Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 7199-7208
Marseille, 20-25 June 2022
© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

Annotating the Tweebank Corpus on Named Entity Recognition and
Building NLP Models for Social Media Analysis

Hang Jiang, Yining Hua, Doug Beeferman, Deb Roy
MIT Center for Constructive Communication
75 Ambherst St, Cambridge, MA 02139
{hjian42, ninghua, dougb3, dkroy } @mit.edu

Abstract

Social media data such as Twitter messages (“tweets”) pose a particular challenge to NLP systems because of their short, noisy,
and colloquial nature. Tasks such as Named Entity Recognition (NER) and syntactic parsing require highly domain-matched
training data for good performance. To date, there is no complete training corpus for both NER and syntactic analysis (e.g.,
part of speech tagging, dependency parsing) of tweets. While there are some publicly available annotated NLP datasets
of tweets, they are only designed for individual tasks. In this study, we aim to create Tweebank-NER, an English NER
corpus based on Tweebank V2 (TB2), train state-of-the-art (SOTA) Tweet NLP models on TB2, and release an NLP pipeline
called Twitter-Stanza. We annotate named entities in TB2 using Amazon Mechanical Turk and measure the quality of our
annotations. We train the Stanza pipeline on TB2 and compare with alternative NLP frameworks (e.g., FLAIR, spaCy) and
transformer-based models. The Stanza tokenizer and lemmatizer achieve SOTA performance on TB2, while the Stanza NER
tagger, part-of-speech (POS) tagger, and dependency parser achieve competitive performance against non-transformer models.
The transformer-based models establish a strong baseline in Tweebank-NER and achieve the new SOTA performance in POS
tagging and dependency parsing on TB2. We release the dataset and make both the Stanza pipeline and BERTweet-based
models available “off-the-shelf” for use in future Tweet NLP research. Our source code, data, and pre-trained models are
available at: https://github.com/social-machines/TweebankNLP.

Keywords: text annotation, noisy text, NLP toolkit, Twitter, named entity recognition, tokenization, lemmatization,
part-of-speech tagging, dependency parsing

1. Introduction

Researchers use text data from social media platforms
such as Twitter and Reddit for a wide range of studies
including opinion mining, socio-cultural analysis, and
language variation. Messages posted to such platforms
are typically written in a less formal style than what
are found in conventional data sources for NLP mod-
els, namely news articles, papers, websites, and books.
Processing the noisy and informal language of social
media is challenging for traditional NLP tools because

res, Liu et al. (2018) introduced a new tweet-based
Tweebank V2 in UD, including tokenization, part-of-
speech (POS) tags, and (labeled) Universal Dependen-
cies. Besides syntactic annotation, NLP researchers
have also annotated tweets on named entities. [Rit-
ter et al. (2011) first introduced this English Twitter
NER task and found that NER systems trained on the
news perform poorly on tweets. Since then, the noisy
user-generated text (WNUT) workshop has proposed
a few benchmark datasets including WNUT15 (Xu et

such messages are usually short in length and irreg-
ular in spelling and structure. In response, the NLP
community has been constructing language resources
and building NLP pipelines for social media data, es-
pecially for Twitter.

Annotating social media language resources is impor-
tant to the development of NLP tools. |Foster et al.
(2011) is the one of the earliest attempts to anno-
tate tweets in the Penn Treebank (PTB) format. Fol-
lowing a similar PTB-style convention suggested by
Schneider et al. (2013), [Kong et al. (2014) cre-
ated Tweebank V1. However, the PTB annotation
guidelines leave many annotation decisions unspeci-
fied and are therefore unsuitable for informal and user-
generated text. After Universal Dependencies (UD)
(Nivre et al., 2016) was introduced to enable con-
sistent annotation across different languages and gen-

The first two authors contribute equally. YH is also affil-
iated with Harvard Medical School.

al., 2015), WNUT16 (Xu et al., 2015), and WNUT17
(Derczynski et al., 2017) for Twitter lexical normal-
ization and named entity recognition (NER). However,
these benchmarks are not based upon TB2, which con-
tains high-quality UD annotations. Annotating named
entities in TB2 fills a gap in NLP research, allow-
ing researchers to train multi-task learning models in
NER, POS tagging, and dependency parsing, and study
the linguistic relationship between syntactic labels and
named entities in the Twitter domain.

Many researchers have invested in building better NLP
pipelines for tokenization, POS tagging, parsing, and
NER. The earliest work focuses on Twitter POS taggers
(Gimpel et al., 2010; [Owoputi et al., 2013) and NER
(Ritter et al., 2011). Later, Kong et al. (2014) pub-
lished TweeboParser on Tweebank V1 to include tok-
enization, POS tagging, and dependency parsing. [Liu
et al. (2018)) further improved the whole pipeline based
on TB2. The current state-of-the-art (SOTA) pipeline

7199

https://github.com/social-machines/TweebankNLP

in POS tagging and NER is based on BERT pre-trained
on a large number of tweets Nguyen et al. (2020).
However, these efforts (1) are often no longer main-
tained (Ritter et al., 2011} |[Kong et al., 2014)), (2) do
not contain publicly available NLP models (e.g., NER,
POS tagger) (Nguyen et al., 2020), (3) are written in
C/C++ or R with complicated dependencies and instal-
lation process (e.g., Twpipe (Liu et al., 2018) and UD-
Pipe (Straka et al., 2016))), making them difficult to be
integrated into Python frameworks and to be used in
an “off-the-shelf” fashion. Many modern NLP tools
in Python such as spaCyﬂ Stanza (Qi et al., 2020),
and FLAIR (Akbik et al., 2019) have been developed
for standard NLP benchmarks but have never been
adapted to Tweet NLP tasks. In this study, we choose
Stanza over other NLP frameworks because (1) the
Stanza framework achieves SOTA or competitive per-
formance on many NLP tasks across 66 languages (Q1
et al., 2020), (2) Stanza supports both CPU and GPU
training and inference while transformer-based models
(e.g., BERTweet) need GPU, (3) Stanza shows superior
performance against spaCy in our experiments despite
slower speeds, (4) Stanza is competitive in speed com-
pared with FLAIR of similar accuracy (Qi et al., 2020),
but the FLAIR dependency parser is still under devel-
opment.

In this paper, we annotate Tweebank V2 on NER to cre-
ate Tweebank-NER and also build Tweet NLP mod-
els based on Stanza and transformer models. We run
additional experiments to answer the following ques-
tions: (1) How is the quality of the NER annota-
tions? (2) Do NER models trained on existing Twitter
NER data perform well on Tweebank—-NER? (3) How
do Stanza models perform compared with other NLP
frameworks on the core Tweet NLP tasks? (4) How do
transformer-based models perform compared with tra-
ditional models on these tasks? Our contributions are
as follows:

¢ We annotate Tweebank V2, the main treebank
for English Twitter NLP tasks, on NER. This
annotation not only provides a new benchmark
(Tweebank—-NER) for Twitter NER but also
makes Tweebank a complete dataset for both syn-
tactic tasks and NER, making it suitable for train-
ing multi-task learning models in POS tagging,
dependency parsing, and NER.

* We leverage the Stanza framework to present
an accurate and fast Tweet NLP pipeline called
Twitter—-Stanza. It includes NER, tokeniza-
tion, lemmatization, POS tagging, and depen-
dency parsing modules, and it supports both CPU
and GPU computation.

e We compare Twitter—Stanza against exist-
ing models for each presented NLP task, con-
firming that Stanza’s simple neural architecture

'"https://spacy.io/

is effective and suitable for tweets. Among non-
transformer models, the Twitter—Stanza tok-
enizer and lemmatizer achieve SOTA performance
on TB2, and its POS tagger, dependency parser,
and NER model obtain competitive performance.

* We also train transformer-based models to estab-
lish a strong baseline on the Tweebank-NER
benchmark and SOTA performance in POS tag-
ging and dependency parsing on TB2. We up-
load the BERTweet-based NER and POS tag-
gers to the Hugging Face Hub: |https://
huggingface.co/TweebankNLP

e We release our data, models, and code. Our
Twitter—Stanza pipeline is highly compati-
ble with Stanza’s Python interface and is simple
to use in an “off-the-shelf” fashion. We hope
that our Twitter—Stanza and Hugging Face
BERTweet models can serve as a convenient NLP
tool and a strong baseline for future research and
applications of Tweet analytic tasks.

2. Dataset and Annotation Scheme

In this study, we primarily work on the Tweebank V2
dataset and develop its NER annotations through rigor-
ous annotation guidelines. We also evaluate the quality
of our annotations, showing that it has a good F1 inter-
annotator agreement score.

2.1. Datasets and Annotation Statistics

Tweebank V2 (TB2) (Kong et al., 2014; Liu et al.,
2018))is a collection of 3,550 labeled anonymous En-
glish tweets annotated in Universal Dependencies. It
is a commonly used corpus for the training and fine-
tuning of NLP systems on social media texts. A sum-
mary of TB2 is shown in Table[I}

Dataset Train Dev Test
Tweets 1,639 710 1,201
Tokens 24,753 11,742 19,112
Avg. token per tweet 15.1 16.6 15.9
Annotated spans 979 425 750
Annotated tokens 1,484 675 1183
Avg. token per span 1.5 1.6 1.6

Table 1: Annotated corpus statistics.

2.2. Annotation Guidelines

We follow the CoNLL 2003 guidelineg’| to annotate
named entities. We are aware that some NER anno-
tations (e.g., English OntoNotes) have more than four
classes. We adopt the standard four-class CoNLL 2003
NER guidelines for two reasons. One one hand, adopt-
ing a more fine-grained annotation scheme is more
challenging for human annotators. The 4-class scheme

https://www.clips.uantwerpen.be/
conll12003/ner/

7200

https://spacy.io/
https://huggingface.co/TweebankNLP
https://huggingface.co/TweebankNLP
https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/

is already quite challenging for humans since the inter-
annotator agreement is low for the MISC class. On
the other hand, Tweebank is relatively small, with only
3,550 tweets. An annotation scheme with more classes
than that will mean fewer instances per class, and
greater difficulty for NER models to learn efficiently.
To help annotators understand the guidelines, we pro-
vide multiple examples for each rule and ask annotators
to read them before the task. Our task focuses on the
following four named entities:

* PER: persons (e.g., Joe Biden, joe biden, Ben, 50
Cent, Jesus)

* ORG: organizations (e.g., Stanford University,
stanford, IBM, Black Lives Matter, WHO, Boston
Red Sox, Science Magazine, NYT)

¢ LOC: locations (e.g., United States, usa, China,
Boston, Bay Area, CA, MT Washington)

* MISC: named entities which do not belong to the
previous three. (e.g., Chinese, chinese, World Cup
2002, Democrat, Just Do It, Top 10, Titanic, The
Shining, All You Need Is Love)

To handle challenges in tweets, we also add require-
ments consistent with (Ritter et al., 2011): (1) ig-
nore numerical entities (MONEY, NUMBER, OR-
DINAL, PERCENT), (2) ignore temporal entities
(DATE, TIME, DURATION, SET), (3) "At men-
tions” are not named entities (e.g., allow “Don-
ald Trump” but not @DonaldTrump), (4) #hashtags
are not named entities (e.g., allow “BLM” but not
“4BLM”), (5) URLSs are not named entities (e.g., dis-
allow https://www.google.com/).

2.3. Annotation Logistics

We use the Qualtrics platform to design the sequence
labeling task and Amazon Mechanical Turk to recruit
annotators. We first launch a pilot study, annotate each
of the 100 tweets, and discuss tweets with divergent
annotations. Based on the pilot study, we develop a se-
ries of annotation rules and precautions. During the re-
cruiting process, each annotator is given an overview of
annotation conventions and our guidelines, after which
they are asked to complete the qualification test. The
qualification test consists of 7 tweets that are selected
from the pilot study. An annotator must make fewer
than 2 errors and not make any significant error in order
to pass the qualification test. We consider a significant
error to be one in which any URL, @USER, or hashtag
is labeled as a named entity; or one in which the PER-
SON, LOCATION, and ORG categories are confused
with each other.

After all tweets have been annotated by at least 3 anno-
tators, we merge the annotation results and create the
Tweebank—-NER dataset in the BIO format (Ratinov
and Roth, 2009)). In the merging process, if at least two
annotators give the annotation result for a tweet, we
use that result as the final annotation. Otherwise, we

discuss and re-annotate the tweet to reach a consensus.
We identify 178 span annotations whose three anno-
tations are different from each other and decide their
gold annotations collectively by two authors. We find
that one of the three annotators’ answers is the same as
the final annotation for 155 out of the 178 annotations.

2.4. Annotation Quality

We first evaluate the quality of the annotations us-
ing a measure of inter-annotator agreement (IAA). For
NER, Cohen’s Kappa is not the best measure because
it needs the number of negative cases, but NER is a
sequence tagging task. Therefore, we follow previous
work (Hripcsak and Rothschild, 2005; |Grouin et al.,
2011; Brandsen et al., 2020) to use the token-level pair-
wise F1 score calculated without the O label as a bet-
ter measure for IAA in NER (Deleger et al., 2012). In
Table |2 we observe that PER, LOC, and ORG have
higher F1 agreement than MISC, showing that MISC
is more difficult to annotate than the other classes. We
also provide the additional Kappa measure (x =0.347)
on annotated tokens to provide some insights, although
it significantly underestimates IAA for NER. Finally,
we calculate the scores by comparing the crowdsourced
annotators against our own internal annotations on 100
sampled examples, obtaining a similar F1 score (0.71).

Label | Quantity Fl1

PER 777 84.6
LOC 317 74.4
ORG 541 71.9
MISC 519 50.9
Overall 2,154 70.7

Table 2: Number of span annotations per entity type
and Inter-annotator agreement scores in pairwise F1.

We analyzed the 178 annotations passed to the merge
step, finding that the proportion of each label is
8.4% (LOC), 15.2% (PER), 29.2% (ORG), and 47.2%
(MISC). These numbers show that MISC is the most
challenging class for human annotators and ORG is
also relatively difficult compared to LOC and PER.
This confirms the IAA measured in pairwise F1 in Ta-
ble 2] because the MISC has the lowest F1 (50.9%) and
ORG has the second lowest F1 (71.9%).

In the future, we suggest a few ways to improve the
annotation quality. The first way is to increase the
number annotators per tweet in both the initial and
merge stages. Second, hiring a small number of ex-
perienced annotators instead of using crowdsourcing
platforms will make the annotations more consistent.
Third, adopting a human-in-the-loop approach allows
annotators to focus on difficult instances from MISC
and ORG, which can reduce the cost and improve the
performance of the models at the same time.

7201

3. Methods for NLP Modeling

Stanza is a state-of-the-art and efficient framework for
many NLP tasks (Qi et al., 2020; [Zhang et al., 2021)
and it supports both NER and syntactic tasks. We use
Stanza to train NER models as well as syntactic mod-
els (tokenization, lemmatization, POS tagging, depen-
dency parsing) on TB2. For more detailed information
on Stanza, we refer the readers to the Stanza paper (Q1
et al., 2020) and its current websiteﬂ We use Twitter
GloVe embeddings (Pennington et al., 2014) with 100
dimensions in our experiments and the default parame-
ters in Stanza for training.

Alternative NLP frameworks such as spaCy, FLAIR,
transformers, and spaCy-transformers are compared
with Stanza. Both spaCy and FLAIR are open-source
NLP frameworks for NER and syntactic tasks. Trans-
formers is a library of pre-trained transformer models
for NLP and it provides a TokenClassification moduleﬂ
which is adopted for NER and POS tagging. We denote
these models as HuggingFace-BERTweet in our exper-
iments. The spaCy-transformers framework provides
the spaCy interface to combine pre-trained representa-
tions from transformer-based language models and its
own NLP models via Hugging Face’s transformers. To
train spaCy, we adopt the default NER settingE] and the
default syntactic NLP pipelineﬂ For FLAIR, we train
its NER and syntactic modules with the default set-
tings as well. For spaCy-transformers models, we fine-
tune BERTweet-base and XLM-RoBERTa-base lan-
guage models via spaCy-transformers for NER, POS
Tagging, and dependency parsin We denote them
as spaCy-BERTweet and spaCy-XLM-RoBERTa in the
paper. BERTweet (Nguyen et al., 2020) is the first pub-
lic large-scale language model for English tweets based
on RoBERTa and XLM-RoBERTa-base is a multilin-
gual version of ROBERTa-base. All transformer-based
models show strong performance in Tweet NER and
POS tagging (Nguyen et al., 2020). The architecture
and training details of the models above can be found
at our public repository.

3.1. Named Entity Recognition

In this paper, we adopt the four-class convention to
define NER as a task to locate and classify named
entities mentioned in unstructured text into four pre-
defined categories: PER, ORG, LOC, and MISC (Sang

*https://stanfordnlp.github.io/stanza/

*https://github.com/huggingface/
transformers/tree/main/\examples/legacy/
token-classification

’https://github.com/explosion/
projects/blob/v3/pipelines/\ner_wikiner/
configs/default.cfg

®https://github.com/explosion/
projects/tree/v3/\benchmarks/ud_
benchmark

"https://github.com/explosion/
projects/blob/v3/benchmarks/\ud_
benchmark/configs/transformer.cfg

and De Meulder, 2003). We use the Stanza NER ar-
chitecture for training and evaluation, which is a con-
textualized string representation-based sequence tag-
ger (Akbik et al., 2018). This model contains a
forward and a backward character-level LSTM lan-
guage model to extract token-level representations and
a BILSTM-CREF sequence labeler to predict the named
entities. We also train the default NER models for
SpaCy, FLAIR, HuggingFace-BERTweet, and spaCy-
BERTweet for comparison.

3.2. Syntactic NLP Tasks

3.2.1. Tokenization

Tokenizers predict whether a given character in a sen-
tence is the end of a token. The Stanza tokenizer jointly
works on tokenization and sentence segmentation, by
modeling them as a tagging problem over character se-
quences. In accordance with previous work (Gimpel
et al., 2010; |Liu et al., 2018), we focus on the perfor-
mance in tokenization, as tweets are usually short with
a single sentence.

To compare with spaCy, we train a spaCy tokenizer
named char_pretokenizer.vl. FLAIR uses spaCy’s to-
kenizer, so we exclude it from comparison. We also
include baselines mentioned in previous work (Kong
et al., 2014; L1u et al., 2018)). Twokenizer (O’Connor
et al., 2010) is a regex-based tokenizer and does
not adapt to the UD tokenization scheme. Stanford
CoreNLP (Manning et al., 2014), spaCy, and UDPipe
v1.2 (Straka and Strakova, 2017) are three popular NLP
frameworks re-trained on TB2. Twpipe tokenizer (Liu
et al., 2018)) is similar to UDPipe, but replaces GRU in
UDPipe with an LSTM and uses a larger hidden unit
number. We do not compare with transformer-based
models because they use subword-level tokenization
schemes like WordPiece (Wu et al., 2016) and BPE
(Sennrich et al., 2015)).

3.2.2. Lemmatization

Lemmatization is the process of recovering each word
in a sentence to its canonical form. We train the
Stanza lemmatizer on TB2, which is implemented
as an ensemble model of a dictionary-based lemma-
tizer and a neural seq2seq lemmatizer. We compare
the Stanza lemmatizer against three lemmatizers from
spaCy, NLTK, and FLAIR (Table . Both NLTK and
spaCy lemmatizer are rule-based and use a dictionary
to look up the canonical form given a word and it POS
tag. The FLAIR lemmatizer is a char-level seq2seq
model. We provide gold POS tags for lemmatization.

3.2.3. POS Tagging

POS tagging assigns each token in a sentence a POS
tag. We train the Stanza POS tagger, a bidirectional
long short-term memory network as the basic architec-
ture to predict the universal POS (UPOS) tags. We ig-
nore the language-specific POS (XPOS) tags because
TB2 only contains UPOS tags.

7202

https://stanfordnlp.github.io/stanza/
https://github.com/huggingface/transformers/tree/main/\examples/legacy/token-classification
https://github.com/huggingface/transformers/tree/main/\examples/legacy/token-classification
https://github.com/huggingface/transformers/tree/main/\examples/legacy/token-classification
https://github.com/explosion/projects/blob/v3/pipelines/\ner_wikiner/configs/default.cfg
https://github.com/explosion/projects/blob/v3/pipelines/\ner_wikiner/configs/default.cfg
https://github.com/explosion/projects/blob/v3/pipelines/\ner_wikiner/configs/default.cfg
https://github.com/explosion/projects/tree/v3/\benchmarks/ud_benchmark
https://github.com/explosion/projects/tree/v3/\benchmarks/ud_benchmark
https://github.com/explosion/projects/tree/v3/\benchmarks/ud_benchmark
https://github.com/explosion/projects/blob/v3/benchmarks/\ud_benchmark/configs/transformer.cfg
https://github.com/explosion/projects/blob/v3/benchmarks/\ud_benchmark/configs/transformer.cfg
https://github.com/explosion/projects/blob/v3/benchmarks/\ud_benchmark/configs/transformer.cfg

We also train the default POS taggers for SpaCy,
FLAIR, HuggingFace-BERTweet, spaCy-BERTweet,
spaCy-XLM-RoBERTa. We include performance from
existing work in Tweet POS tagging: (1) Stanford
CoreNLP tagger, (2) Owoputi et al. (2013)’s word
cluster—enhanced greedy tagger, (3) Owoputi et al.
(2013))’s word cluster—enhanced tagger with CRF, (4)
Ma and Hovy (2016)’s neural tagger, (5) BERTweet-
based POS tagger (Nguyen et al., 2020). The first
four models were re-trained on the combination of TB2
and UD_English-EWT (Ann Bies, Justin Mott, Colin
Warner, Seth Kulick, 2012) training sets, whereas the
BERTweet-based tagger was fine-tuned solely on TB2.
HuggingFace-BERTweet has the same architecture im-
plementation as [Nguyen et al. (2020).

3.2.4. Dependency Parsing

Dependency parsing predicts a syntactic structure for a
sentence, where every word in the sentence is assigned
a syntactic head that points to either another word in the
sentence or an artificial root symbol. Stanza’s depen-
dency parser combines a Bi-LSTM-based deep biaffine
neural parser (Dozat and Manning, 2017)) and two lin-
guistic features, which can significantly improve pars-
ing accuracy (Qi et al., 2018)). Gold-standard tokeniza-
tion and automatic POS tags are used.

We also re-train spaCy, spaCy-BERTweet, and spaCy-
RoBERTa dependency parsers with their default parser
architectures®] We compare our Stanza models with
previous work: (1) |[Kong et al. (2014)’s graph-based
parser with lexical features and word cluster and it
uses dual decomposition for decoding, (2) |Dozat and
Manning (2017))’s neural graph parser with biaffine at-
tention, (3) Ballesteros et al. (2015)’s neural greedy
stack LSTM parser, (4) an ensemble model of 20
transition-based parsers (Liu et al., 2018), (5) A dis-
tilled graph-based parser of the previous ensemble
model (Liu et al., 2018)). These models are all trained
on TB2+UD_English-EWT. We are aware that|[Stymne’
(2020) trained a transition-based uuparser (de Lhoneux
et al., 2017) on a combination of TB2, UD_English-
EWT, and more out-of-domain data (English GUM
(Zeldes, 2017), LinES (Ahrenberg, 2007), ParTUT
(Sanguinetti and Bosco, 2015)) to further boost model
performance, but we do not experiment with this data
combination to be consistent with |[Liu et al. (2018]).

4. Evaluation

We train the NER and syntactic NLP models described
above with 1) TB2 training data (the default data set-
ting), 2) TB2 training data + extra Twitter data (the
combined data setting). For the combined data set-
ting, we add the training and dev sets from other
data sources to TB2’s training and dev sets respec-
tively. Specifically, we add WNUTl?E] (Derczynski

*FLAIR and Hugging Face’s transformers do not contain
dependency parsing by default.

“We map both “group” and “corporation” to “ORG”, and
both “creative work™ and “product” to “MISC”.

et al., 2017) for NER. For syntactic NLP tasks, we
add UD_English-EWT (Ann Bies, Justin Mott, Colin
Warner, Seth Kulick, 2012). We pick the best models
based on the corresponding dev sets and report their
performance on their TB2 test sets. For each task, we
compare Stanza models with existing studies and alter-
native NLP frameworks.

4.1. Performance in NER

Systems F1

spaCy (TB2) 52.20
spaCy (TB2+W17) 53.89
FLAIR (TB2) 62.12
FLAIR (TB2+W17) 59.08

" HuggingFace-BERTweet (TB2) ~ | 7371

HuggingFace-BERTweet (TB2+W17) | 74.35
spaCy-BERTweet (TB2) 73.79
spaCy-BERTweet (TB2+W17) 74.15
Stanza (TB2) 60.14
Stanza (TB2+W17) 62.53

Table 3: NER comparison on the TB2 test set in entity-
level F1. “TB2” indicates to use the TB2 train set for
training. “TB2+W17” indicates to combine TB2 and
WNUT17 train sets for training.

4.1.1.
The NER experiments presented in Table [3] show that
the Stanza NER model (TB2+W17) achieves the best
performance among all non-transformer models. At
the same time, the Stanza model is up to 75% smaller
than the second-best FLAIR model (Qi et al., 2020).
For transformer-based approaches, spacy-BERTweet
and HuggingFace-BERTweet have close performance
to each other. The HuggingFace-BERTweet approach
trained on TB2+W 17 achieves the highest performance
(74.35%) on Tweebank-NER, establishing a strong
benchmark for future research. We also find that com-
bining the training data from both WNUT17 and TB2
improves the performance of spaCy, FLAIR, Stanza,
and BERTweet-based models.

Main Findings

4.1.2. Confusion Matrix Analysis

In Figure |1} we plot a confusion matrix for all four en-
tity types and “O”, the label for tokens that do not be-
long to any of these types. The diagonal and the vertical
blue lines are expected because the cells on the diago-
nal are when the algorithm predicts the correct entity
and the vertical line is when the algorithm mistakes an
entity for the “O” entity, which is the most common
error for NER. We notice that MISC entities are easily
mistaken as “O”, which corresponds to the annotation
statistics in Table 2} where MISC has the lowest ITA
score in pairwise F1. Thus, MISC is the most challeng-
ing of the four types for both humans and machines.

7203

Error type \ weet example

PER — O
LOC —= O
ORG — O
MISC — O

The 50 % Return Method Billionaire Investor Warren Buffet Wishes He Could Use
Getting ready ... @ Pasco Ephesus Seventh - day Adventist Church

#bargains #deals 10.27.10 Guess Who “ American Woman ~ Guhhh deeeh you !

RT @USER1508 : Do you ever realize Sounds Live Feels Live Starts this month and just

Table 4: Common mistakes made by the Stanza (W17+TB2) NER model for each error type. “X — O” means the
model predicts X entity to be O by mistake. Green and red texts are gold annotations of the corresponding type in
each row. Correct predictions are in bold green and gold annotations missed by the model are in bold red.

o Loc MISC ORG PER

o - 0.17 035 0138 0.14
- 17.50 71.25 312 250

267 33.07 6.40 587

LoC

Annotated
MISC

g - 33.62 6.81 128 468
ﬁ 12.59 145 218 218

Predicted

Figure 1: Confusion matrix generated by the Stanza
(TB2+W17) model to show percentages for each com-
bination of predicted and true entity types.

4.1.3. Error Analysis

We identify the most common error types that Stanza
(TB2+W17]| makes on the TB2 test in Figure[i} pre-
dicting PER, LOC, ORG, MISC to be O. We pick some
representative examples for each error type, shown in
Table] For the PER — O error type, every first let-
ter in a word is capitalized and the model fails to rec-
ognize the famous investor “Warren Buffet” in such a
context. We find that person entities with abbreviations
(e.g., “GD” for “G-dragon”), lower case (e.g., “kush”
for “Kush”), or irregular contextual capitalization are
challenging to the NER system. For the LOC' — O
error type, the structure to encode location is compli-
cated and sometimes interrupted by the parentheses and
dashes (e.g., “- day Adventist Church”). In this case, it
is caused by the fact that “Seventh-day” is tokenized
into three words in TB2. For the ORG/MISC — O
examples, “Guess Who” is a rock band and “Sounds
Live Feels Live” is a concert tour by Australian pop-
rock band 5 Seconds of Summer. These named entities
tend to contain common English verbs with their first
letters capitalized. It is difficult to annotate them cor-
rectly if the model does not have access to world and

0We pick Stanza over BERTweet for error analysis be-
cause we only aimed to publish the Stanza pipeline at the
beginning. We eventually publish the BERTweet models too.

domain knowledge. Our analysis points to the future
Twitter NER research to introduce text perturbations
into training and to encode commonsense knowledge
into NER modeling.

Training data TB2 WNUT17 | F1 Drop
spaCy 52.20 4493 7.27]
FLAIR 62.12 55.11 7.01)

" HgFace-BERTweet | 73.71 ~ 59.43 | 14.28]
spaCy-BERTweet 73.79 60.77 13.024
Stanza 60.14 56.40 3.74,

Table 5: Comparison among NER models trained on
TB2 vs. WNUT17 on TB2 test in entity-level F1. “Hg-
Face” stands for “HuggingFace”.

4.14. NER Models Trained on WNUT17

We train spaCy, FLAIR, Stanza, HuggingFace-
BERTwee, and spaCy-BERTweet NER models on the
four-class version of WNUT17 and evaluate their per-
formance on the TB2 test. In Table 5] we compare
the performance of these models trained on WNUT17
against the ones trained on TB2. We show that the
performance of all the models drops significantly if
we use the pre-trained model from WNUT17, mean-
ing the Tweebank-NER dataset is still challenging for
current NER models and can be used as an additional
benchmark to evaluate NER models.

4.2. Performance in Syntactic NLP Tasks

Apart from NER, we train and evaluate Stanza models
for tokenization, lemmatization, POS tagging, and de-
pendency parsing by leveraging TB2 and UD_English-
EWT. For each task, we compare our models against
previous work on the TB2 test set.

4.2.1. Tokenization Performance

In Table[6] we observe that the Stanza model trained on
TB2 outperforms Twpipe tokenizer, the previous SOTA
model, and it achieves slightly higher performance than
the spaCy tokenizer. We also find that blending TB2
and UD_English-EWT for training brings down the to-
kenization performance slightly. This is probably be-
cause the data source of UD_English-EWT, which is
collected from weblogs, newsgroups, emails, reviews,
and Yahoo! Answers, represents a different dialect
from Twitter English.

7204

System F1

Twokenizer 94.6
Stanford CoreNLP 97.3
UDPipe v1.2 97.4
Twpipe 98.3
spaCy (TB2) 98.57
spaCy (TB2+EWT) | 95.57
Stanza (TB2) 98.64
Stanza (TB2+EWT) | 98.59

Table 6: Tokenizer comparison on the TB2 test set.
“TB2” indicates to use TB2 for training. “TB2+EWT”
indicates to combine TB2 and UD English-EWT for
training. Note that the first four results are rounded to
one decimal place by Liu et al., (2018).

4.2.2. Lemmatization Performance

None of the previous Twitter NLP work reports the
lemmatization performance on TB2. As shown in Ta-
ble the Stanza model outperforms the other two
rule-based (NLTK and spaCy) and one neural (FLAIR)
baseline approaches on TB2. This is not surprising
because the Stanza ensemble lemmatizer makes good
use of both ruled-based dictionary lookup and seq2seq
learning. Similar to what we observe in the tokeniza-
tion experiments, the combined data setting brings
down the performance of FLAIR and Stanza models.

System F1

NLTK 88.23
spaCy 85.28
Flair (TB2) 96.18
Flair (TB2+EWT) 84.54
Stanza (TB2) 98.25
Stanza (TB2+EWT) | 85.45

Table 7: Lemmatization results on the TB2 test set.
“TB2” is to use TB2 for training. “TB2+EWT” is to
combine TB2 and UD English-EWT for training.

4.2.3. POS Tagging Performance

As shown in Table |8} HuggingFace-BERTweet (TB2)
replicates the SOTA performance from BERTweet
(Nguyen et al., 2020) in terms of accuracy. When
trained on the combined data of TB2 and UD_English-
EWT, HuggingFace-BERTweet achieves the best per-
formance (95.38%) in accuracy out of all the mod-
els. Compared to HuggingFace-BERTweet, spaCy-
transformers models perform worse. The spaCy-XLM-
RoBERTa trained on TB2 is 1.3% lower than|Nguyen et
al. (2020). We conjecture that the difference is mainly
due to the implementations of the POS tagging layer
between spaCy and HuggingFace-BERTweet, which
is the same as Nguyen et al. (2020). Among the
non-transformer models, Stanza achieves competitive
performance compared with (Owoputi et al. (2013)’s
tagger with CRF (93.53% vs. 94.6%). Stanza out-
performs all other non-transformer baselines includ-

ing Stanford CoreNLP, spaCy, FLAIR, and Ma and
Hovy (2016). Interestingly, we observe that adding
UD_English-EWT for training improves the perfor-
mance of non-transformer models and HuggingFace-
BERTweet but slightly brings down the performance of
spaCy-transformers models.

System UPOS
Stanford CoreNLP 90.6
Owoputi et al. (2013)) (greedy) 93.7
Owoputi et al. (2013) (CRF) 94.6
Ma and Hovy (2016) 92.5

" BERTweet (Nguyen et al., 20200 17952
spaCy (TB2) 86.72
spaCy (TB2+EWT) 88.84
FLAIR (TB2) 87.85
FLAIR (TB2+EWT) 88.19

" HuggingFace-BERTweet (TB2) | 95.21
HuggingFace-BERTweet (TB2+EWT) | 95.38
spaCy-BERTweet (TB2) 87.61
spaCy-BERTweet (TB2+EWT) 86.31
spaCy-XLM-RoBERTa (TB2) 93.90
spaCy-XLM-RoBERTa (TB2+EWT) 93.75
Stanza (TB2) 93.20
Stanza (TB2+EWT) 93.53

Table 8: POS Tagging comparison in accuracy on
the TB2 test set. “TB2” is to use TB2 for training.
“TB2+EWT” is to combine TB2 and UD English-EWT
for training. Please note that the first five results are
rounded to one decimal place by Liu et al., (2018).

4.2.4. Dependency Parsing Performance

For dependency parsing experiments, spaCy-XLM-
RoBERTa (TB2) achieves the SOTA performance (Ta-
ble), surpassing [Liu et al. (2018) (Ensemble)
by 0.42% in UAﬂ Besides that, the Stanza parser
achieves the same UAS score and has a close LAS
score (—0.3%) compared to this best non-transformer
performance (UAS 82.1% + LAS 77.9%) reported by
the distilled parser. As |Liu et al. (2018)) mentioned,
the ensemble model is 20 times larger in size compared
to the Stanza parser, although the former performs bet-
ter. Finally, we confirm that the combination of TB2
and UD_English-EWT training sets boost the perfor-
mance for non-transformer models (Liu et al., 2018)).
The data combination brings down the performance of
transformer-based models, which is consistent with our
observations in tokenization, POS tagging, and depen-
dency parsing.

5. Conclusion

In this paper, we introduce four-class named entities
to Tweebank V2, a popular Twitter dataset within the
Universal Dependencies framework, creating a new

"1t is difficult to compare their LAS with ours due to the
difference in decimal places.

7205

System UAS LAS
Kong et al. (2014) 81.4 76.9
Dozat et al. (2017) 81.8 77.7
Ballesteros et al. (2015) 80.2 75.7
Liu et al. (2018)) (Ensemble) 83.4 79.4
Liu et al. (2018) (Distillation) 82.1 77.9
~ spaCy (TB2) 66.93 58.79
spaCy (TB2 + EWT) 72.06 63.84
" spaCy-BERTweet (TB2) | 7632 71.72
spaCy-BERTweet (TB2+EWT) 76.18 69.28
spaCy-XLM-RoBERTa (TB2) 83.82 79.39
spaCy-XLM-RoBERTa (TB2+EWT) | 81.02 7543
Stanza (TB2) 79.28 74.34
Stanza (TB2 + EWT) 82.10 77.60

Table 9: Dependency parsing comparison on the
TB2 test set. “TB2” indicates to use TB2 for train-
ing. “TB2+EWT” indicates to combine TB2 and UD
English-EWT for training. Note that the first six results
are rounded to one decimal place by Liu et al., (2018).

NER benchmark called Tweebank-NER. We evalu-
ate our annotations and observe good inter-annotator
agreement score in pairwise F1 for NER annotation.
We train Twitter-specific NLP models (NER, tokeniza-
tion, lemmatization, POS tagging, dependency pars-
ing) on the dataset with Stanza and compare our mod-
els against existing work and NLP frameworks. Our
Stanza models show SOTA performance on tokeniza-
tion and lemmatization and competitive performance
in NER, POS tagging, and dependency parsing on TB2.
We also train BERT-based methods to establish a strong
benchmark on Tweebank-NER and achieve SOTA
performance in POS tagging and dependency parsing
on TB2. Finally, we publish our dataset and release the
Stanza pipeline Twitter—-Stanza, which is easy to
download and use with Stanza’s Python interface. We
also release the BERTweet-based NER and POS tagger
on Hugging Face Hub. We hope that our research not
only contributes annotations to an important dataset but
also enables other researchers to use off-the-shelf NLP
models for social media analysis.

6. Acknowledgements

We would like to thank Alan Ritter, Yuhui Zhang, Zi-
fan Lin, and anonymous reviewers, who gave precious
advice and comments on our paper. We also want to
thank John Bauer and Yijia Liu for answering questions
related to Stanza and Twpipe. Finally, we would like to
thank MIT Center for Constructive Communication for
funding our research.

7. Bibliographical References

Ahrenberg, L. (2007). LinES: An English-Swedish
parallel treebank. In Proceedings of the 16th Nordic
Conference of Computational Linguistics (NODAL-
IDA 2007), pages 270-273, Tartu, Estonia, May.
University of Tartu, Estonia.

Akbik, A., Blythe, D., and Vollgraf, R. (2018). Con-
textual string embeddings for sequence labeling. In
Proceedings of the 27th international conference on
computational linguistics, pages 1638—1649.

Akbik, A., Bergmann, T., Blythe, D., Rasul, K.,
Schweter, S., and Vollgraf, R. (2019). Flair: An
easy-to-use framework for state-of-the-art nlp. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (Demonstrations), pages 54-59.

Ballesteros, M., Dyer, C., and Smith, N. A. (2015).
Improved transition-based parsing by modeling
characters instead of words with Istms. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 349-359.

Brandsen, A., Verberne, S., Lambers, K., Wansleeben,
M., Calzolari, N., Béchet, F., Blache, P., Choukri,
K., Cieri, C., Declerck, T., et al. (2020). Creating a
dataset for named entity recognition in the archae-
ology domain. In Conference Proceedings LREC
2020, pages 4573-4577. The European Language
Resources Association.

de Lhoneux, M., Shao, Y., Basirat, A., Kiperwasser,
E., Stymne, S., Goldberg, Y., and Nivre, J. (2017).
From raw text to universal dependencies-look, no
tags! In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, pages 207-217.

Deleger, L., Li, Q., Lingren, T., Kaiser, M., Molnar,
K., et al. (2012). Building gold standard corpora for
medical natural language processing tasks. In AMIA
Annual Symposium Proceedings, volume 2012, page
144. American Medical Informatics Association.

Leon Derczynski, et al., editors. (2017). Proceedings
of the 3rd Workshop on Noisy User-generated Text,
Copenhagen, Denmark, September. Association for
Computational Linguistics.

Dozat, T. and Manning, C. D. (2017). Deep biaffine
attention for neural dependency parsing. The Inter-
national Conference on Learning Representations.

Dozat, T., Qi, P., and Manning, C. D. (2017). Stan-
ford’s graph-based neural dependency parser at the
conll 2017 shared task. In Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 20-30.

Foster, J., Cetinoglu, O., Wagner, J., Le Roux, J.,
Hogan, S., Nivre, J., Hogan, D., and Van Genabith,
J. (2011). #hardtoparse: Pos tagging and parsing the
twitterverse.

Gimpel, K., Schneider, N., O’Connor, B., Das, D.,
Mills, D., Eisenstein, J., Heilman, M., Yogatama,
D., Flanigan, J., and Smith, N. A. (2010). Part-
of-speech tagging for twitter: Annotation, features,
and experiments. Technical report, Carnegie-Mellon
Univ Pittsburgh Pa School of Computer Science.

Grouin, C., Rosset, S., Zweigenbaum, P., Fort, K., Gal-
ibert, O., and Quintard, L. (2011). Proposal for an
extension of traditional named entitites: from guide-

7206

lines to evaluation, an overview. In 5th Linguistics
Annotation Workshop (The LAW V), pages 92—100.

Hripcsak, G. and Rothschild, A. S. (2005). Agree-
ment, the f-measure, and reliability in information
retrieval. Journal of the American medical informat-
ics association, 12(3):296-298.

Kong, L., Schneider, N., Swayamdipta, S., Bhatia, A.,
Dyer, C., and Smith, N. A. (2014). A dependency
parser for tweets. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1001-1012.

Liu, Y., Zhu, Y., Che, W., Qin, B., Schneider, N., and
Smith, N. A. (2018). Parsing tweets into universal
dependencies. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
965—-975.

Ma, X. and Hovy, E. (2016). End-to-end sequence la-
beling via bi-directional Istm-cnns-crf. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), page 1064-1074.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R,,
Bethard, S., and McClosky, D. (2014). The stan-
ford corenlp natural language processing toolkit. In
Proceedings of 52nd annual meeting of the associ-
ation for computational linguistics: system demon-
strations, pages 55-60.

Nguyen, D. Q., Vu, T., and Nguyen, A. T. (2020).
Bertweet: A pre-trained language model for english
tweets. Association for Computational Linguistics.

Nivre, J., De Marneffe, M.-C., Ginter, F., Goldberg,
Y., Hajic, J., Manning, C. D., McDonald, R., Petrov,
S., Pyysalo, S., Silveira, N., et al. (2016). Univer-
sal dependencies v1: A multilingual treebank col-
lection. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 1659-1666.

O’Connor, B., Krieger, M., and Ahn, D. (2010).
Tweetmotif: Tweetmotif: Exploratory search and
topic summarization for twitter. In Fourth Interna-
tional AAAI Conference on Weblogs and Social Me-
dia.

Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K.,
Schneider, N., and Smith, N. A. (2013). Improved
part-of-speech tagging for online conversational text
with word clusters. In Proceedings of the 2013 con-
ference of the North American chapter of the associ-
ation for computational linguistics: human language
technologies, pages 380-390.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
pages 1532-1543.

Qi, P, Dozat, T., Zhang, Y., and Manning, C. D.

(2018). Universal dependency parsing from scratch.
CoNLL 2018 UD Shared Task.

Qi, P, Zhang, Y., Zhang, Y., Bolton, J., and Manning,
C. D. (2020). Stanza: A python natural language
processing toolkit for many human languages. pages
101-108.

Ratinov, L. and Roth, D. (2009). Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning (CoNLL-
2009), pages 147-155.

Ritter, A., Clark, S., Etzioni, O., et al. (2011). Named
entity recognition in tweets: An experimental study.
In Proceedings of the 2011 conference on empiri-
cal methods in natural language processing, pages
1524-1534.

Sang, E. F. and De Meulder, F. (2003). Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint ¢s/0306050.

Sanguinetti, M. and Bosco, C. (2015). Parttut: The
turin university parallel treebank. In Harmonization
and development of resources and tools for italian
natural language processing within the parli project,
pages 51-69. Springer.

Schneider, N., O’Connor, B., Saphra, N., Bamman, D.,
Faruqui, M., Smith, N. A., Dyer, C., and Baldridge,
J. (2013). A framework for (under) specifying
dependency syntax without overloading annotators.
Linguistic Annotation Workshop & Interoperability
with Discourse.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neu-
ral machine translation of rare words with subword
units. pages 1715—-1725.

Straka, M. and Strakov4, J. (2017). Tokenizing, pos
tagging, lemmatizing and parsing ud 2.0 with ud-
pipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, pages 88-99.

Straka, M., Hajic, J., and Strakova, J. (2016). Udpipe:
trainable pipeline for processing conll-u files per-
forming tokenization, morphological analysis, pos
tagging and parsing. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 4290-4297.

Stymne, S. (2020). Cross-lingual domain adaptation
for dependency parsing. In Proceedings of the 19th
Workshop on Treebanks and Linguistic Theories,
pages 62-69.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi,
M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., et al. (2016). Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Wei Xu, et al., editors. (2015). Proceedings of the
Workshop on Noisy User-generated Text, Beijing,

7207

China, July. Association for Computational Linguis-
tics.

Zeldes, A. (2017). The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581-612.

Zhang, Y., Zhang, Y., Qi, P., Manning, C. D., and Lan-
glotz, C. P. (2021). Biomedical and clinical english
model packages for the stanza python nlp library.
Journal of the American Medical Informatics Asso-
ciation, 28(9):1892-1899.

8. Language Resource References

Ann Bies, Justin Mott, Colin Warner, Seth Kulick.
(2012). English Web Treebank. Philadelphia: Lin-
guistic Data Consortium, ISLRN 230-396-178-102-
3.

7208

	Introduction
	Dataset and Annotation Scheme
	Datasets and Annotation Statistics
	Annotation Guidelines
	Annotation Logistics
	Annotation Quality

	Methods for NLP Modeling
	Named Entity Recognition
	Syntactic NLP Tasks
	Tokenization
	Lemmatization
	POS Tagging
	Dependency Parsing

	Evaluation
	Performance in NER
	Main Findings
	Confusion Matrix Analysis
	Error Analysis
	NER Models Trained on WNUT17

	Performance in Syntactic NLP Tasks
	Tokenization Performance
	Lemmatization Performance
	POS Tagging Performance
	Dependency Parsing Performance

	Conclusion
	Acknowledgements
	Bibliographical References
	Language Resource References

