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Abstract
As an important task to analyze the semantic structure of a sentence, semantic role labeling (SRL) aims to locate the semantic
role (e.g., agent) of noun phrases with respect to a given predicate and thus plays an important role in downstream tasks such
as dialogue systems. To achieve a better performance in SRL, a model is always required to have a good understanding of
the context information. Although one can use an advanced text encoder (e.g., BERT) to capture the context information,
extra resources are also required to further improve the model performance. Considering that there are correlations between
the syntactic structure and the semantic structure of the sentence, many previous studies leverage auto-generated syntactic
knowledge, especially the dependencies, to enhance the modeling of context information through graph-based architectures,
where limited attention is paid to other types of auto-generated knowledge. In this paper, we propose map memories to enhance
SRL by encoding different types of auto-generated syntactic knowledge (i.e., POS tags, syntactic constituencies, and word
dependencies) obtained from off-the-shelf toolkits. Experimental results on two English benchmark datasets for span-style
SRL (i.e., CoNLL-2005 and CoNLL-2012) demonstrate the effectiveness of our approach, which outperforms strong baselines

and achieves state-of-the-art results on CoNLL-2005.*
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1. Introduction

Semantic role labeling (SRL) is an important and fun-
damental task in natural language processing (NLP),
since it provides a basic analysis of the semantic struc-
ture of the input sentence and plays an important role in
downstream NLP tasks such as natural language infer-
ence (Saha et al., 2020), machine translation (Marcheg-
giani et al., 2018), and dialog generation (Xu et al.,
2020). To achieve a good SRL performance, it is nor-
mally required to have precise understanding of the
contextual information for the running text. Therefore,
recent studies (Tackstrom et al., 2015} [FitzGerald et
al., 2015; |[Zhou and Xu, 2015; He et al., 2017} [Tan et
al., 2018; [He et al., 2018; |Ouchi et al., 2018 |Sh1 and
Lin, 2019; |Guan et al., 2019; |[Li et al., 2020a;; [Li et
al., 2020c) applied advanced text encoders (such as Bi-
LSTM, Transformer (Vaswani et al., 2017), and pre-
trained language models) that are proficient in effec-
tively capturing contextual features and achieved great
success on this task. Although such encoders are effec-
tive, it is always demanding by semantic tasks with ex-
tra knowledge. Therefore, to further enhance SRL per-
formance, auto-generated knowledge especially syn-
tactic ones, has been widely used and demonstrated to
be more effective than only using the aforementioned
encoders (Lewis et al., 2015} Wang et al., 2019} [Kasai
et al., 2019; Marcheggiani and Titov, 2020; |Fei et al.,
2021} Zhang et al., 2021b).

Among all different sources, word dependencies are the
most intensively applied knowledge to SRL (Roth and
Lapata, 2016}, Marcheggiani and Titov, 2017} Strubell
et al., 2018}, [Zhang et al., 2019b; |Shi et al., 2020; Xia

Corresponding author.
“*Our code is available at https://github.com/
synlp/SRL-MM.

et al., 2020; [Zhou et al., 2020), where limited atten-
tion is paid to other types of knowledge. In general, to
leverage word dependencies, graph-based approaches
(e.g., graph convolutional networks) (Marcheggiani
and Titov, 2017} Xia et al., 2020) and multi-task learn-
ing (Strubell et al., 2018}, [Zhou et al., 2020} [Paolini et
al., 2021)) approaches are often used and tend to be the
standard solutions to this task. However, graph-based
approaches are limited in requiring unlabeled graph
structure input and thus need extra accommodations
(e.g., use additional modules to leverage the label infor-
mation on the edge of the graph) when they are applied
to other types of knowledge, while multi-task learn-
ing approaches always perform parsing and SRL at the
same time, requiring human annotated parses (difficult
to be obtained) to train their models. Therefore, an ap-
propriate framework is highly expected to incorporate
different types of knowledge for this task with solving
the aforementioned limitations.

In this paper, we propose a framework for SRL en-
hanced by map memories to leverage different types
of auto-generated knowledge obtained from off-the-
shelf toolkits for input sentences. Specifically, in the
memory module, for each word in the input sentence,
our approach extracts all its associated context words
and their corresponding knowledge instances, which
are then mapped to memory items to form (key, value)
pairs, where each context word severs as the key and
the corresponding knowledge instance serves as the
value. Later, according to the contribution of the con-
text word (i.e., key) and the corresponding knowledge
instance (i.e., value) to SRL, our approach assigns dif-
ferent weights to memory items so as to discrimina-
tively leverage the auto-generated knowledge. Finally,
we compute the weighted sum of all memory items
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Figure 1: The architecture of our proposed framework for SRL with map memories to leverage different types of
auto-generated knowledge. The backbone model for SRL with an example input (where the given predicate, i.e.,
“fell”, is highlighted in red color) and output is illustrated on the left. The process of extracting the memory items
associated with a particular word, i.e., “Friday” (highlighted in yellow), from auto-generated knowledge, as well
as the way of the memory module to encode the example memory items, are illustrated on the right.

and regard it as the output of the memory module
to enhance encoder representations. In doing so, our
approach leverages different types of auto-generated
knowledge in a general way upon (key, value) rep-
resented information, which provides a more flexible
framework than those graph-based approaches for the
SRL task. In addition, by assigning different weights to
memory items, our approach is able to distinguish po-
tential noise (which could hurt model performance if
it is not addressed appropriately) in the auto-generated
knowledge. We test our approach on three types
of widely used syntactic knowledge, namely, part-of-
speech (POS) tags, syntactic constituents, and word
dependencies, for SRL. Experimental results on two
English benchmark datasets (i.e., CoNLL-2005 and
CoNLL-2012) for span-style SRL demonstrate the ef-
fectiveness of our approach, which outperforms strong
baselines and achieves state-of-the-art performance on
CoNLL-2005.

2. The Approach

SRL aims to label the semantic roles of text spans
with respect to a given predicate and it is convention-
ally performed as a sequence labeling task. We follow
this convention and design the architecture of our ap-
proach illustrated in Figure [T} where the backbone se-
mantic role tagger following the encoder-decoder ar-
chitecture is illustrated on the left with an example
input (the given predicate “fell” is highlighted in red

color) and output. The extracted memory items for
the particular word “Friday” (highlighted in yellow)
from the auto-generated knowledge (i.e., the syntax
constituency tree of the input sentence in this exam-
ple) of the input sentence, as well as the map memo-
ries to leverage the knowledge, are illustrated on the
right part. Formally, given an input word sequence
(sentence) X = x1x9---x;---x, and its predicate
x, € X, the process of our approach for SRL with
map memories (denoted by M) is written by

~

Y =argmax p (Y|X, 2y, M (X, 2,,S)) (1)
yeTn

where Y = 7192 - - Ji - - - i is the corresponding out-
put semantic role label sequence with ; denoting the
semantic role label for the word z;; 7 denotes the se-
mantic role label set following the “BIO” scheme; S
stands for the memory items extracted from the auto-
generated knowledge. In the following text, we firstly
elaborate the approach to construct the memory items
based on different types of auto-generated knowledge
(POS tags, syntactic constituents, and dependencies)
for each word z;. Next, we introduce the process of
encoding the auto-generated knowledge through map
memories. Finally, we illustrate the way to perform
SRL with the proposed memory module.

2.1. Memory Item Construction

Following the paradigm in previous memory-based ap-
proaches for different NLP tasks (Sukhbaatar et al.,
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Figure 2: An illustration of the way to construct the memory items (i.e., s5) for an example word x5 =“Friday”
(highlighted in yellow background) based on the auto-generated (a) POS labels, (b) syntactic constituents, and (c)
dependencies of the example sentence, where the given predicate, i.e., “fell”, is highlighted in red color.

20155 Miller et al., 20165 Mino et al., 2017; Xu et
al., 2019; [Tian et al., 2020a; Nie et al., 2020; [Tian
et al., 2020b; (Chen et al., 2021)), the memory item in
our memory module corresponds to a (key, value) pair.
Specifically, in our approach, the key stands for the
context word and the value refers to the corresponding
knowledge instance. In order to construct the mem-
ory items, we firstly use an off-the-shelf toolkit to gen-
erate different types of auto-generated knowledge of
the input sentence, where in our paper, we consider
three types of syntactic knowledge, namely, the POS la-
bels, syntactic constituents, and dependencies, because
they have been demonstrated to be effective in SRL
(Marcheggiani and Titov, 2020; Xia et al., 2020; Zhou
et al., 2020). Then, for each x;, we extract its context
words (i.e., keys) and the associated syntactic knowl-
edge instances (i.e., values) according to the following
procedures, which is illustrated with an example sen-
tence and x5 =“Friday” in Figure[2]

POS Labels For POS labels, we regard the word x;
as the central word and apply a window of £2 wordsE]
to extract its context words and regard them as the
keys (denoted by k; ;) in the memory items. Then,
for each key (i.e., context word), we find its corre-
sponding value (denoted by v; ;) by extracting the auto-
generated POS label of k; ; and thus obtain the mem-
ory item s; ; = (k;;,v; ;) accordingly. For exam-
ple, in the example in Figure {(a), for “Friday”, the
+2 word window covers its left and right two words.
Therefore, the resulting context words (i.e., keys) are
“fell”, “sharply”, “Friday”, and “afternoon” which are
highlighted in the window box, and their correspond-
ing knowledge instances are “VB”, “ADV”’, “NN”’, and
“NN”, respectively. As a result, the memory items as-
sociated with the word x5 =“Friday” are s5 = [(fell,
VB), (sharply, ADV), (Friday, NN), (afternoon, NN)].

Syntactic Constituents For syntactic constituents,
we start with x; at the leaf of A”’s syntax tree, then
search up through the tree to find the first syntactic node
(denoted by N) that dominates both z; and the give

"We use 4-2 word window size because this is a widely
used hyper-parameter in previous studies for NLP and it
achieves the best performance in experiments.

predicate z, in its corresponding text span. Then, we
select the child node (denoted by N.) of N such that
the text span of N, contains x; and regard all words
in that text span as the context words (i.e., keys) in the
memory items. Afterwards, we regard the syntactic la-
bel [ of N as the value for all keys. In addition, be-
cause the relative position between the word x; and the
predicate x,, is important in distinguishing the seman-
tic role label of x; (for SVO languages such as English
and Chinese, the x; is more likely to be the agent if
it appears at the left of the predicate), we further dis-
tinguish the values in the memory items when z; has
different directional relation with z,. Specifically, we
attach a “_L” or “_R” suffix to the values in the memory
items, if x; is at the left or right side of z,, respec-
tively. For example, in Figure 2b), we start from “Fri-
day” and find the first node that dominates both “Fri-
day” and the predicate “fell” is the VP (highlighted in
blue). Then, we find that the node NP (highlighted in
green) is the child of the VP that dominates the word
“Friday”. Afterwards, we select the two words covered
by the NP node, namely, “Friday” and “afternoon”, to
construct the keys of the memory items and use “NP_R”
as their corresponding value (we attach the “_R” suf-
fix to “NP” because “Friday” is on the right of “fell”).
Therefore, the resulting memory items associated with
x5 =“Friday” are s5 = [(Friday, NP_R), (afternoon,
NP_R)].

Dependencies For dependencies, we find all context
words (i.e., keys) for x; by collecting all its depen-
dents and governor (as well as x; itself) from X”s de-
pendency tree. Then, for each key, we regard its in-
bound dependency type as the corresponding value in
the memory item. For example, as illustrated in Fig-
ure c), for “Friday”, its context words (i.e., keys) are
“Friday” and “afternoon” (the governor of “Friday”),
and their corresponding in-bound dependency type are
“compound” and “obt:tmod”E] Therefore, the memory
items associated with x5 =“Friday” are s5 = [(Friday,
compound), (afternoon, obt:tmod))].

*Note that, in this case, we do not have context words
selected from the dependents since “Friday” does not have
any dependents according to the dependency parse result.
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As a result, we represent different types of auto-
generated syntactic knowledge associated with z; by
a uniformed structure, namely, a list of memory items
s;, where the keys and values in the memory items are
the context words and the corresponding knowledge in-
stances, respectively. This uniformed knowledge repre-
sentation is then fed into the map memories to enhance
the backbone SRL model as illustrated in Figure[T]

2.2. Map Memories

To leverage auto-generated knowledge, i.e., dependen-
cies in particular, many studies (Marcheggiani and
Titov, 2017; |Chen et al., 2020; [Xi1a et al., 2020; |Yu et
al., 2020; Tian et al., 2021} |Qin et al., 2021} use graph-
based architectures (e.g., graph convolutional networks
and its variants), which normally require extra accom-
modations to be applied to other types of knowledge
since they are not naturally represented in graphs. To
model different types of knowledge in a uniformed ar-
chitecture, we propose map memories to encode dif-
ferent types of knowledge resources (i.e., POS labels,
syntactic constituents, and dependencies) represented
by the keys and values in the memory items.

Specifically, for each word z; in the input, we firstly
construct its associated memory item list s; according
to the aforementioned process and use two matrices to
map the keys and values in the memory items to their
embeddings, where the embeddings for key k; ; and
value v; ; in the j-th memory item are denoted by ef; j
and e! ., respectively. Next, we compute the weight

©,5°
(denoted by p; ;) for each memory item by

exp ((h; @h,)-ef;)
Pij = m;
v ST exp ((h; ® h,) 'ef,j)

where h; and h,, are the hidden vectors for the word z;
and the given predicate x,, obtained from the encoder in
the backbone model; @ denotes the vector concatena-
tion operation; m; is the total number of memory items
associated with x;. Then, we apply the weights to the
corresponding memory items and obtain the weighted
sum (denoted as a;) of both keys and values through

@)

a; = sz',j . (ef,j + e;ij) 3)
i=1

where a; is the output of the proposed memory mod-
ule and it contains the weighted information of context
words and knowledge instances.

In doing so, our approach is able to encode differ-
ent types of auto-generated knowledge in a uniformed
structure without requiring extra accommodations in
model structure. In addition, compared with previous
memory-based approaches (Sukhbaatar et al., 2015
Miller et al., 2016; Mino et al., 2017; Xu et al.,
2019) that only leverage the information carried by val-
ues, our approach is able to discriminatively leverage
both keys and values by assigning different weights to
variant memory items and thus enhance the backbone
model.

Datasets \ Sent. # Token # Predicate #
Train 40K 950K 91K

WSJ Dev 1K 33K 3K
Test 2K 57K 5K

Brown 0.4K 7K 1K
Train 67K 1,299K 189K

CNI12 Dev 8K 163K 24K
Test 8K 170K 24K

Table 1: The statistics of the benchmark datasets used
in our experiments for SRL, where the number of sen-
tence, tokens, and predicates are reported.

2.3. SRL with Map Memories

Once the map memory module is built, it is straightfor-
ward to apply it to SRL through a backbone sequence
labeling model. In our approach, we use a text encoder
(e.g., Bi-LSTM, Transformer, BERT, etc.) to map all
words x; in the input X to their corresponding hid-
den vectors h;. For each non-predicate word x; and
x; # x,, we feed h; into the memory module and ob-
tain the corresponding output a;. Then, we concate-
nate h; and a; to obtain the knowledge enhanced word
representation fll = h; @ a;. Further more, we use a
fully connected layer that is designed for non-predicate

words to map h; to a new vector space by
h{® = ReLu (W, b + b,) “@

where W, and b,, are the trainable matrix and bias vec-
tor, respectively, in the fully connected layer, and h;®
is the vector to be used to predict the semantic role la-
bel of x;. Similarly, we apply another fully connected
layer (with W, and b, trainable matrix and bias vec-
tor) to the hidden vector of the predicate obtained di-
rectly from the text encoder to compute the predicate
representation hP™, which can be formalized as

h"® = ReLu (W, - h, + b,) (5)

Afterwards, we feed h}"® and h"™ to the bi-affine atten-
tion module where the score o! of labeling x; with a
particular semantic role tag y is computed by

0! = hi® WY .hPe 6)
Herein, WV is the trainable matrix for the semantic role
tag y € T. Finally, we pass the scores over the tag
set to the conditional random field (CRF) module to
predict the semantic role tag 7; for x;.

3. Experimental Settings

3.1. Datasets

In the experiments, we follow previous studies
(Tackstrom et al., 2015; [He et al., 2017; |Ouchi et al.,
2018 Tan et al., 2018; [Strubell et al., 2018 He et al.,
2018; |L1 et al., 2020a; Zhang et al., 2021a) to evaluate
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Hyper-parameters | Values Models | WSJ | Brown | CNI12
Learning Rate 5¢ —6,1e — 5,3¢ — 5,5e — 5 BERT-base 87.93 81.51 85.92
Warmup Rate 0.06,0.1 + M (POS) 88.22 82.55 86.20
Dropout Rate 0.1 + M (Syn.) 88.43 82.70 86.37
Batch Size 4,8,16 + M (Dep.) 88.52 82.94 86.43
BERT-large 88.69 81.94 86.53
Table 2: The hyper-parameters used in tuning our mod- + M (POS) 88.84 82.86 86.79
els, where the best one used in our final experiments are + M (Syn.) 88.95 83.27 87.04
highlighted in boldface. + M (Dep.) 89.02 83.34 87.12
(a) BERT
our approach on two span-style English SRL bench- Models ‘ WSJ \ Brown CN12
mark d\atasets, namely CoNLL-2005 (CNO5) (Carreras XL NeL-base 38.75 31.60 36.46
and Marquez, 2005) and CONLL-2012 (CN12) (Prad- + M (POS) 88.92 83.57 86.59
han et al., 2012)[] Herelp, CNOS5 has two datasets, + M (Syn.) 89.22 83.78 86.84
namely WSJ and Brown, with WSJ and Brown used for + M (Dep.) 89.34 83.89 87.02
in-d i d -domain settings. For all datasets,
in-domain and cross-domain settings. For all datasets XLNet large 83,91 2,12 26,87
we use the standard train/dev/test splits and follow He + M (POS) 2031 83.97 87.39
et al. (2918) .to pre-process the data. Table [I] reports + M (Syn.) 89 65 84 83 87 64
the statistics (i.e., the number of sentences, tokens, and + M (Dep.) 89.80 85.02 87.67
predicates) of all datasets used in this study.
(b) XLNet

3.2. Implementation

In the experiments, we use Stanford CoreNLP Toolkits
(Manning et al., 2014)) to obtain the three types of auto-
generated knowledge (i.e., POS labels, syntactic con-
stituents, and dependencies). Considering that a good
text representation is the key to achieve outstanding
model performance (Pennington et al., 2014; |[Komni-
nos and Manandhar, 2016; [Song et al., 2017; [Peters
et al., 2018}, |Song et al., 2018; Song and Shi, 2018}
Raffel et al., 2019} [Zhang et al., 2019a; Diao et al.,
2020; [Lewis et al., 2020; Song et al., 2021; Diao et
al., 2021)), we try pre-trained language models, i.e., the
BERT base and large (Devlin et al., 2019) as well as
XLNet (Yang et al., 2019)), as the encoder in the back-
bone model. For both BERT and XLNet, we follow
their default setting: 12 layers of self-attentions with
768 dimensional hidden vectors for their base version
and use 24 layers of self-attentions with 1024 dimen-
stional hidden vectors for their large Version)ﬂ To help
the encoder identify the position of the predicate, we
insert two special tokens, i.e., “[V]” and “[/V]”, be-
fore and after the given predicate (as shown in Figure
[I). We randomly initialize the embeddings of keys and
values used in the memory modules and update them
during training. For evaluation, we use the official eval-
uation scriptE] from CoNLL-2005 to compute the F1
scores for all datasets. For all models, we try differ-

3We download CNO5 from https://www.cs.upc.
edu/~srlconll/soft.html/ and CN12 from http:
//cemantix.org/data/ontonotes.htmll

*We download the cased version of BERT from
https://github.com/google-research/bert
and XLNet fromhttps://github.com/zihangdai/
xlnet,

We use srl-eval.pl obtained from https://
wWww.Ccs.upc.edu/~srlconll/soft.html.

Table 3: Experimental results of baselines and our ap-
proach with map memories (i.e., + M) on the test set
of WSJ, Brown, and CN12, where the base and large
version of BERT and XLNet are used as the encoder.
“POS”, “Syn.”, and “Dep.” denote the POS labels, syn-
tactic constituents, and dependencies used in our ap-
proach, respectively.

ent combinations of hyper-parameters, select the one
achieves the highest F1 score on the development set,
and report its performance on the test set. Particularly,
for the cross-domain experiments on Brown, we follow
previous studies to train the models on the training set
of WSJ, tune the hyper-parameters on the development
of WSJ, and finally evaluate the model on Brown.

4. Results and Analyses
4.1. Overall Results

In the main experiments, we run BERT and XLNet
baselines and our approach with map memories to in-
corporate auto-generated POS labels (POS), syntactic
constituents (Syn.), and dependencies (Dep.), where
one of the three types of knowledge is used at a time.
The experimental results (F1 scores) of different mod-
els on the test sets. Here are some observations.

First, our approach works well with different types of
auto-generated knowledge, where consistent improve-
ments over the BERT and XLNet baselines are ob-
served over all datasets, although the BERT and XL-
Net baselines have already achieved outstanding per-
formance. Second, comparing the models with differ-
ent types of knowledge, in most cases, the ones en-
hanced by syntactic constituents and dependencies ob-
tain higher improvement over the baselines than the
models enhanced by POS labels. This observation is

7133


https://www.cs.upc.edu/~srlconll/soft.html
https://www.cs.upc.edu/~srlconll/soft.html
http://cemantix.org/data/ontonotes.html
http://cemantix.org/data/ontonotes.html
https://github.com/google-research/bert
https://github.com/zihangdai/xlnet
https://github.com/zihangdai/xlnet
https://www.cs.upc.edu/~srlconll/soft.html
https://www.cs.upc.edu/~srlconll/soft.html

Models | WSJ | Brown| CN12 | POS Syn. Dep.| WSJ | Brown| CN12
He et al. (2017) 84.6 | 73.6 | 83.4 | x  x x| 88.69] 81.94 | 86.53
Tan et al. (2018) 86.1 74.8 83.9 YV v < 88.99| 8333 | 87.06
Ouchi et al. (2018) 876 | 78.7 | 862 : : :
He et al. (2018) 87.4 | 80.4 85.5 BERT ;{ \X/ \\? Zg?g Z;ig 2;;;
fiStrubell et al. (2018) 86.04 | 76.54 | 83.38 89'19 83.58 87'34
fWang et al. (2019) 88.2 | 79.3 86.4 v v v : . .
Shi and Lin (2019) (BERT) 88.8 | 82.0 86.5 ‘ X X x ‘ 88.91 ‘ 82.12 ‘ 86.87
Conia and Navigli (2020) (BERT) - - 87.3
- , X 89.70 | 84.92 | 87.67
1iShi et al. (2020) (BERT) - - 85.9 XLNet \\? ;{ \/ 29.89 | 85.08 | 87.69
Li et al. (2020a) (RoBERTa) 88.03| 79.80 | 86.61 ’ ’ ’
fiXia et al. (2020) (RoBERTx) 88.59| 83.16 | - X W/ | 8992] 8511 | 87.74
{Marcheggiani and Titov (2020) 379 | 306 26.8 v v Vv | 89.98| 85.19 | 87.80
(RoBERTa) ' ' .
1Zhou et al. (2020) (XLNet) 89.72| 84.96 - Table 5: The test set results (F1 scores) of our mod-
;‘;}‘)hm ";t 211.((22()0221” (T5) 23‘9‘ Z;i gzz els configured with different combinations of auto-
ang et al. a) . . . " _
HFei et al. (2021) (RoBERT) 80.04| 83.67 | 8859 ~ gonerated knowledge, where BERT-large and XLNet
large encoders are used. “,/” denotes a particular type
BERT + M (Dep.) 89.02| 83.34 | 87.12 of auto-generated knowledge is used in the memory
tXLNet + M (Dep.) 89.80| 85.02 | 87.67

Table 4: The comparison of our best performing mod-
els (using BERT-large and XL Net-large encoders) with
previous studies on the test set of all datasets. Models
using extra syntactic features are marked by f.

intuitive because syntactic constituents and dependen-
cies can provide more structure information of the input
sentence than POS labels, so that they are more likely
to appropriately guide the backbone SRL model to un-
derstand the structure of the input sentence, which can
further lead to a higher performance.

4.2. Comparison with Previous Studies

We further compare our best performing models with
recent previous studies on span-style SRL, where the
test set results (F1 scores) on CNO5 and CN12 datasets
are reported in Table ] It is observed that our ap-
proach with BERT encoder outperforms previous stud-
ies (Shi and Lin, 2019; [Li et al., 2020a) with powerful
pre-trained language models (i.e., BERT or RoBERTa)
including the ones that are further enhanced by auto-
generated syntax trees (Marcheggiani and Titov, 2020)
and dependencies (Shi et al., 2020; Xia et al., 2020) on
WSJ and Brown. Specifically, although our approach
achieves inferior results on CN12 compared with [Fei et
al. (2021) that uses treeLSTM and label-aware GCN to
leverage constituent and dependency trees at the same
time, the effectiveness of our approach is still valid
given that our approach outperforms their model per-
formance on WSJ and Brown. Besides, compared with
studies (Zhou et al., 2020; (Conia and Navigli, 2020)
that learn gold annotations of different tasks (e.g., parse
trees, predicate disambiguation, and semantic role la-
bels) via multi-task learning approaches, our approach
with noisy auto-generated syntactic knowledge can still
consistently outperform their models.

module whereas “x” represents not.

4.3. Effect of Knowledge Ensemble

In the main experiments, we test our approach con-
figured with a single type of auto-generated knowl-
edge (i.e., one of POS labels, syntactic constituents,
and dependencies). It is also important to explore how
our model can perform if multiple types of knowledge
are used. Therefore, we perform knowledge ensem-
ble experiments on our models with BERT-large and
XLNet-large encoder, where different combinations of
POS labels, syntactic constituents, and dependencies
are leveraged in the memory module. We report the
experimental results of different models, as well as
the baselines without the memory module, on the test
set of WSJ, Brown, and CN12 in Table 5} It is ob-
served that, our model with multiple types of knowl-
edge can outperform the BERT and XLNet baselines,
which demonstrates the effectiveness of our approach
to leverage different types of knowledge at the same
time. In addition, compared with models with single
type of knowledge (see Table 3)), the models with mul-
tiple types of knowledge can consistently obtain higher
performance on both datasets, where the highest per-
formance is obtained when all three types of knowl-
edge are used. One possible explanation could be that
the three types of syntactic knowledge provide cues for
SRL from different perspectives, where the combina-
tion of them could further enhance the model’s under-
standing to the input text and thus make correct predic-
tions.

4.4. Ablation Study

The memory items in our approach consist of keys and
values, where the keys stand for the associated con-
text words and the values refer to the corresponding
knowledge instances. In our full model, the informa-
tion from both keys and values are leveraged (see Eq.
(@)). To explore the contribution of the keys and values
to SRL, we perform an ablation study on our model
enhanced by auto-generated dependencies with BERT-
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Figure 3: A case study with two example sentences and the predictions of the XLNet baseline and our approach
(i.e., XLNet + M (Dep.)), where our approach correctly predicts the semantic role labels for all words whereas the
baseline fails to do so (the incorrect predictions are highlighted in orange color). The given predicates are high-
lighted in red color. The weights assigned to keys and values in the memory items associated with a particular word
marked by A (i.e., “in” for (a) and “maker” for (b)) are visualized by the green backgrounds on the corresponding
context words and knowledge instances, respectively, where deeper color refers to higher weights.

‘ Keys Values‘ WSJ ‘ Brown‘ CN12

| vV | 89.02] 83.34 | 87.12

Vx| 8976] 8289 | 86.77

. /a]igzp) ‘ x ‘ 89.80‘ 83.11 ‘ 86.95
T x x| 88.69] 81.94 | 86.53

| vV | 89.80| 85.02 | 87.67

Vx| 8921] 8401 | 87.15

+/)\<AL£ZL) ‘ x ‘ 89.52‘ 84.57 ‘ 87.38
o] x x| 8891 8212 | 86.87

Table 6: Experimental results of our models (with
BERT-large and XLNet-large encoders) with map
memories to encode auto-generated dependencies,
where either keys (i.e., the context words) and values
(i.e., the knowledge instances) are ablated in the mem-
ory module. The results of the full models and BERT
and XLNet baselines are also reported for reference.

large and XLNet-large encoder, where either keys (i.e.,
context words) or values (i.e., knowledge instances) are
ablated. We report the experimental results of the mod-
els in Table[6] where the results of the full models with
both keys and values and the BERT-large and XLNet-
large baselines are also reported for references. The
observations are as follows. First, compared with the
full model, the ablation of either keys and values re-
sults in a drop in model performance, which indicates
that both context words and knowledge instances are
important for SRL. Second, in most cases, the mod-
els that only leverage the values achieve higher perfor-
mance than the ones that only leverage the keys. One
possible explanation could be that the knowledge in-
stances (values) carry more structure information than
the context words (keys), which allows the model to
have a better understanding to the input text and thus
achieve higher performance.

4.5. Case Study

To give an detailed analysis on the way our approach
to leverage auto-generated syntactic knowledge to im-
prove SRL, we conduct a case study with two exam-
ple input sentences, which are illustrated in Figure
with the given predicates (i.e., “keeping” for (a) and

“traded” for (b)) highlighted in red color. For both ex-
amples, our approach (i.e., XLNet + M (Dep.)) can
correctly predict the semantic role for each word while
the XLNet baseline fails to do so (the incorrect predic-
tions are highlighted in orange color). In addition, we
visualize the weights assigned to the keys and values
in the memory items associated with “in” and “maker”
(marked by A) in the two examples on the correspond-
ing context words and knowledge instances, respec-
tively, where deeper color means higher weights.

In (a), the baseline incorrectly predicts that “in” is
a component of the patient (i.e., Argl) of the pre-
dicte “keeping”, which may result from that the base-
line mistakenly attaches the prepositional phrase “in
cash equivalents” to the noun phrase “its money”. On
the contrary, our approach with dependency knowl-
edge finds that “keeping” is the prepositional modifier
(i.e., prep) of “in” and assigns the highest weight to it.
Therefore, our approach can discriminatively leverage
the dependency information and thus make correct pre-
dictions. Similarly, in (b), for the word “maker”, our
approach assigns high weights to the associated con-
text word “traded”, which is intransitive in this exam-
ple. Thus, our approach can leverage that information
carried by “traded” to correctly recognize that “maker”
is the patient (i.e., Argl) of “traded”, because in gen-
eral, the subject is more likely to be the patient, rather
than the agent (i.e., Arg0) of an intransitive verb.

5. Related Work

SRL is an important task that attracts much attention
from researchers in recent decades (Pradhan et al.,
2005; |Surdeanu et al., 2007; Johansson and Nugues,
2008; Toutanova et al., 2008} |Punyakanok et al., 2008j
Tackstrom et al., 2015; Zhou and Xu, 2015 [Tan et
al., 2018} [He et al., 2018 |Ouchi et al., 2018; |Li et
al., 2020a; [Zhang et al., 2021a). To improve model
performance, extra knowledge resources, especially
the syntactic knowledge, such as POS tags, syntactic
constituents, dependencies, and combinatory catego-
rial grammar (CCG), are widely used and proved to be
effective (Lewis et al., 2015 [Roth and Lapata, 2016
Zhang et al., 2019b; Wang et al., 2019; [Marcheggiani
and Titov, 2020; |Shi et al., 2020; |Conia et al., 2021). In
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these studies, the dependency among the input words
is the most widely used knowledge, where graph-based
approaches are used to encode the dependency infor-
mation (Marcheggiani and Titov, 2017; Xia et al., 2020;
Fei et al., 2021). In addition, there are other studies
(Strubell et al., 2018 |Zhou et al., 2020; /Conia and Nav-
1gl1, 2020; |[Paolini et al., 2021)) use multi-task learning
approaches, which require the gold standard of differ-
ent tasks (e.g., parse trees, predicate disambiguation,
and semantic role labels) to train their model, or use as-
sociated memories (Guan et al., 2019; |L1 et al., 2020b)
to leverage the information in the associated sentences.

Compared with previous studies, this paper proposes a
neural framework with map memories for SRL, which
aims to encode different types of knowledge rather
than associated sentences. Also, our approach uses
auto-generated syntactic knowledge rather than the
gold syntactic trees required by the multi-task learn-
ing approaches, so that our approach is more flexible
when the human annotated parse trees are not avail-
able. Moreover, the proposed memory module assigns
a weight to each context word and knowledge instance,
so as to distinguish the potential noise in the auto-
generated knowledge with respect to the current input
and leverage them in a discriminative manner.

6. Conclusion

In this paper, we proposed a neural framework with
map memories for SRL to encode different types of
auto-generated knowledge (i.e., POS labels, syntactic
constituents, and dependencies). Specifically, for each
word in the input sentence, the memory module ex-
tracts its associated memory items from auto-generated
knowledge obtained from an off-the-shelf toolkit and
assign weights to them, where the keys (i.e., context
words) and values (i.e., knowledge instances) in the
memory items are weighted according to their con-
tribution to SRL. In doing so, our approach can not
only leverage different types of auto-generated knowl-
edge in a uniformed structure, but also smartly address
the potential noise in the auto-generated knowledge.
Experimental results and further analyses demonstrate
the effectiveness of our approach to leverage different
types of knowledge, where our approach outperforms
strong baselines and previous approaches on two En-
glish benchmark datasets for span-style SRL.
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