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Abstract
We propose an enhanced adversarial training algorithm for fine-tuning transformer-based language models (i.e., RoBERTa)
and apply it to the temporal reasoning task. Current adversarial training approaches for NLP add the adversarial perturbation
only to the embedding layer, ignoring the other layers of the model, which might limit the generalization power of adversarial
training. Instead, our algorithm searches for the best combination of layers to add the adversarial perturbation. We add the
adversarial perturbation to multiple hidden states or attention representations of the model layers. Adding the perturbation to
the attention representations performed best in our experiments. Our model can improve performance on several temporal
reasoning benchmarks, and establishes new state-of-the-art results.
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1. Introduction

Although recent pre-trained language models such as
BERT (Devlin et al., 2018) and RoBERTa (Liu et al.,
2019b) have achieved great success in a wide range of
natural language processing (NLP) tasks, these models
may still perform poorly on temporal reasoning scenar-
ios. Ribeiro et al. (2020) has shown that such models
often fail to make even simple temporal distinctions,
for example, to distinguish the words before and after,
resulting in degraded performance.
Following best practices from recent work on enhanc-
ing model generalization and robustness, we propose a
model that effectively leverages pre-trained representa-
tions (i.e. RoBERTa) and adversarial training for ro-
bust temporal reasoning. More specifically, our main
contributions are: 1) we propose an enhanced adver-
sarial training algorithm for fine-tuning transformer-
based language models that boosts the fine-tuning per-
formance of RoBERTa. Our algorithm generates and
adds the perturbation to a combination of layers during
adversarial training. We propose to add the adversarial
perturbation to multiple hidden states or attention vec-
tors of the model layers. We hypothesize this might
further encourage the model to generate more stable
and better adversarial examples, and improve model
generalization capability. Common adversarial train-
ing approaches for NLP add the perturbation only to
the embedding layer, ignoring the other layers of the
model (Zhu et al., 2019; Jiang et al., 2019; Liu et al.,
2020a; Pereira et al., 2020); 2) we apply our model
to several temporal reasoning tasks, as they often suf-
fer from having limited training, and are challenging
as they require temporal knowledge usually not explic-
itly stated in text; 3) we improve their state-of-the-art
results on challenging temporal datasets such as MC-

TACO, MATRES, and Story Cloze Task.

2. Model
In this paper, we focus on fine-tuning RoBERTa models
(Liu et al., 2019b) in our investigation of adversarial
training, as RoBERTa has proven very effective for a
wide range of NLP tasks.
Adversarial training works as an online data augmen-
tation method and can help improve model perfor-
mance, especially in low-resource scenarios. It can
also help improve model performance without increas-
ing the model size, which is helpful in scenarios where
computational resources are limited. Adversarial train-
ing has proven effective in improving model general-
ization and robustness in computer vision (Madry et
al., 2017; Goodfellow et al., 2014) and more recently
in natural language processing (NLP) (Zhu et al., 2019;
Jiang et al., 2019; Cheng et al., 2019; Liu et al., 2020a;
Pereira et al., 2020). It works by augmenting the input
with a small perturbation that maximizes the adversar-
ial loss:

min
θ

E(x,y)∼D[max
δ

l(f(x+ δ; θ), y)],

where the inner maximization can be solved by pro-
jected gradient descent (Madry et al., 2017). The f(; θ)
represents the model parameterized by θ, x denotes the
input, y are the associated labels, and δ represents the
small perturbation added to x. Recently, adversarial
training has been successfully applied to NLP as well
(Zhu et al., 2019; Jiang et al., 2019; Pereira et al.,
2020). The approaches to estimate δ can be divided
into two categories: adversarial training that uses the
label y (Zhu et al., 2019) and adversarial training that
uses the model prediction f(x; θ), i.e. a ”virtual” label
(Miyato et al., 2018; Jiang et al., 2019).
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In our work, we propose to enhance the ALICE (Pereira
et al., 2020) algorithm. ALICE combines the two ap-
proaches to estimate the perturbation δ: one that uses
the label y (Zhu et al., 2019) and another that uses the
model prediction f(x; θ), i.e., a ”virtual” label (Miyato
et al., 2018; Jiang et al., 2019). The first one is to im-
prove the robustness of our target label, by avoiding an
increase in the error of the unperturbed inputs, while
the second term enforces the smoothness of the model,
encouraging the output of the model not to change
much, when injecting a small perturbation to the input.
The formula of ALICE is shown below:

min
θ

E(x,y)∼D[max
δ1

l(f(x+ δ1; θ), y)+

αmax
δ2

l(f(x+ δ2; θ), f(x; θ))],
(1)

where δ1 and δ2 are two different perturbations,
bounded by a general lp norm ball, estimated by a
fixed K steps of the gradient-based optimization ap-
proach and p = ∞. Effectively, the second term en-
courages smoothness in the input neighborhood, and
α is a hyperparameter that controls the trade-off be-
tween standard errors and adversarial errors. ALICE
has been originally proposed for the commonsense rea-
soning task, however, it is a general algorithm that can
be applied to other tasks as well.
In our experiments, we show the applicability of AL-
ICE to the temporal reasoning tasks described in Sec-
tion 3.1 and Appendix A. In addition, we investigate
which combination of layers is best for adding the per-
turbation during training. ALICE originally adds the
perturbation only to the embedding layer. We show that
adding the perturbation to a combination of the trans-
former’s layers instead leads to better results. For all
tasks in this work, an input text sequence is divided
into sub-word units wt, t = 1, . . . , T . The tokenized
input sequence is then transformed into embeddings,
x1, . . . ,xT ∈ Rn, through a token encoder, which
combines a token embedding, a (token) position em-
bedding and a segment embedding (i.e. which text span
the token belongs to) by element-wise summation. The
embedding layer is used as the input to multiple trans-
former layers (Vaswani et al., 2017) to generate the
contextual representations, zlayer

1 , . . . ,zlayer
T ∈ Rd,

which are the representations of the hidden state or
attention representations of an intermediate layer of
the RoBERTa model. By attention representations, we
mean the output of the layer normalization of the at-
tention block, which is composed by multi-head at-
tention, residual connection, and layer normalization
(Kobayashi et al., 2021). We first set a maximum layer
(among all RoBERTa layers, including the embedding
layer) where the adversarial perturbation can be added.
In each epoch, for each mini-batch selected, we first
sample noise vectors δ1 and δ2 from N (0, σ2I), with
mean 0 and variation of σ2. A layer among the embed-
ding layer and the maximum layer previously set is ran-
domly chosen and the model performs adversarial steps

from this layer by K gradient steps. The perturbed in-
puts are then constructed by adding the perturbations δ1
and δ2 to the hidden state vector or the attention vector
of the randomly chosen layer. Specifically, the model
first performs a forward pass up to the chosen layer,
then the perturbations δ1 and δ2 are separately added
to its hidden states or attention representations, gen-
erating two different perturbed inputs. The best layer
combination is chosen by using a development set. We
name our enhanced model ML-ALICE (Multi-Layer
ALICE). The algorithm of ML-ALICE is depicted in
Algorithm 1.

3. Experiments
We compare ML-ALICE with standard training and
state-of-the-art adversarial training methods such as
virtual adversarial training (SMART) (Jiang et al.,
2019) and FreeLB (Zhu et al., 2019). We use the
standard uncased RoBERTaBASE model (Devlin et al.,
2018), unless noted otherwise. Due to the additional
overhead incurred during training, adversarial meth-
ods are somewhat slower than standard training. Like
SMART and FreeLB, ML-ALICE requires an addi-
tional K adversarial steps compared to standard train-
ing. In practice, K = 1 suffices for ML-ALICE and
SMART, so they are just slightly slower (roughly 2-3
times compared to standard training). FreeLB, by con-
trast, typically requires 2-5 steps to attain good perfor-
mance, so it is significantly slower.

3.1. Datasets and Evaluation Metrics
We evaluate our model on the following tasks: tem-
poral ordering prediction task, temporal entailment,
event duration prediction, temporal commonsense rea-
soning, and story cloze task. We use the following
datasets, respectively: MATRES (Ning et al., 2018),
TEA (Kober et al., 2019), TimeML (Pan et al., 2006),
MC-TACO (Zhou et al., 2020), and Story Cloze Task
(Mostafazadeh et al., 2017). An example from the MC-
TACO dataset is shown below. The correct answer is in
bold.

Paragraph: Growing up on a farm near St.
Paul, L. Mark Bailey didn’t dream of becom-
ing a judge.

Question: How many years did it take for
Mark to become a judge?

a) 63 years & b) 7 weeks & c) 7 years

d) 7 seconds & e) 7 hours &

A detailed description of all datasets can be found on
Appendix A. We evaluate the performance on TEA
and MATRES in terms of accuracy and F1-score, and
TimeML and Story Cloze Task in terms of accuracy.
For the MC-TACO dataset, we report the exact match
(EM) and F1 scores, following Zhou et al. (2019). EM
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Algorithm 1 ML-ALICE : We explore adding the small adversarial perturbation to the hidden representations or
self-attention representations of a layer of the model.

Input: T : the total number of iterations, X = {(x1, y1), . . . , (xn, yn)}: the dataset, f(x; θ): the machine learning model
parametrized by θ, σ2: the variance of the random initialization of perturbation δ1 and δ2, δ1r and δ2r : the perturbations
added to the hidden states or self-attention representations of layer r , ϵ: perturbation bound, K: the number of iterations for
perturbation estimation, L: the number of transformer based model’s layers, f layer: the function that computes the hidden
representations or attention representations of a given layer, z: the hidden representations or self-attention representations
of a layer of the model, η: the step size for updating perturbation, τ : the global learning rate, α: the smoothing proportion
of adversarial training in the augmented learning objective, Π: the projection operation, and max layer: the number of
the maximum layer where the noise can be added during training.

1: for t = 1, .., T do
2: for (x, y) ∈ X do
3: δ1 ∼ N (0, σ2I)
4: δ2 ∼ N (0, σ2I)
5: Generate a random integer r ∈ {1, ...,max layer}
6: for m = 1, ..,K do
7: // x : forward pass to the last layer of the model
8: for layer = 1, 2, ..., L do
9: z ← f layer(z)

10: if layer is r then
11: gadv ← ∇δ1r

l(f(z + δ1r ; θ), f(z; θ))
12: δ1r ← Π∥δ1r ∥∞≤ϵ(δ1r + ηgadv)
13: gadv ← ∇δ2r

l(f(z + δ2r ; θ), yt)
14: δ2r ← Π∥δ∥∞≤ϵ(δ2r + ηgadv)
15: end if
16: end for
17: end for
18: gθ ← ∇θl(f(x+ δ1r ; θ), y)

+α∇θl(f(x+ δ2r ; θ), f(x; θ))
19: θ ← θ − τgθ
20: end for
21: end for
Output: θ

TEA TimeML MC-TACO SCT MATRES
Model Acc F1 Acc EM F1 Acc Acc F1
Human - - 87.70 75.80 87.10 -

STD (RoBERTa BASE) 95.20 89.40 80.86 39.79 68.63 92.95 90.54 87.80
FreeLB (Zhu et al., 2019) 95.75 90.62 82.75 44.37 71.52 92.68 90.54 87.78

SMART (Jiang et al., 2019) 95.32 89.77 82.25 46.77 73.07 92.89 91.26 88.77
ALICE (Pereira et al., 2020) 95.63 90.35 82.35 47.00 73.04 93.43 89.54 86.80

ML-ALICE (hidden) 95.69 90.52 83.35 49.25 74.78 93.53 90.26 87.59
ML-ALICE (attention) 96.72 92.80 83.94 49.77 73.93 94.07 91.40 88.97

STD (RoBERTa LARGE) 95.99 91.11 81.06 51.05 76.85 96.37 91.12 88.93
T5-3B (Kaddari et al., 2020) - - - 59.08 79.46 - - -
TacoML (Zhou et al., 2020) - - 81.70 - - - - -

SYMTIME (Zhou et al., 2021) - - - - - - 87.30
GDIN (Tian et al., 2020) - - - - - 91.90 - -

Table 1 Test results of TEA, TimeML, Story Cloze Task (SCT), MC-TACO, and MATRES. The best results are in
bold. STD denotes the standard fine-tuning procedure where we fine-tune RoBERTa on each task specific temporal
reasoning dataset. ML-ALICE denotes our proposed models. ML-ALICE (hidden states) denotes the model that
uses the best layer combination to add the perturbation to the hidden state vectors, and ML-ALICE (attention)
denotes the model that uses the best layer combination to add the perturbation to the attention weight vectors. Note
that STD, FreeLB, SMART, ALICE, and all ML-ALICE models use RoBERTaBASE as the text encoder unless
stated otherwise, and for a fair comparison, all these results are produced by ourselves. All values marked in bold
are significantly higher compared to the best overall baseline, ALICE, measured by t-test at p-value of 0.05.

measures how many questions a system correctly la- beled all candidate answers, while F1 measures the av-
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erage overlap between one’s predictions and the ground
truth.

3.2. Implementation Details

Our model implementation is based on the MT-DNN
framework (Liu et al., 2019a; Liu et al., 2020b). We use
RoBERTaBASE (Liu et al., 2019b) as the text encoder.
We used ADAM (Kingma and Ba, 2015) as our opti-
mizer with a learning rate in the range ∈ {9×10−6, 1×
10−5} and a batch size in the range ∈ {16, 32, 64}.
The maximum number of epochs was set to 10. A
linear learning rate decay schedule with warm-up over
0.1 was used unless stated otherwise. To avoid gra-
dient exploding, we clipped the gradient norm within
1. All the texts were tokenized using WordPiece and
were chopped to spans no longer than 512 tokens. We
also set the dropout rate of all the task-specific layers
as 0.3. During adversarial training, we follow (Jiang
et al., 2019) and set the perturbation size to 1 × 10−5,
the step size to 1× 10−3, and to 1× 10−5 the variance
for initializing perturbation. We search the regulariza-
tion weight α in {0.01, 0.1, 1}. We set the number of
projected gradient steps to 1. For the posterior regular-
ization, we use the Jensen-Shannon divergence, as in
(Cheng et al., 2021).

3.3. Main Results

We present our results in Table 1. We compare our
model, ML-ALICE , with other state-of-the-art mod-
els. Overall, the adversarial methods, i.e., FreeLB,
SMART, ALICE and ML-ALICE , were able to outper-
form the standard fine-tuning approach (STD) and the
other baselines, without using any additional knowl-
edge source, and without using any additional dataset
other than the target task datasets. These results suggest
that adversarial training leads to a more robust model
and helps generalize better on unseen data.
All ML-ALICE models were able to outperform the
other baselines. ML-ALICE consistently outperforms
both standard training and the strong adversarial train-
ing methods of FreeLB and SMART. This indicates
that adding the adversarial perturbation to the other lay-
ers of the model in addition to the embedding layer can
improve the model generalization capability. Overall,
ML-ALICE (attention) obtained better performance.
We hypothesize this is because the layer normaliza-
tion has larger impact in the internal representation, as
also shown by Kobayashi et al. (2021). Remarkably,
RoBERTaBASE with ML-ALICE performs on par with
RoBERTaLARGE with standard training overall, and out-
performs the latter on most datasets.
In all of our experiments, adding the adversarial per-
turbation to the lower layers of the model (i.e., layers
0 to 2) performed best. We hypothesize this is because
they are more close to the original input and learn more
more robust representations compared to the embed-
ding layer, being less sensitive to noise.

Model TimeML MC-TACO SCT
Acc EM F1 Acc

Standard 49.35 10.59 32.27 87.28
FreeLB 41.87 12.53 24.59 88.99
SMART 42.77 9.38 27.11 86.21
ALICE 43.77 15.02 21.11 91.24
ML-ALICE 55.23 11.48 43.64 91.98

Table 2Comparison of standard and adversarial training
in zero-shot evaluation on various temporal datasets,
where the standard RoBERTaBASE model is fine-tuned
on the CosmosQA dataset. All values marked in bold
are significantly higher compared to the best overall
baseline, ALICE, measured by t-test at p-value of 0.05.

3.4. Zero-Shot Learning on Commonsense
Reasoning

Next, we compare standard and adversarial training in
generalizability to out-domain datasets. Specifically,
we fine-tune RoBERTaBASE on a commonsense rea-
soning dataset, CosmosQA (Huang et al., 2019), and
evaluate on the temporal datasets. Since the com-
monsense reasoning task commonly involves reasoning
about temporal events, e.g. what event(s)might happen
before or after the current event, we hypothesize that
those tasks might highly benefit from it. It has 35,888
questions on 21,886 distinct contexts taken from blogs
of personal narratives. Each question has four answer
candidates, one of which is correct. An example from
this dataset is below. The correct answer is in bold.

Paragraph: Did some errands today. My
prime objectives were to get textbooks, find a
computer lab, find career services, get some
groceries, turn in payment plan application,
and find out when KEES money kicks in. I
think it acts as a refund at the end of the
semester at Murray, but I would be quite
happy if it would work now.

Question: What happens after I get the re-
fund?

Option 1: I can pay my bills.
Option 2: I can relax.

Option 3: I can sleep.

Option 4: None of the above choices.

See Table 2 for the results. ML-ALICE outperforms
standard training and state-of-the-art adversarial train-
ing methods. Interestingly, the gains are particularly
pronounced on the smallest dataset, TimeML, which
has only 1,248 training samples. This provides addi-
tional evidence that ML-ALICE is especially effective
in enhancing generalizability in data-constrained set-
tings.

4. Conclusion
We present an enhanced adversarial training algo-
rithm for fine-tuning transformer-based language mod-
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els (i.e., RoBERTa) and apply it to the temporal rea-
soning task. Our ML-ALICE algorithm is simple yet
effective in improving model generalization for vari-
ous temporal reasoning tasks, especially in zero-shot
learning setting. Our experiments demonstrated that
it achieves competitive results without relying on any
additional resource other than the target task dataset.
Future directions include: applying ML-ALICE in pre-
training and other NLP tasks, e.g., sequence labeling.

Acknowledgements
We thank the reviewers for their helpful feedback. This
work has been supported by the project KAKENHI ID:
18H05521 and by project KAKENHI ID: 21K17802.

5. Bibliographical References
Cheng, Y., Jiang, L., and Macherey, W. (2019). Robust

neural machine translation with doubly adversarial
inputs.

Cheng, H., Liu, X., Pereira, L., Yu, Y., and Gao, J.
(2021). Posterior differential regularization with f-
divergence for improving model robustness. In In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1078–1089. June 6–11, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). In Bert: Pre-training of deep bidirectional
transformers for language understanding.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014).
Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572.

Graff, D. (2002). The aquaint corpus of english
news text:[content copyright] portions© 1998-2000
new york times, inc.,© 1998-2000 associated press,
inc.,© 1996-2000 xinhua news service. Linguistic
Data Consortium.

Huang, L., Bras, R. L., Bhagavatula, C., and Choi, Y.
(2019). Cosmos qa: Machine reading comprehen-
sion with contextual commonsense reasoning. Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing, pages 2391–2401.

Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Zhao, T. (2019). Smart: Robust and efficient
fine-tuning for pre-trained natural language models
through principled regularized optimization. arXiv
preprint arXiv:1911.03437.

Kaddari, Z., Mellah, Y., Berrich, J., Bouchentouf, T.,
and Belkasmi, M. G. (2020). Applying the t5 lan-
guage model and duration units normalization to ad-
dress temporal common sense understanding on the
mctaco dataset.

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. ICLR (Poster) 2015.

Kobayashi, G., Kuribayashi, T., Yokoi, S., and Inui,
K. (2021). Incorporating residual and normaliza-

tion layers into analysis of masked language models.
arXiv preprint arXiv:2109.07152.

Kober, T., de Vroe, S. B., and Steedman, M. (2019).
Temporal and aspectual entailment.

Liu, X., He, P., Chen, W., and Gao, J. (2019a). Multi-
task deep neural networks for natural language un-
derstanding. Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4487–4496.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen,
D., Levy, O., Lewis, M., Zettlemoyer, L., and
Stoyanov, V. (2019b). Roberta: A robustly op-
timized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Liu, X., Cheng, H., He, P., Chen, W., Wang, Y.,
Poon, H., and Gao, J. (2020a). Adversarial train-
ing for large neural language models. arXiv preprint
arXiv:2004.08994.

Liu, X., Wang, Y., Ji, J., Cheng, H., Zhu, X., Awa,
E., He, P., Chen, W., Poon, H., Cao, G., and Gao,
J. (2020b). The microsoft toolkit of multi-task deep
neural networks for natural language understanding.
arXiv preprint arXiv:2002.07972.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D.,
and Vladu, A. (2017). Towards deep learning mod-
els resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083.

Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S.
(2018). Virtual adversarial training: a regularization
method for supervised and semi-supervised learning.
IEEE transactions on pattern analysis and machine
intelligence, 41(8):1979–1993.

Mostafazadeh, N., Roth, M. abd Louis, A., Chambers,
N., and Allen, J. (2017). Lsdsem 2017 shared task:
The story cloze test. In In Proceedings of the 2nd
Workshop on Linking Models of Lexical, Sentential
and Discourse-level Semantics (pp. 46-51).

Ning, Q., Wu, H., and Roth, D. (2018). A multi-axis
annotation scheme for event temporal relations. In
arXiv preprint arXiv:1804.07828.

Pan, F., Mulkar-Mehta, R., and Hobbs, J. R. (2006).
Extending timeml with typical durations of events.
In Proceedings of the Workshop on Annotating and
Reasoning about Time and Events, pages 38–45.

Pereira, L., Liu, X., Cheng, F., Asahara, M.,
and Kobayashi, I. (2020). Adversarial train-
ing for commonsense inference. arXiv preprint
arXiv:2005.08156.

Pustejovsky, J., Hanks, P., Sauri, R., See, A.,
Gaizauskas, R., Setzer, A., Radev, D., Sundheim, B.,
Day, D., Ferro, L., et al. (2003). The timebank cor-
pus. In Corpus linguistics, volume 2003, page 40.
Lancaster, UK.

Ribeiro, M. T., Wu, T., Guestrin, C., and Singh,
S. (2020). Beyond accuracy: Behavioral testing
of nlp models with checklist. In arXiv preprint
arXiv:2005.04118.

Saurı́, R., Littman, J., Knippen, B., Gaizauskas, R., Set-



7357

zer, A., and Pustejovsky, J. (2006). Timeml annota-
tion guidelines. volume 1, page 31.

Tian, Z., Zhang, Y., Liu, K., Zhao, J., Jia, Y., and
Sheng, Z. (2020). Scene restoring for narrative ma-
chine reading comprehension.

UzZaman, N., Llorens, H., Derczynski, L., Allen, J.,
Verhagen, M., and Pustejovsky, J. (2013). Semeval-
2013 task 1: Tempeval-3: Evaluating time expres-
sions, events, and temporal relations. In Second
Joint Conference on Lexical and Computational Se-
mantics (* SEM), Volume 2: Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013), pages 1–9.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin,
I. (2017). Attention is all you need. In Advances in
neural information processing systems, pages 5998–
6008.

Zhou, B., Khashabi, D., Ning, Q., and Roth, D. (2019).
”going on a vacation” takes longer than” going for
a walk”: A study of temporal commonsense under-
standing. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3363–3369.

Zhou, B., Ning, Q., Khashabi, D., and Roth, D. (2020).
Temporal common sense acquisition with minimal
supervision. In arXiv preprint arXiv:2005.04304.

Zhou, B., Richardson, K., Ning, Q., Khot, T., Sab-
harwal, A., and Roth, D. (2021). Temporal reason-
ing on implicit events from distant supervision. In
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1361–1371 June 6–11, 2021.

Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T., and
Liu, J. (2019). Freelb: Enhanced adversarial train-
ing for language understanding. In arXiv preprint
arXiv:1909.11764.



7358

A. Evaluation Datasets
In this section, we describe the temporal reasoning
tasks we tackle in this work. All tasks are challenging
since they require deep understanding of the temporal
properties of language.
Event Ordering Prediction Task: This task involves
predicting the temporal relationship between a pair
of input events in a span of text. We use the MA-
TRES dataset (Ning et al., 2018). It originally contains
13,577 pairs of events annotated with a temporal rela-
tion (BEFORE, AFTER, EQUAL, VAGUE). The tem-
poral annotations are performed on 256 English docu-
ments (and 20 more for evaluation) from the TimeBank
(Pustejovsky et al., 2003), AQUAINT (Graff, 2002)
and Platinum (UzZaman et al., 2013) datasets. An ex-
ample of a sentence with two events (in bold) that hold
the BEFORE relation is below:

At one point, when it (e1:became) clear con-
trollers could not contact the plane, someone
(e2:said) a prayer.

We follow zhou2021distant, and we train and evaluate
only the instances with a label of either “BEFORE” or
“AFTER”.
Temporal Entailment: this task requires models to
correctly determine the internal and external tempo-
ral structure of predications when performing natural
language inference. We use the Temporal and As-
pectual entailment (TEA, (Kober et al., 2019)). This
dataset contains pairs of short sentences with the same
argument structure that differ in tense and aspect of
the main verb, and follows a binary label annotation
scheme (entailment vs. non-entailment). Examples
from this dataset where are shown below:

Steve married Elizabeth. Steve is proposing
to Elizabeth. Label: not entailment

Steve married Elizabeth. Steve was propos-
ing to Elizabeth. Label: entailment

Event Duration Prediction Task: This task consists
of deciding whether a given event has a duration longer
or shorter than a day. We use TimeML (Saurı́ et al.,
2006; Pan et al., 2006), a dataset with event duration
annotated as lower and upper bounds. An example of
a sentence with an event (in bold) that has a duration
shorter than a day is shown below:

In Singapore, stocks hit a five year low.

Story: Danny bought a boat. His nearby ma-
rina was having a race. He decided to enter.
Danny and his best friend manned the boat.

a) Danny decided to go to sleep.

b) They prepared for the start of the race.

Temporal Commonsense Reasoning Task: This task
focuses on temporal commonsense reasoning. We use
the MC-TACO (Zhou et al., 2019) dataset. It consid-
ers five temporal properties: (1) duration (how long
an event takes), (2) temporal ordering (typical order of
events), (3) typical time (when an event occurs), (4)
frequency (how often an event occurs), and (5) station-
arity (whether a state is maintained for a very long time
or indefinitely). It contains 13k tuples, each consisting
of a sentence, a question, and a candidate answer, that
should be judged as plausible or not. The sentences are
taken from different sources such as news, Wikipedia,
and textbooks. An example from the dataset is below.
The correct answer is in bold.

Paragraph: Growing up on a farm near St.
Paul, L. Mark Bailey didn’t dream of becom-
ing a judge.

Question: How many years did it take for
Mark to become a judge?

a) 63 years & b) 7 weeks & c) 7 years
d) 7 seconds & e) 7 hours &

Story Cloze Task (SCT): This task involves choosing
an ending to a story. We use the Story Cloze Task
dataset (Mostafazadeh et al., 2017), where the task is
to choose the correct ending, among two choices, to a
4-sentence story. It captures a rich set of causal and
temporal commonsense relations between daily events.
An example from the dataset is below. The correct an-
swer is in bold.
The English datasets used in our experiments are sum-
marized in Table 3.
For TimeML, we follow the train and test splits as
in (Zhou et al., 2020). For MCTACO, we follow
zhou2019going. For the MATRES dataset, we fol-
low ning2018multi. Moreover, following (Zhou et al.,
2021), we train and evaluate only the instances with a
label of either “before” or “after”, which accounts for
about 80% of all instances. For the Story Cloze Task,
we use the 2016 and 2018 data releases after remov-
ing duplicates. We set 20% of the TimeML, and Story
Cloze Task training data as the development set to tune
the hyperparameters. For the MC-TACO dataset, no
training set is available. Following zhou2019going, we
use the dev set for fine-tuning the model. We use 20%
of this data for fine-tuning the parameters.
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Dataset #Train #Test #Label Metrics
TEA 10,540 1,646 2 Accuracy & F1-score
TimeML 1,248 1,003 2 Accuracy
SCT 1,571 1,871 2 Accuracy
MATRES 10,906 698 2 Accuracy & F1-score
MC-TACO 3,783 9,442 2 F1-Score & Exact Match (EM)

Table 3 Summary of the five English evaluation datasets: TEA, TimeML, MATRES, Story Cloze Task (SCT), and
MC-TACO.
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