
discuss approaches for cross-lingual transfer that have
already been proven successful in other domains. We
restrict our approaches to sequential transfer learning,
since it allows to share models across clinics without

4https ://hcup-us.ahrq.gov/toolssoftware/
ccsr/DXCCSR_v2021-2.zip
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having to share patient data explicitly. An alternative
approach would be to combine different datasets. How-
ever, in this case clinics are forced to share their data
which is often difficult due to data regulations. Fig|I]
overviews the evaluated approaches.

Translation into English for monolingual models.
The first approach we evaluate is to translate all notes
into English and predict phenotypes with monolingual
language models. While the translation may result in
erroneous results, translation services are widely avail-
able. Therefore this approach is a decent baseline for
common practice.

First, for the task of translating notes from Greek into
English, we use pre-trained Opus-MT translation mod-
elf] (Tiedemann and Thottingal, 2020) via EasyNM”lﬂ
The machine translation of CodiEsp is provided with
the corpus and was performed with a system adapted
to the biomedical domain. Next, we apply PubMed-
BERT (Gu et al., 2020) a state-of-the-art model trained
from scratch on a large medical corpus in English and
optimized for tasks like ICD code prediction. As a
result, we expect the model to produce higher quality
representations for domain specific terms. We fine-tune
PubMedBERT sequentially on Mimic and on translated
data in different combinations.

Pre-trained cross-lingual models. The second ap-
proach is the use of pre-trained cross-lingual models
or multi-lingual models with cross-lingual capabilities
such as XLM-R (Conneau et al., 2020). Cross-lingual
models do not require to translate the low- resource data
into English. They can represent the same information
from different languages close to each other in the em-
bedding space. In contrast, multilingual models are
typically pre-trained on only a language modeling task
with data from multiple languages. This pre-training
schema does not enforce the model to map semantically
similar texts close to each other in the embedding space.
Nevertheless, |Conneau et al. (2020) have shown that
even multilingual pre-trained models can have cross-
lingual properties and even outperform cross-lingual
models in cross-lingual downstream tasks. We use a
pre-trained multilingual model with cross-lingual capa-
bilities and fine-tune it sequentially on different clinical
datasets. By keeping the label space identical, we force
the model to reuse knowledge from one dataset in one
language for the next dataset. We first fine-tune on the
high-resource dataset and then continue training on the
low-resource data. This reflects a scenario of closed
data silos (Asiimwe et al., 2021)), where only the pre-
trained model is accessible, but not the training data.

Language and task adapters. As a third approach,
we use adapters (Pfeiffer et al., 2020b) to enhance a
multilingual model with additional language- and task

SWe are restricted to use open source solutions due to
privacy regulations of patient data. The same restrictions
apply to clinics.

6https ://github.com/UKPLab/EasyNMT
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specific parameters. Adapters consist of feed-forward
layers that are added to each encoder layer in a trans-
former model. Typically, only the parameters of the
adapters are trained while the rest of the parameters of
the base model stay frozen. In consequence, they are
an efficient method to fine-tune models since it involves
significantly fewer parameters compared to fine-tuning
the entire model. Furthermore, adapters can prevent
catastrophic forgetting, because the model parameters
are frozen and only the adapters are trained. Hence it
preserves the ability of a cross-lingual model to map
similar inputs from different languages close to each
other in the same embedding space even though we
train with an unequal number of samples in different
languages. We use pre-trained language adapters from
AdapterHub (Pfeiffer et al., 2020a)) in combination with
a cross-lingual pre-trained model to enhance the repre-
sentation on the low-resource datasets. By reusing the
fine-tuned weights of the task adapter for each dataset,
we enforce that knowledge from previous fine-tunings
is kept and reused for further trainings. In contrast to
the task adapters, we keep the language adapters frozen
during the training and choose a pre-trained language
adapter that matches the language of the training dataset.

Monolingual baseline without knowledge transfer.
Finally, we use mono-lingual, domain-specific pre-
trained language models which provide a baseline for
the training without any knowledge transfer. Domain-
specific language models are usually monolingual due
to the sparse data available in the subject domain. They
are also more common in high-resource languages. In
return, the models usually provide an improved repre-
sentation for technical terms in the specific domain. The
most common approach is to train the downstream task
on the clinical notes in their native language. For each
dataset, we separately fine-tune a different, state-of-the-
art pre-trained language model and measure the perfor-
mance on each dataset individually. However, in this
scenario, the model only learns the underlying distribu-
tion of labels of the given dataset. We therefore expect
this approach to perform worse, especially for long-tail
or zero-shot predictions. Furthermore, we also per-
form experiments with adapters and translation on each
target, low-resource dataset in combination with cross-
lingual (XLM-R) as well as monolingual pre-trained
models as a baseline.

4.1. Experimental Setup

For the monolingual and translation setting, we use
PubMedBERT (Gu et al.,, 2020). For Spanish, we
use Spanish-BERT (Cadete et al., 2020) and Spanish
Biomedical Clinical RoBERTa (Carrino et al., 2021)).
Since no domain specific biomedical or clinical lan-
guage model for Greek has been released to our knowl-
edge, we use Greek-BERT (Koutsikakis et al., 2020),
which has been pre-trained on non clinical or biomed-
ical language. We use pre-trained models from Hug-
gingface (Wolf et al., 2020). Due to the limited context
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Model

Clinical Phenotyping
Macro-AUC [%%] Macro PR-AUC [%0]

Single Dataset Training

Monolingual Spanish BERT (C) 82.00 2591
Spanish Biomedical Clinical RoBERTa (C) 84.58 29.89
XLM-R (C) 56.64 5.28
XLM-R + Adapters (C) 61.96 6.43
Translation + PubMedBERT (Cr) 83.45 29.54
Multi Dataset Training

XLM-R (M — C) 83.52 25.96
XIM-R(M —- A—C) 83.82 25.96
XLM-R + Adapters (M — C) 85.63 34.41
XLM-R + Adapters M — A — C) 83.90 32.22
Translation + PubMedBERT M — Cy) 90.95 43.13
Translation + PubMedBERT (M — Ar — Cr) 90.40 41.98

Table 2: Performance for CodiEsp. M: Mimic, A: Ahepa and C: CodiEsp. The order represents the fine-tune
order. The subscript 7 means that the English translation of the texts is used and otherwise the original language.
The approach which yields the strongest results is the sequential fine-tuning of the Domain specific Encoder first
with Mimic and then with the English translation of CodiEsp.

Model

Clinical Phenotyping
Macro-AUC [9%] Macro PR-AUC [%0]

Single Dataset Training

Monolingual Greek BERT (A) 90.18 56.22
XLM-R (A) 60.45 12.31
XLM-R + Adapters (A) 56.60 10.30
Translation + PubMedBERT (A7) 83.15 37.10
Multi Dataset Training

XLM-RM — A) 89.87 50.23
XLM-R(M — C — A) 90.03 51.15
XLM-R + Adapters M — A) 90.15 54.45
XLM-R + Adapters M — C — A) 91.50 57.63
Translation + PubMedBERT (M — Arp) 86.20 45.14
Translation + PubMedBERT M — C; — Arp) 88.75 49.90

Table 3: Performance for Ahepa. M: Mimic, A: Ahepa and C: CodiEsp. The order represents the fine-tune
order. The subscript 7 means that the English translation of the texts is used and otherwise the original language.
The approach which yields the strongest results is the sequential fine-tuning of the Cross-lingual Encoder plus
Adapter on Mimic, CodiEsp and Ahepa in original language.

length of the pre-trained models we truncate all the notes
to 512 tokens. We perform a Bayesian hyperparameter
tuning for learning rate, accumulation gradients, warm-
up steps, hidden dropout rate and attention dropout rate.
For optimization we use AdamW (Loshchilov and Hut-
ter, 2019) and for the learning rate we use a learning
rate scheduler with warm-up. We run 50 trials for each
model with 100 being the maximum number of epochs
and use Early Stopping with patience of 5 epochs. We
use AUROC as validation metric for the training. For
each dataset, we perform a hyperparameter optimiza-
tion and reuse the weights of the best model for the next
dataset. This applies for all experiments where sequen-
tial fine-tuning is part of the training. In this manner we

904

transfer the knowledge from one dataset to the other. We
start training from a high-resource dataset and finally
fine-tune on the target dataset on which we evaluate the
results. For example, in our results the term Mimic
— CodieEsp (M — C) means that the model was first
fine-tuned on Mimic and the next model was initialised
with the best performing model on the same dataset and
finally fine-tuned on CodiEsp.

5. Results

Tables [2] and [3] report the performance on the pheno-
type classification task on the low-resource datasets
CodiEsp and Ahepa, respectively. Each table is sep-
arated in two segments, single and multi dataset train-



ing. In the first segment we report the scores of 1) the
monolingual BERT of the respective target language, 2)
the cross-lingual model (XLM-R), 3) the cross-lingual
model with adapters (XLM-R with adapters) and 4)
the English translation in combination with a domain-
specific encoder (PubMedBERT). We report the per-
formance of the mentioned models trained with only
the target dataset for each task. Additionally, we re-
port for the CodiEsp task the performance of a Spanish
domain-specific encoder (Spanish Biomedical Clinical
RoBERTa). In the second segment we report the scores
of the models we use for cross-lingual knowledge trans-
fer. We measure the approaches in macro-average AU-
ROC and PR-AUC.

Knowledge transfer surpasses monolingual models.
For both tasks, knowledge transfer incorporating other
non-target datasets yields improved results compared
to the monolingual counterparts trained on the target
dataset only. Table[2]shows the results for CodiEsp. In-
terestingly, all knowledge transfer methods outperform
all single dataset approaches. Translation in combi-
nation with a domain specific encoder works best on
the CodiEsp dataset. It outperforms the monolingual
Spanish BERT by a large margin (11%) in AUROC
and the uplift for PR-AUC is even higher (62%). The
approach also outperforms the domain-specific Span-
ish Biomedical Clinical RoBERTa (by 8% AUROC and
44% PR-AUC).

The cross-lingual encoder in combination with adapters
is the best performing approach on Ahepa. Table
shows that the best model surpasses the performance
of the monolingual Greek BERT. In contrast to the
CodiEsp task the monolingual model shows high per-
formance and the use of knowledge transfer results to
a more moderate increase in both AUROC (=2%) and
PR-AUC (x3%).

When trained on a single dataset, monolingual models
outperform the cross-lingual encoders for both datasets,
CodiEsp and Ahepa. This shows that the performance
increase is indeed a result of training with clinical
datasets in other languages.

Detection of rare conditions improves when using
further languages. To test the performance for rare
conditions, we aggregate labels according to their fre-
quency in the training sets and report the macro-
averaged AUROC in Figure[2]and 3]

For CodiEsp (Fig. [Z) we observe that approaches using
two or three languages work significantly better for low
frequency labels (0-50 times) than single language ap-
proaches. The increase in AUROC is 13% in average
for the lowest frequency interval (0-10 times). In the in-
terval with medium label frequency (51-100 times) the
performance gap decreases. And very frequent labels
(>100) are best extracted by a single-language approach.
For Ahepa (Fig. [3) multi-language approaches as well
outperform the others regarding very low-frequency la-
bels (0-10). Regarding more frequent labels (11-50,
51-100, >100) the monoligual Greek BERT performs
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Best model for each category on CodiEsp

7/ —8- Spanish Biomedical Clinical RoBERTa (C)
/ XLM-R (M/A/C)
80 7 —e— XLM-R + Adapters (M/C)
d —8— Translation + PubMedBERT (M/C)

T T T
11-50 51-100 >100
[98 labels] [23 labels] [3 labels]

Frequency of the labels in the training data

0-10
[110 labels]

Figure 2: CodiEsp: Performance for different label
frequencies in the training data. Baselines using only
a single dataset are represented by dashed lines. The
number of labels in brackets corresponds to the count of
labels of each group in the target test dataset (CodiEsp).

Best model for each category on Ahepa

95 +

80 a
/ XLM-R (M/C/A)

4 —&— XLM-R + Adapters (M/C/A)

' —e— Translation + PubMedBERT (M/C/A)

—8- Greek BERT (A)

T T
11-50 51-100

[17 labels] [7 labels]

Frequency of the labels in the training data

T
0-10 >100
[12 labels] [16 labels]

Figure 3: Ahepa: Performance for different label fre-
quencies in the training data. Baselines using only a
single dataset are represented by dashed lines. The
number of labels in brackets corresponds to the count
of labels of each group in the target test dataset (Ahepa).

on-par with the cross-lingual Encoder + Adapters ap-
proach trained on multiple languages. The differences
in AUROC are more moderate than for CodiEsp, but
still show that multi-lingual approaches are beneficial
for long-tail phenotype detection.

Performance on high-frequency labels. In Figure
we observe a drop in performance of the cross-lingual
models for the high-frequency labels. The amount
of medical categories that fall into the high-frequency
groups is very small and they consist of mostly general
categories like e.g., Other specified inflammatory con-
dition of skin and Skin/Subcutaneous signs and symp-
toms. In contrast the medical conditions in Ahepa are
well distributed over the groups (see: number of labels
in Fig. [3). In total, 68% of the codes in the CodiEsp
test set benefit from knowledge transfer and 62% of the
Ahepa test set codes.



Adapters are on par with XLM-R full fine-tuning.
The sequential training of the task adapter on all datasets
results are on par or have even better performance com-
pared to the full fine-tuning of the XLM-R model for
both datasets. Specifically for CodiEsp, both models
perform approximately on par, and in the case of Ahepa
it is 2% better.

6. Discussion

Our results show that cross-lingual transfer improves
performance on the clinical phenotyping task—in par-
ticular for low-resource datasets. We further conduct a
qualitative error analysis with medical doctors revealing
specifics of cross-lingual transfer in the clinical domain.
This section discusses selected results for applying our
findings in a clinical setting.

6.1. Strengths and Limitations of
Cross-lingual Transfer

Knowledge transfer is possible despite dataset
differences. Clinical notes differ from clinic to clinic
in a number of ways. They are written in different lan-
guages i.e. English, Spanish or Greek. Second, the
form of documentation is different. The Mimic and
CodiEsp clinical notes are written in a narrative style
in contrast to the Ahepa notes which are much denser.
The Ahepa notes are in average shorter, use a lot of
abbreviations and some parts are not written in full sen-
tences. Additionally, Greek is typologically different
to English and Spanish. In spite of those differences,
our experiments show that knowledge transfer between
those datasets yields better results than the respective
monolingual models. We hypothesise that some differ-
ences might, in fact, have a positive impact by adding
variance to the data.

Limitations of cross-lingual knowledge transfer.
Tables[2]and [3|show that cross-lingual transfer does not
improve performance on all diagnoses groups. Our er-
ror analysis reveals that the effect of transferring knowl-
edge for the same medical category can have opposite
results for the two studied datasets. We observe this
especially in broad categories such as Other specified
and unspecified skin disorders. While these work well
in Ahepa, the transfer fails for CodiEsp, which might
be due to the diverse set of clinics included in CodiEsp
resulting in a larger number of diagnoses per category.
We also observe cases in which the monolingual Span-
ish and Greek encoder almost perfectly recognises rel-
evant clinical cases and knowledge transfer has a neg-
ative impact. This is the case e.g. for Pericarditis and
pericardial disease. Since every clinic has a different
focus, the importance of clinical facts related to the
medical condition is different. This has a direct impact
on the amount of details a physician reports about a
clinical fact. Consequently, to identify the same med-
ical category different clinical textual cues are needed
depending on the clinic it originates from.

The benefit for rare phenotype detection. Knowl-
edge transfer for rare phenotypes is not only useful for
languages with little labeled data but also for countries
with smaller populations like Greece. For instance,
Takotsubo cardiomyopathy is a disease with low oc-
currence (Y-Hassan and Tornvall, 2018). Although the
frequency of the medical condition may not be differ-
ent from clinic to clinic, low-resource datasets benefit
from datasets with bigger volume of labeled data. In
our results we observe an increase of 2pp for the cat-
egory Other and ill-defined heart disease to which the
condition belongs. Similarly, for the Ahepa task we ob-
serve an increase of 2pp for Acute and unspecified renal
failure, where the cardiology clinic might profit from
CodiEsp data from nephrology or pathology clinics. In
both cases we observe that the data augmentation im-
proves results for both low-resource datasets because of
the higher text volume and added variance.

6.2. Design Choices in Clinical NLP Setting

Adapters and translation are suitable methods for
cross-lingual knowledge transfer. Our results sug-
gest that both techniques, adapters and translation to
English, are suitable ways for clinical knowledge trans-
fer. In the case of CodiEsp the translation to English and
sequentially fine-tuning a large English domain-specific
encoder yields the best results. For the Ahepa case, the
pre-trained cross-lingual model with adapters trained
with clinical notes in native language achieves the best
results. In both cases, a transfer method outperforms
all other corresponding methods for that data set.

’Rules-of-thumb’ considerations. In order to im-
prove the performance of clinical phenotyping some
considerations are necessary to pick the best cross-
lingual solution. Is there a well performing in-domain
translation systenﬂ to English available for the datasets
at hand? If this is the case, sequentially fine-tuning a
large English domain-specific encoder is a promising
solution. However, if no high quality machine trans-
lation is available, fine-tuning the adapters in native
language is the better choice. In addition, further ex-
periments revealed that the results vary depending on
the order with which we fine-tune. Starting the train-
ing with the high-resource language mostly yields good
results.

Adapters are efficient for cross-lingual transfer.
The adapter approach proved to be an efficient way
for cross-lingual knowledge transfer for the phenotyp-
ing task. This comes from the fact that, we only train
the task adapter parameters. So, while the system adds
additional parameters to the model to better represent
low-resource languages, only a fraction of all the pa-
rameters is updated during training. Similar to |Pfeiffer
et al. (2020Db)), we observe on par or better results by
training only the task adapter in comparison to the full

"The system should be deployable within the premises of
a clinic due to regulations and sensitivity of patient data.
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Original text

Failed machine translation

Doctor’s translation

O aoc¥evic npoohide Aoyw

BUOTIVOLAG ATO NUEPY

The patient came due to shortness
of days

The patient was admitted due to
current dyspnoea since days

avoxtoc Botdhhetog ndpog

open shell resource

patent ductus arteriosus (PDA)

AY

Authorize

Arterial Hypertension

la paciente presenta dolor y defensa
a la palpacion profunda de fosa
lumbar derecha

the patient presented with pain and
defense of the deep fixation of the
right lumbar fossa

patient presented with pain and de-
fense to deep palpation of the right
lumbar fossa

realiz6 estudio oftalmolégico e ini-
cio con deflazacort

performed the diagnostic test, and
initiated treatment with dementia

performed an  ophthalmologic
study and started treatment with
deflazacort

no fumadora ni bebedora de alco-
hol

non-smoker or bicuspid bicuspid
drinker

non-smoker and non-drinker of al-
cohol

Table 4: Text excerpts where machine translation failed. We show examples of both the translation of the Greek
and Spanish clinical notes. Note, that the Spanish machine translation system was fine-tuned on biomedical data

and the Greek system was not.

cross-lingual model in both cases, Ahepa and CodiEsp,
during sequential fine-tuning of those encoders. Thus,
in case computational complexity is a limiting factor, a
cross-lingual encoder like XLM-R plus adapters is the
recommended approach.

6.3. Additional Observations

Mixed results on adding various languages. Tables
[2land[3|compare knowledge transfer methods fine-tuned
on two or on three datasets. We found that adding more
data does not necessarily improve results. The Ahepa
task yields the strongest results when incorporating all
three datasets. However, in the case of CodiEsp, we
observe that fine-tuning on two languages performs on
par or better than on three languages. The best result
for the CodiEsp task was achieved using only English
and Spanish text instead of additional Greek data. We
leave further analyses on which language combinations
work best to future work.

Language typology impacts transfer capabilities.
When adding Greek as a third language in the CodiEsp
task, knowledge transfer with XLM-R does not improve
the performance. It even decreases when using the
adapters approach. This may occur due to the differ-
ent typologies of the languages and the limited shared
vocabulary. Interestingly, when adding Spanish as a
third language in the Ahepa task the performance for
the adapters approach improves. This may be because
the Greek texts contain some standard medical expres-
sions, such as STEMI, which are also used in Spanish
and English notes.

Impact of translation quality and consistency. The
approach based on English translations yields lower per-
formance increase for Ahepa than for CodiEsp. This
might happen because we use two different machine
translation systems: A domain-specific translator for
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CodiEsp and a general one for Ahepa. Translating the
same medical terms differently produces different rep-
resentations and therefore may have a negative or at best
no effect on the performance of the downstream task. In
Table ] we report examples of failed translations. Most
of the problems we observe with the Greek machine
translator are the medical terms and abbreviations doc-
tors frequently use. In the Ahepa (Greek) notes we also
notice that sometimes punctuation and accents on words
are missing, which can be decisive when translating.

7. Conclusion

Our results demonstrate that cross-lingual knowledge
transfer improves performance in the clinical phenotype
prediction task. In particular we show that knowledge
transfer yields the strongest uplift in performance on
rare phenotypes. Thus, medical tasks whose targets can
be mapped to a single scheme can benefit from adding
data in different languages. This is an important result
in the medical domain where worldwide standards for
describing patient conditions exist. We also give recom-
mendations on how to effectively and efficiently solve
such a task that involves notes written in rather distant
languages. Our future work will focus on 1) methods
specifically targeting clinical cross-lingual transfer and
2) studying the effects of integrating more languages
and different machine translation systems. 3) Finally
we want to investigate the benefit of cross-lingual trans-
fer for extreme low-resource languages.
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