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Abstract
Current state of the art acoustic models can easily comprise more than 100 million parameters. This growing complexity
demands larger training datasets to maintain a decent generalization of the final decision function. An ideal dataset is not
necessarily large in size, but large with respect to the amount of unique speakers, utilized hardware and varying recording
conditions. This enables a machine learning model to explore as much of the domain-specific input space as possible during
parameter estimation. This work introduces Common Phone, a gender-balanced, multilingual corpus recorded from more than
11,000 contributors of Mozilla’s Common Voice project. It comprises around 116 hours of speech enriched with automatically
generated phonetic segmentation. A Wav2Vec 2.0 acoustic model was trained with the Common Phone to perform phonetic
symbol recognition and validate the quality of the generated phonetic annotation. The architecture achieved a PER of 18.1%
on the entire test set, computed with all 101 unique phonetic symbols, showing slight differences between the individual
languages. We conclude that Common Phone provides sufficient variability and reliable phonetic annotation to help bridging
the gap between research and application of acoustic models.
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1. Introduction
In the past two years, Wav2Vec (Schneider et al., 2019)
and Wav2Vec 2.0 (Baevski et al., 2020) have leveraged
the state-of-the-art of acoustic models to a new level,
with the latter being able to achieve a Phoneme Error
Rate (PER) of 8.3% on the TIMIT (Garofolo et al.,
1993) test set. TIMIT is among the most important cor-
pora for acoustic model evaluation, specifically because
of the precise, manually annotated, phonetic reference.
All speakers had been recorded in equal acoustic con-
ditions using the same microphone. For acoustic model
validation, these conditions can be considered perfect.
However, the constricted acoustic environment also im-
plies limited robustness to altered recording conditions.
The corpus is also not gender-balanced, with 439 ( 70%)
of the 630 speakers being male. For any application-
driven project, the total number of speakers is quite
small as well for modern standards.
A large variability of training samples is key to enable a
deep architecture to explore as much of the input space
as possible. Any perturbation in said space could re-
sult in the model performance to collapse (Wang et al.,
2018). Deviations from the known input-space could be
so small that it would be impossible for a human rater to
perceive them, thus theymight be exploited in scenarios
like adversarial attacks (Schönherr et al., 2018; Hu et
al., 2019). Robustness could be improved during train-
ing through techniques such as weight regularization,
drop-out or batch-normalization (Kukačka et al., 2017).
Another way would be to employ a dataset that provides
a large variability with respect to acoustic conditions,
recording hardware, contributing speakers, dialects and

other parameters.
One such corpus could be Common Voice (Ardila et
al., 2020) (CV). It is an ongoing initiative maintained
by Mozilla Foundation that aims to collect spoken text
samples from contributors of many different languages.
Everyone could donate their speech to enrich the cor-
pus via the project website 1. The most recent release
7.0 from July 2021 comprised datasets in 76 different
languages. Contributions could be made anonymously,
additional information such as age and gender could be
provided after registration on the website. Volunteers
are not limited to donate their speech to help improve
the quality of the corpus. They could also help to vali-
date new speech donations, e. g. verify that the spoken
text in an audio sample matches with the prompted text
transcript. This crowd-based approach of automated
donation and validation procedures enabled CV to col-
lect data from a large amount of speakers. For example,
the English 7.0 corpus comprises more than 75,000 dif-
ferent speakers.
While CV could be considered a decent corpus for any
end-to-end automated speech recognition (ASR) task,
there are several important drawbacks. First of all, CV
provides only a text transcript as ground truth reference.
For training and testing acoustic models, CV does not
provide any phonetic transcript or segmentation. Fur-
thermore, the distribution of speakers and speech sam-
ples is not ideal in many cases. The English CV 7.0
corpus for example comprised 45%male but only 15%
female speakers. For the remaining contributions, gen-

1https://commonvoice.mozilla.org/

https://commonvoice.mozilla.org/
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Age < 19 19 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89

English 276
276

867
870

417
421

270
274

287
290

170
173

57
58

5
5

German 24
24

127
127

94
95

46
50

71
72

28
28

5
5

0
0

Spanish 72
72

263
263

110
110

76
76

55
55

12
12

0
0

0
0

French 38
38

186
186

90
90

78
78

76
77

41
41

6
6

0
0

Italian 9
9

82
82

53
53

42
42

42
42

22
22

4
4

0
0

Russian 18
18

48
48

17
17

9
9

3
3

0
0

0
0

0
0

Total 437
437

1573
1576

781
786

521
529

534
539

273
276

72
73

5
5

Table 1: Speaker distribution among different age groups in the training set for female (top) and male (bottom).

Age < 19 19 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89

English 45
45

135
144

65
71

47
45

47
49

29
29

10
9

0
1

German 4
4

22
21

16
17

9
8

12
13

5
5

1
1

0
0

Spanish 12
12

44
44

19
19

13
13

10
10

3
3

0
0

0
0

French 7
7

31
31

15
15

13
13

13
13

7
7

2
2

0
0

Italian 2
2

14
14

9
9

7
7

7
7

4
4

1
1

0
0

Russian 3
3

8
8

3
3

2
2

1
1

0
0

0
0

0
0

Total 73
73

254
262

127
134

91
88

90
93

48
48

14
13

0
1

Table 2: Speaker distribution among different age groups in the development set for female (top) and male (bottom).

der information was unavailable. Another major prob-
lem is the number of samples certain speakers were able
to contribute. In the official training split shipped with
the previously mentioned English CV dataset, the most
overrepresented speaker (according to ID) contributed
more than 35,000 samples, which equaled 4.7% of all
training samples.
This paper introduces Common Phone (CP), a refined
version of CV, which alleviates the aforementioned
drawbacks to provide a corpus that meets modern ma-
chine learning (ML) requirements for acoustic mod-
elling in a multi-lingual setup. After a brief summary
of the structure of CP, the speaker selection process is
explained, including an overview of speaker distribu-
tions in the entire dataset. Afterwards, the automated
phonetic annotation procedure is described, as well as
the utilized phonetic inventory. To validate the quality
of the phonetic labels, we fine-tuned a Wav2Vec 2.0
model and tested on CP’s test split. The resulting PERs
showed that after training with CP, the model was able
to reliably predict sequences of phonetic symbols across
different languages.

2. Materials and Methods

2.1. Corpus structure

The structure of CP is very similar to that of CV. The
directory of each language (English, German, Span-
ish, French, Italian and Russian) contains CSV-files for
the respective train, development and test splits, and
an additional one summarizing meta information of all
speakers. Directory mp3 contains the original record-
ings from CV. These recordings have not been altered
in any way. It is important to notice that audio files in
CV do not share a common sampling rate (we found
32, 44.1 and 48 kHz), thus varying values should be
expected when working with the original recordings.
In an additional folder wav, raw PCM files were pro-
vided through simple decompression of their respective
mp3 counterparts. This was done for two main reasons:
Firstly, all files could be converted to a format common
in speech signal processing. We chose a sampling rate
of 16 kHz, 16 bits depth and mono-channel configu-
ration. Additionally, most existing ML environments
and projects expect (or at least support) raw wav files as
input. As the waveform had been reconstructed from a
lossy compression (Brandenburg, 1999), it is not to be
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Age < 19 19 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89

English 43
47

143
145

65
70

44
46

46
47

27
29

10
10

1
1

German 5
5

20
19

15
15

9
9

13
11

5
5

1
1

1
1

Spanish 12
12

44
44

19
19

13
13

10
10

3
3

1
1

1
1

French 7
7

31
31

16
16

13
13

13
13

7
7

2
2

0
0

Italian 2
2

13
14

9
9

8
8

8
8

4
4

1
1

0
0

Russian 4
4

8
8

3
3

2
2

1
1

0
0

0
0

0
0

Total 73
77

259
261

127
132

89
91

91
90

46
48

15
15

3
3

Table 3: Speaker distribution among different age groups in the test set for female (top) and male (bottom).

mistaken for a lossless version of CV recordings.
The folder grids contains Praat (Boersma and
Van Heuven, 2001) TextGrids with word- and phonetic-
level segmentation for every recording.

2.2. Speaker Selection
The main objective during speaker selection was to dis-
tribute data evenly among languages, genders and age
groups, while at the same time keeping as many speak-
ers as possible. Selection was done on the entire set
of validated data in CV, omitting the original splits for
training, development and test.
In a first step, all contributions that did not include in-
formation about age and gender had been removed. Not
only did this help to keep track of speaker distributions,
but it also allowed to assign speakers to only one of
the three splits for training, development and test. CV
assigns a session ID to every speech donation. If the
same speaker donated samples through multiple ses-
sions, it would be impossible to link all contributions
to that same speaker. However, if a speaker was logged
in to their account on the CV website, all contributions
(even over varying sessions) would be linked to a static
account ID. Meta information such as age and gender
could only be provided through a user account. If that
information was available, the recording was made as a
logged-in user and the donation could always be linked
to a particular contributor.
After this pre-selection, all speakers were assigned to
a slot within an age-gender grid. From each age slot,
contributors were randomly selected in pairs of female
and male. The first pair was assigned to the test, the
second to the development set, and another five pairs
were partitioned into the training split. This procedure
was repeated for every age slot until no more speaker
pairs were available. After repeating this procedure,
speakers were distributed as shown in Tables 1, 2 and
3 for training, development and test splits, respectively.
In the following step, samples were drawn from each
speaker, such that there were as many unique uttered
sentences as possible. The number of samples taken

from a speaker differed among languages due to their
uneven amounts of speakers. We chose to draw 2 (En-
glish), 9 (Spanish), 11 (French), 13 (German), 28 (Ital-
ian) and 80 (Russian) samples per speaker to ensure
that the resulting corpus was not biased towards a par-
ticular language. If it was not possible to draw at least
one speech sample with a unique text transcript for a
particular speaker, that speaker was omitted. For each
language, meta.csv provides a list of all speakers by
their respective ID, which is identical to the one from
CV. It summarizes a contributors age group, gender, in-
formation about a possible accent if available, and what
split the contributor had been assigned to.
After sample selection, CP comprised 76,307 speech
samples with 73,644 unique texts, totalling 116.5 hours
of recorded audio collected from 11,246 unique speak-
ers. The data distribution between languages and splits
is summarized in Table 5.

2.3. Phonetic Inventory

The entire phonetic inventory used for CP is given
in International Phonetic Alphabet (Association et al.,
1999) (IPA) format and comprises a total of 101 sym-
bols. Table 4 summarizes the core set of symbols,
excluding the one for silence and 26 elongated vari-
ants. The presented IPA symbols are not to be mistaken
for phonemes (Moore and Skidmore, 2019), but rather
resemble a set of phones that sufficed to describe the
speech of all six languages.
Of course, none of the languages required the entire
inventory. German (48 symbols) and Italian (47) had
the largest inventories, with the former introducing nu-
merous umlauts and the latter differentiating between
normal and elongated stops (sustained closure before
the burst). Russian (41 symbols) introduced the many
palatalized variants of phones. By including French (39
symbols), the entire inventory was enriched by multiple
nasalized vowels. English (37) and Spanish (33) were
found to be the languages with the smallest inventory.



766

Group Phonetic Symbols

Vowels a ã 5 A 6 æ Œ̃ 2 e ẽ E 3 @
i 1 I o õ ø œ O U u y Y

Stops b bj d dj g gj p pj t tj k kj P

Fricatives B ç ð f fj h J s sj S Sj v vj
x xj G z zj Z T

Nasals mMmj n ŋ ñ nj

Approximants 4 j l lj w L

Trills r rj ö

Table 4: Summary of all phonetic IPA symbols used
throughout the corpus. Not included in the table but
part of the annotation are a symbol for silence as well
as 26 elongated variants of presented phones.

2.4. Phonetic Annotation
To generate phonetic annotation, we used Web-
MAUS (Kisler et al., 2017), a web-service provided
by the Bavarian Archive for Speech Signals (BAS). The
Munich AUtomatic Segmentation (MAUS) toolkit pro-
vides a routine to reliably predict pronunciation from
a pair of speech recording and text transcript (Schiel,
1999; Schiel, 2015). The preset pipeline G2P_MAUS
without ASR was used with the respective language
of the sample, requesting the output phonetic symbols
to be encoded in IPA. The pipeline without ASR only
disabled the initial ASR for transcription (which was
already available), not the one for prediction of pronun-
ciation. After running a grapheme-to-phoneme (G2P)
model, MAUS estimated the true pronunciation from
the ideal (G2P) and recognized (ASR) pronunciations.
The default weight factors for deciding between the two
options were left unchanged for all languages.
MAUS returned its segmentation result in the form of
Praat TextGrids. Each contained word- and phonetic-
level segmentation of the audio-signal. When choosing
IPA as output symbol, phonetic transcription on word-
level was given in IPA, but on phonetic level, MAUS
yielded X-SAMPA (Wells, 1995) symbols. As this was
just another coding format, translation to IPA was triv-
ial, thus all phonetic symbols in the provided TextGrids
follow IPA standards.

2.5. Acoustic Model Training
The training split from CP was used to fine-tune a
Wav2Vec 2.0 (Baevski et al., 2020) base model. The
model had been pre-trained on the 960 hours Lib-
rispeech (Panayotov et al., 2015) corpus of read English
speech. A final linear layer was added for classification
with 102 output nodes, one for each phonetic symbol
and an additional one for a blank token to perform con-
nectionist temporal classification (CTC) (Graves et al.,
2006). Adam optimizer (Kingma and Ba, 2014) was
used with an initial learning rate (LR) of 3 · 10−6. Dur-

Language Train Dev Test
English 14.1 2.3 2.3
German 13.6 2.3 2.2
Spanish 14.5 2.5 2.6
French 14.6 2.5 2.5
Italian 16.5 3.0 3.1
Russian 12.7 2.6 2.8
Total 85.8 15.2 15.5

Table 5: Recorded hours of speech in the splits for all
six languages.

ing warm-up, the LR increased linearly to 3 · 10−5 over
the first ten epochs, remained constant for another 30
epochs, and would then decay exponentially by a factor
of 0.96 for the remaining 120 epochs. During a single
epoch, themodel was shown a subset of 5,000 randomly
selected samples from the training set.
Afterwards, the most probable sequence of phonetic
symbols could be estimated through a beam search
(beam width = 10) and CTC decoding. The beam
search was not extended with a language model due to
the multilingual setup. Despite the fact that our model
did not predict phonemes, but phonetic symbols, PER
was still considered a decent metric to evaluate the per-
formance of the entire system, as it simply measures
the amount of insertions, deletions or replacements re-
quired to transform the predicted sequence into the true
sequence, relative to the true sequence’ length.

3. Results
The model predicted phonetic symbols with average
PERs of 17.8% on the development and 18.1% on the
test set of CP. Results for the different languages are
shown in Table 6. English and Spanish were found to
be the easiest languages to predict phonetic symbols in
our setup. On both development and test, the weakest
results were observed for Russian.
Differences between predicted and true sequence had
also been analyzed for frequent substitution patterns.
The model sometimes struggled to correctly differenti-
ate between short and elongated stop sounds that were
common in Italian. For stop phones in general, con-
fusions between voiced and unvoiced productions were
also observed more frequently. For Russian, a frequent
confusion was those of palatalized phones with their

Language Dev Test
English 15.5 15.6
German 19.4 19.4
Spanish 14.5 15.0
French 18.8 18.4
Italian 17.8 17.4
Russian 20.0 21.4

Table 6: PERs on development and test for the different
languages.
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non-palatalized counterparts. In some cases, the model
would even append a palatal approximant [/j/ or /L/]
after the non-palatalized phone.

4. Discussion

There were likely two main reasons for English and
Spanish to yield the lowest PERs. Firstly, the entire
Wav2Vec model was pre-trained on almost a thousand
hours of English speech. This could potentially induce
some bias towards English pronunciation. For Span-
ish, the fact that the language used comparatively few
stop phones (12.8% compared to the other languages
[18.3% – 21.4%] as estimated from the ground truth)
Finally, Spanish and English comprised the smallest
phonetic inventories with 33 and 37 symbols, respec-
tively.
Theweaker result for Russian did not come as a surprise,
because the language introduced a large number of new
phones to the inventory that were not used among the
other datasets.
A PER of 18.1% may appear a lot higher than the one
reported for Wav2Vec 2.0 mentioned earlier (8.3%).
This was, however, calculated on TIMIT, which in-
cludes recordings from only one microphone in a single
language, collected in a clean acoustic environment.
Furthermore, when computing PERs on TIMIT, it is
common to collapse the annotated phonemes to 39
classes. This was done for the Wav2Vec 2.0 evalua-
tion as well. The presented model trained with CP had
to distinguish between 101 classes from six different
languages. Lastly, the single-digit PER was achieved
only by the large version ofWav2Vec, which comprised
317 million parameters. For this study, the base model
with 95 million parameters was used, as we were not
interested in showing peak PER values, but intended to
validate the suitability of phonetic labels created with
WebMAUS.
Finally, some light should be shed on the potential weak-
nesses of CP. During the process of speaker selection,
the session ID was used as the unique identifier for a
speaker. While we managed to ensure that this ID was
constant throughout multiple sessions by only includ-
ing users who had been logged in to their account, we
could not rule out the possibility of multiple speakers
contributing through the same account. However, no
such case was identified during manual investigation.
It could also happen that the predicted pronunciation
from WebMaus was not entirely correct, or that a
file contained longer segments of silence, background
noise, or poorly intelligible speech which confused the
ASR during the alignment. Whilst these artifacts could
result in a certain amount of label noise (which can be
found in almost every ML dataset), they would also al-
low a model to explore a much larger space of acoustic
conditions, speaker traits and noise patterns, ultimately
resulting in a more robust decision function.

5. Conclusion
CP provides a reduced, gender-balanced version of CV
comprising six different languages. All samples re-
ceived phonetic annotation, which could be proven to
yield reliable results when used for training a state-
of-the-art acoustic model. Totalling over 100 h of
recorded speech collected from more than 11,000 con-
tributors in unsupervised recording conditions, CP can
help to bridge the gap between research and application
of acoustic models.
The corpus is distributed free of copyright under a
Creative Commons (CC0 1.0 Universal) license, just
like CV itself. It is distributed via www.zenodo.org
(doi: 10.5281/zenodo.5846137). In the future, the pho-
netic inventory should grow further by adding more
languages. CP should also receive updates along with
major revisions of CV.
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