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Abstract
Can language models read biomedical texts and explain the biomedical mechanisms discussed? In this work we introduce a
biomedical mechanism summarization task. Biomedical studies often investigate the mechanisms behind how one entity (e.g., a
protein or a chemical) affects another in a biological context. The abstracts of these publications often include a focused set
of sentences that present relevant supporting statements regarding such relationships, associated experimental evidence, and
a concluding sentence that summarizes the mechanism underlying the relationship. We leverage this structure and create a
summarization task, where the input is a collection of sentences and the main entities in an abstract, and the output includes the
relationship and a sentence that summarizes the mechanism. Using a small amount of manually labeled mechanism sentences,
we train a mechanism sentence classifier to filter a large biomedical abstract collection and create a summarization dataset with
22k instances. We also introduce conclusion sentence generation as a pretraining task with 611k instances. We benchmark the
performance of large bio-domain language models. We find that while the pretraining task help improves performance, the
best model produces acceptable mechanism outputs in only 32% of the instances, which shows the task presents significant
challenges in biomedical language understanding and summarization. 1.
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1. Introduction
Understanding biochemical mechanisms such as pro-
tein signaling pathways is one of the central pursuits of
biomedical research (Strötgen and Gertz, 2012) (Arighi
et al., 2011; Krallinger et al., 2017; Demner-Fushman
et al., 2020). Biomedical research has advanced tremen-
dously in the past few decades, to the point where we
now suffer from “an embarrassment of riches”. Publica-
tions are generated at such a rapid pace (PubMed 2 has
indexed more than 1 million publications per year in the
past 8 years!) that we need information access applica-
tions which can help extract and organize biomedical
relations and summarize the biomedical mechanisms
underlying them. Developing models that can read
biomedical texts and reason about these mechanisms is
an important step towards this.
In this paper, we introduce a mechanism summariza-
tion task which couples text that discusses elements of
biomedical mechanisms with their summaries. The task
requires models to read text that presents information
about the connection between two target entities and
generate a summary sentence that explains the under-
lying mechanism and the relation between the entities.
We see this task from two perspectives. First, summa-
rizing biomedical mechanisms can be seen as part of
the broader efforts in extracting (Czarnecki et al., 2012),
organizing (Kemper et al., 2010; Kemper et al., 2010;
Miwa et al., 2013; Subramani et al., 2015; Poon et al.,
2014), and summarizing (Azadani et al., 2018) biomed-

1 Code and data is available at SuMe webpage
2https://pubmed.ncbi.nlm.nih.gov

Biomedical Abstract
This study re-examined the hyperactivity and disruption of prepulse inhibition
induced by Nmethyl-D-aspartate stimulation ... of the rat ventral hippocampus
and compared how both effects were affected by pretreatment with either
haloperidol or clozapine. While the hyperactivity is thought to depend on
dopamine receptor activation in the nucleus accumbens, the dopamine D2-class
receptor blocker  haloperidol failed to antagonize the disruption of prepulse
inhibition in previous studies. However, an ameliorative effect of the atypical
neuroleptic clozapine on disruption of prepulse inhibition was suggested by ...
In the present study, bilateral infusion of  Nmethyl-D-aspartate ... into the
ventral hippocampus of Wistar rats increased ...  disrupted prepulse inhibition.
Both effects were observed immediately after infusion but disappeared 24h later.
Injection of .., 45min prior to Nmethyl-D-aspartate infusion, totally antagonized
the hyperactivity but did not affect the disruption of prepulse inhibition.  
We conclude that dopaminergic mechanisms are differentially involved in the
hyperactivity and disruption of prepulse inhibition induced by  Nmethyl-D-
aspartate stimulation of the ventral hippocampus. negative-activation

Outputs

2. Relation: negative-activation 

Inputs

2. Regulated Entity: prepulse inhibition
1. Supporting Sentences

3. Regulator Entity:Nmethyl-D-aspartate

1. Mechanism Sentence

Figure 1: Biomedical Mechanism Summarization Task:
Example of an entry from the SuMe dataset. Some
supporting text was removed to save space. The input is
the supporting sentences with the main two entities. The
output is the relation type and a sentence concluding the
mechanism underlying the relationship.

ical literature that are aimed at providing information
access tools for domain experts. Second, from an NLP
perspective this task can be seen as an explainable re-
lation extraction in a biomedical context, where the
explanation is the mechanism that provides information
about why the relation holds or how it comes about.

A key challenge in addressing such a task lies in creating
a large scale dataset necessary for training large neural
models. However, building such a dataset manually is a

https://stonybrooknlp.github.io/SuMe/
https://pubmed.ncbi.nlm.nih.gov
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Figure 2: Overview of the semi-automatic bootstrapping process for SuMe creation. We use a mechanism classifier
trained with small amount of labeled data to produce weakly-labeled training data for mechanism summarization.

laborious process and requires deep biomedical exper-
tise. To address this, we turn to the structure that exists
in biomedical abstracts, make use of related datasets,
and devise a semi-automatic bootstrapping process that
builds on a relatively small amount of labeling effort
from domain experts.
We introduce SuMe, a large scale dataset that we con-
struct from abstracts of papers that report on biomedical
mechanisms. For a given abstract, we create a task in-
stance that consists of a pair of biochemical entities
(regulated and regulator), the relationship between them
(positive/negative activation), and supporting sentences
that provide information about this relationship, and a
sentence that summarizes the mechanism underlying the
relation (see Figure 1). Creating such an instance would
require a domain expert to read through an abstract and
assess if it contains a biomedical mechanism and locate
it if so. This process is difficult to scale.
To address this issue, we introduce a semi-automated
annotation process to create a large-scale set for devel-
opment and automatic evaluation purposes and a clean
small-scale manually curated subset of instances for
manual evaluation. In particular, the necessary entities
and relations are extracted using an existing biomedical
information extraction system (Valenzuela-Escárcega
et al., 2018). To extract mechanism summaries we first
collected a small set of mechanism sentences with the
help of domain experts. We use this to bootstrap a larger
sample by training a mechanism sentence classifier with
a biomedical language model (LM) (Kanakarajan et al.,
2021) and apply it to a large collection of about 611K
abstracts that contained a conclusion sentence about
the relationship between a pair of entities. The subset
that the classifier identifies as containing mechanism
sentences is used to create 22K mechanism summariza-
tion instances. Five domain experts manually analyzed
a dataset sample of 125 instances to construct a clean
partition for manual evaluation purposes. The experts
also concluded that the generated dataset has reasonable
quality, i.e., 84%. Note that it is common to tolerate
some level of noise in the training partitions of auto-
matically constructed NLP datasets. As an example
among many, the popular relation extraction dataset by
Yao et al. (2010) contains over 20% noise. The overall
pipeline is demonstrated in Figure 2. In summary, the
contributions of this paper are the following:

• We introduce the SuMe dataset, the first dataset
towards summarizing biomedical mechanisms and

the underlying relations between entities. The
dataset contains 22K mechanism summarization in-
stances collected semi-automatically, an evaluation
partition of 125 instances that were corrected by
domain experts. We also create a conclusion gen-
eration task from the larger set of 611K abstracts
which we use as a pretraining task for mechanism
generation models.

• We benchmark several state-of-the-art language
models for the task of generating the underlying
biochemical relations and the corresponding mech-
anism sentences. We train general domain LMs
(GPT2 (Radford et al., 2019), T5 (Raffel et al.,
2020a), BART (Lewis et al., 2019)), as well as sci-
ence domain adapted versions(scientific GPT2 (Pa-
panikolaou and Pierleoni, 2020), and SciFive (Phan
et al., 2021)) and benchmark their performance
through both automatic evaluation and manual eval-
uation on curated evaluation samples.

• The evaluation by domain experts suggests that this
is a high quality dataset coupled with a challenging
task, which deserves further investigation.

• To encourage reproducibility and further research,
we release the dataset and the code used during its
creation. Both are available at SuMe webpage.

2. Related Work
Deep learning models have been widely used in differ-
ent NLP applications (Gaonkar et al., 2020; Bastan et
al., 2020; Keymanesh et al., 2021; Heidari et al., 2021).
Amongst these applications, biomedical NLP is using
these models that looks at extracting (Alam et al., 2018;
Mulyar et al., 2021; Giorgi and Bader, 2020), organiz-
ing (Yuan et al., 2020; Zhao et al., 2020; Lauriola et
al., 2021), and summarizing information (Cohan et al.,
2018) from scientific literature.
Within this broad context, the mechanism summariza-
tion task we introduce broadly relates to previous work
in reading and generating information from scientific
texts. Most work in this area focus on generating sum-
maries using scientific publication and some times in
combination with external information (Yasunaga et al.,
2019; DeYoung et al., 2020; Collins et al., 2017)
Some works even seek to generate part of the scientific
papers. For example, TLDR (Cachola et al., 2020) in-
troduces a task and a dataset to generate TLDRs (Too

https://stonybrooknlp.github.io/SuMe/
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Long; Didn’t Read) for papers. They exploit titles and
an auxiliary training signal in their model. Scisumm-
Net (Yasunaga et al., 2019) introduces a large manually
annotated dataset for generating paper summaries by
utilizing their abstracts and citations. TalkSumm (Lev
et al., 2019) generates summaries for scientific papers
by utilizing videos of talks at scientific conferences.
PaperRobot (Wang et al., 2019) generates a paper’s ab-
stract, title, and conclusion using a knowledge graph.
FacetSum (Cohan et al., 2018) used Emerald journal ar-
ticles to generate 4 different abstractive summaries, each
targeted at specific sections of scientific documents.
In addition to the specifics of the output that we target,
our work is different from all these other works because
our proposed summarization task is grounded with the
underlying biomedical event discussed, rather than fo-
cusing on generic summarization, which may lose the
connection to the underlying biology that is the core
material discussed in these papers. We address mecha-
nism generation, which can be seen as a combination
of explainable relation extraction and summarization.
There is a huge body of work that addresses explainable
methods (e.g., relation extraction (Shahbazi et al., 2020)
or explainable QA (Thayaparan et al., 2020)). Many
prior works in relation and event extraction treat expla-
nations as the task of selecting or ranking sentences that
support a relation (e.g., (Shahbazi et al., 2020; Çano and
Bojar, 2020; Yasunaga et al., 2019)). Our work differs
from these in that it focuses on generating mechanisms
underlying a relation from supporting sentences, rather
than identifying existing sentences.

3. Mechanism Summarization
Our goal is to develop a task and a dataset that pushes
models towards distilling the mechanisms that underlie
the relationships between entities from biomedical liter-
ature. From a language processing perspective, we can
view mechanisms as a form of explanation that justifies
the relationship or connection between entities. From a
biomedical science perspective, a mechanism provides
two types of explanatory information, which we use to
characterize mechanism sentences:
Why is the relation true? A sentence can be a mech-
anism, if it explains why the relation exists between
the two main entities. For example, one protein (say
A) might be up-regulate another (say B), which in turn
inhibits yet another protein (say C). This provides the
causal reasoning to conclude the relation that protein A
inhibits protein C.
How does the relation come about? Another kind of
explanatory information is the one that describes the pro-
cess or manner in which the relation exists between the
pair of entities. For example, one protein (say A) may
activate another protein (say B) via a specific process.

These provide a way to specify what constitutes a mech-
anism sentence and help us to locate mechanism sen-
tences in the literature. In particular, we consider ab-
stracts which discuss studies that lead to conclusions

about such mechanisms. Typically, these abstracts pro-
vide a short set of sentences that describe the goals of
the study, the methods used, the experimental observa-
tions, the findings, which can be used to substantiate
the conclusions that establish the relation of interest,
and the mechanism underlying the relation. This sug-
gests a language processing task that tests for ability
to understand biomedical mechanisms: given the pre-
ceding sentences in the abstract can a model accurately
generate the underlying mechanism?

3.1. Task Definition
Given a set of sentences from a scientific abstract (re-
ferred to as supporting sentences) and a pair of entities
(ei, ej) that are the focus of the abstract (referred to as
focus entities), generate the conclusion sentence that
explains the mechanism behind the pair entities and
output a relation that connects these entities (e.g., pos-
itive activation(ei, ej)). Figure 1 shows an example
of such a tuple of supporting sentences, focus entities,
relation, and mechanism sentence. As the example illus-
trates, mechanism sentences describe some pathway of-
ten involving another entity or a process (e.g., dopamin-
ergic mechanism), require identifying and combining
information from multiple relevant sentences, and non-
trivial inferences regarding the relationship between the
entities (e.g., recognizing that the different effects on
prepulse inhibition imply differential involvement).
The task definition suggests what we need to build a
dataset. Given an abstract of a scientific literature we
need four pieces of information: (1) the two focus enti-
ties of the abstract; (2) the relation between entities; (3)
sentences from the abstract in support of this relation;
and (4) the conclusion sentence where the mechanism
underlying the relation is summarized.

4. SuMe Dataset
We aim to create a large scale dataset for the mechanism
summarization task defined above. However, identify-
ing instances for this task requires domain expertise and
cannot be easily done at scale. Instead, here we employ
a bootstrapping process, where we first annotate a small
amount of data to build a mechanism sentence classifier
that can then helps us collect a large scale dataset for
mechanism summarization. The key observation here is
that identifying sentences that express a mechanism is a
simpler task than the targeted mechanism summariza-
tion task, and, thus, should be learnable from smaller
amounts of data. We outline the process we use for
creating our mechanism summarization dataset, SuMe,
and an expert evaluation of its quality next.

4.1. SuMe Construction Process
We construct SuMe using biomedical abstracts from
the PubMed open access subset3. Starting from 1.1M
scientific papers 4 , we use the following sequence of

3https://pubmed.ncbi.nlm.nih.gov
4We used all papers available in NIH active directory

https://pubmed.ncbi.nlm.nih.gov
https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
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bootstrapping steps to construct SuMe. The following
steps are also elaborated in Figure 3.
1. Finding Conclusion Sentences: First, we use simple
lexical patterns to find abstracts with a clearly specified
conclusion sentence. All abstracts which has any form
of conclude word (conclusion, concluded, concluding,
concludes, etc.) at the very end of the text are extracted
here. We use this matching process to also split the ab-
stracts into the set of supporting sentences (the ones that
lead up to the conclusion) and one conclusion sentence
(the one that includes the conclude word).
2. Extracting Main Entities & Relation Starting with
the abstracts which are now in the form of (supporting
sentences, conclusion sentence), we then run a biomedi-
cal relation extractor, REACH (Valenzuela-Escárcega
et al., 2018), which can identify protein-protein and
chemical-protein relations between entities. In this
work, we focus on the relations where one entity is
the controller and another entity is the controlled entity
and the relation between them is either positive/negative
activation or positive/negative regulation. If an abstract
does not contain any such relation, we keep it for the
pretraining step (as described in Section 5.3); otherwise
we use it for the main task.
3. Filtering for Mechanism Sentences: We then filter
out the instances to only retain those whose conclu-
sion sentences are indeed a mechanism sentence. To
this end, we devised a bootstrapping process where we
first collect supervised data to train a classifier. To col-
lect likely mechanism sentences we made use of the
ChemProt (Peng et al., 2019) relation extraction dataset
which contains sentences annotated with positive and
negative regulation relations between entities. However,
not all of these sentences necessarily explain the mecha-
nism behind these relations. We asked 21 experts (grad
students in a biomedical department) to inspect each
sentence and rate whether it explains the mechanism
behind the ChemProt annotated relation on a four-point
Likert scale. For each sentence, an annotator can se-
lect between Clearly a Mechanism, Plausibly a Mech-
anism, Clearly not a Mechanism, and Not Sure. Each
sentence is annotated by three experts and we find the
inter-annotator agreement between users to be κ = 73%
(Fleiss Kappa (Landis and Koch, 1977)). The final label
for a sentence is selected based on the majority voting
after combining Clearly a Mechanism and Plausible a
Mechanism labels. Finally, each sentence is labeled as a
Mechanism, or Non-Mechanism. The resulting dataset
contained 439 Mechanism sentences (264 Clearly, 175
Plausibly) and 447 Non-Mechanism sentences.
Using this small scale mechanism sentence dataset, we
train binary classifiers to identify mechanism sentences,
where the positive label indicates that the underlying
sentence is a mechanism sentence. We fine-tuned mul-
tiple transformer-based models: BioBERT (Lee et al.,
2020), SciBERT (Beltagy et al., 2019), BiomedNLP (Gu
et al., 2020), and BioELECTRA (Kanakarajan et al.,
2021) models. Each model is fitted with a non-linear

Dataset Train Dev Test
Abstracts 20765 1000 1000

Avg. #words in conc. 33.7 34.9 33.5
Avg. #words in supp. 187.5 187.9 186.7
Avg. #sent. in supp. 12.15 12.44 12.33
#Unique controller 8094 759 777
#Unique controlled 6684 717 687

#Unique pair entities 19229 988 989
#Unique entities 12685 1357 1364

Table 1: Dataset Statistics: Each dataset contains a
number of unique abstracts, a supporting set (supp.), a
mechanism sentence (conc.) a pair of entities. The first
entity is called the regulator entity (regulator) and the
second one is called the regulated entity (regulated)

classification layer that takes the output representation
for the [CLS] token. The classification layer and top
three layers of the transformer are finetuned using the
annotated data5. We used 80%-20% split for train-test.
BioELECTRA performed the best with 74% macro F1
for mechanism sentence classification.
We use this trained mechanism sentence classifier to
label all conclusion sentences from the previous step
and instances which are predicted to be mechanism
sentences are used to create the mechanism generation
of the SuMe dataset.
We separate out the abstracts which are predicted to
have non-mechanism sentences as additional data. We
can define a broader conclusion generation task, which
can be be used as a pre-training task for the generative
models that eventually use for the mechanism summa-
rization task (as we describe in Section 5.3).
The above procedure results in a dataset that allows us
to define the following mechanism summarization task:
Given a set of supporting sentences from an abstract
and a pair of entities (ei, ej), generate a relation that
connects these entities and a sentence that explains the
mechanism that was the focus of the study. The statistics
of the dataset are shown in Table 1. The dataset consists
of three subsets, the training set with about 20k instances
which the parameters of the model are trained with, the
validation set (Dev) for tuning hyper parameters and
choosing the best model, and the test set which is not
used until the final evaluation. There is also a small set
of 125 instances which is curated by experts and is used
as another test set but is not reported in this table.

4.2. SuMe Quality
Our process creates a large scale, albeit, a bootstrapped
dataset that can be used to train large language gener-
ation models. What is the quality of this dataset? To
assess this we asked five biomedical experts to evaluate
a random sample of 125 sentences from the dataset. The

5All models used are base versions with 768 hidden size
and 12 layers. We set the learning rate to be 2e − 4 with a
decay of 0.001
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Figure 3: The bootstrapping pipeline for SuMe collection and human evaluation. The main idea behind the
pipeline is to collect relatively easy to acquire judgments from domain experts to then bootstrap and generate a
weakly-labeled large training corpus. We further assess the quality of the resulting dataset through another round of
human evaluation, which also yields a smaller curated evaluation dataset.

experts were given the set of input supporting sentences,
the potential mechanism sentence, and the relation be-
tween main entities. Our aim is two fold, first to evaluate
the quality of the data collection process, second to col-
lect a clean human evaluated dataset which can be used
as an extra test set.
The experts were asked to assess errors in the relation
label, mechanism, and the need for background knowl-
edge:

1. Relation Errors: Is the expected output relation
associated with the instance valid?

2. Mechanism vs. Non-mechanism: Is the output
sentence expected for this sentence an actual mech-
anism sentence?

3. Background Knowledge: Can the information in
the output sentence concluded from the informa-
tion in the input supporting sentences?

The results of the dataset evaluation are shown in Ta-
ble 2. Only 16% of the data has some error either
from relation extraction (question 1) or contains a non-
mechanism output sentence (question 2).This evaluation
shows that the generated dataset is of reasonable qual-
ity, and can serve as a meaningful resource for training
models for mechanism summarization. The clean subset
that has no relation or mechanism errors is used as an
extra test for evaluation. Last, the experts also rated
15% of the instances to require background knowledge
(question 3)indicating the fraction of hard instances.

5. Evaluation
Our evaluation focuses on the following questions:

1. Benchmarking: What is the performance of generic
and domain-adapted large scale language genera-
tion models on SuMe?

2. Effect of pretraining: What is the impact of using
the additional data via pretraining?

Quality Correct
Entities & Relation Extraction 90%
Mechanism Sentence Classifier 85%

Instances w/o noise 84%

Table 2: Dataset Quality: We asked three main ques-
tions. This table shows what percentage of each cate-
gory is acceptable. The last question shows what per-
centage of the sentences are approved in all questions.

3. Effect of modeling supporting sentences: What
is the impact of selecting a subset of supporting
sentences?

4. Error analysis: What are the main failure modes of
language generation models?

5.1. Experimental Setup
We use SuMe to benchmark language generation mod-
els and measure their ability to correctly identify the
relation between the focus entities and to summarize
the mechanism behind the relation based on the input
sentences from the abstract.
Models: We compare pretrained GPT-2 (Radford et al.,
2019), T5 (Raffel et al., 2020b), BART (Lewis et al.,
2019) models and two domain-adapted models, GPT2-
Pubmed (Papanikolaou and Pierleoni, 2020), and Sci-
Five (Phan et al., 2021), which were trained on scientific
literature.
Evaluation Metrics: We conduct both automatic and
manual evaluation of the model outputs.
Relation Generation (RG): The models are supposed
to first generate the relation type (positive or negative
regulation) and then generate the mechanism that un-
derlies this relation. We evaluate the model’s output as
we would for a corresponding classification task, i.e.,
the generated relation is deemed correct if it exactly
matches the correct relation name. We report F1 num-
bers for this binary classification task.



6927

Model RG (F1) BLEURT Rouge-1 Rouge-2 Rouge-L
BART 76 42.49 46.54 25.92 35.34
GPT2 74 44.19 46.54 28.32 38.78

T5 72 44.41 48.26 27.63 38.77
GPT2-Pubmed 78 46.33 48.37 29.55 40.19

SciFive 79 47.81 52.10 32.62 43.31

Table 3: Benchmarking performance of strong language generation models and some domain-adapted models. We
present standard automatic evaluations measures for the mechanism sentence generation task along with F1 for the
generated relations. The science domain versions of both GPT2 and T5 work better than the original versions.

Mechanism Generation: We evaluate the quality of the
generated explanations using two language generation
metrics: the widely-used ROUGE (Lin, 2004) scores
that rely on lexical overlap, and BLEURT scores (Sel-
lam et al., 2020) which aim to capture semantic similar-
ity between the generated and the gold reference. We
use a recent version, the BLEURT-20 model that has
been shown to be more effective (Pu et al., 2021) . We
compare the generated text as the hypothesis against the
actual text as the reference.
Fine-tuning and Training Details: All models are
original base models published by HuggingFace that
were fine-tuned on the training portion of SuMe for 20
epochs. For each model, we evaluate the average of
BLEURT and Rouge-L score on the validation (Dev)
set and the one with the highest average is chosen for
prediction. The learning rate is set to 6e-5, we use
AdamW (Loshchilov and Hutter, 2017) optimizer with
ϵ = 1e − 8. The input token is limited to 512 tokens,
and the generated token is maxed out at 128. We select
batch size of 8 with gradient accumulation steps of two.

5.2. Automatic Evaluation Results
Table 3 compares the performance of the five language
generation models on both the relation generation (RG)
and mechanism generation tasks.
The domain-adapted models, GPT2-Pubmed and Sci-
Five, fare better than fine-tuning the standard pre-trained
models for both relation and mechanism generation
tasks. SciFive achieves the best performance with more
than a 7.5% increase in BLEURT score and more than
9.7% increase in RG F1 over the standard T5 model,
highlighting the importance of domain adaptation for
the SuMe tasks defined over scientific literature.
The overall numbers (coupled with the human evalua-
tion in Section 5.5) suggest that mechanism generation
is a difficult and challenging task.
The models achieve better performance on the relation
generation task but there is still a substantial room for
improvement here with the best model achieving an F1
of 79. If the model is unable to generate the relation
correctly, then the mechanism it generates is not use-
ful. Ideally we want models to correctly generate both
the relation and the mechanism that underlies it. We
also evaluated the correlation between BLEURT score
and relation generation classification score. Our anal-
ysis shows that when the model generates an accurate
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Figure 4: Comparison of relation generation (RG) F1
(left y-axis/blue bars) and the mechanism generation
measures (right y-axis/teal+blue curves) against the
amount of pretraining. As we increase the size of the
pretraining data, the model performance improves.

relation, it gets higher BLEURT score while when it
generates an incorrect relation, its gets a 10% lower
BLEURT score (50.02 vs 45.08)

5.3. Pretraining with Conclusion Generation
Next we analyze the impact of pre-training the models
on the related task of generating conclusion (instead of
mechanism) sentences, for which we can obtain data at
scale without any manual labeling effort. We collected
all abstracts from PubMed that ended with a conclu-
sion sentence. We can create training instances on these
abstracts in the same format as we did for the mecha-
nism generation instances. The only difference here is
the output sentences are conclusion sentences and not
necessarily mechanisms. We call this the conclusion
generation task. SuMe includes 611K instances of this
kind which is an order of magnitude larger than the
mechanism summarization instances and can be seen as
a form of data augmentation.
We study the effect of this pretraining task by varying
the amount of pretraining data. We analyze the impact
in terms of the overall effectiveness and the amount
of fine-tuning (number of epochs) needed to converge
when finetuning.
Pretraining Data Size: We pretrain the SciFive model
on the conclusion generation task with increasing
amount of data (100K increments), and measure the
performance of finetuning the pretrained models on the
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Figure 5: Number of pretraining epochs vs. fine-tuning
epochs for each pretrained model until convergence.

mechanism summarization task. Figure 4 shows that
performance increases with more data available for pre-
training, suggesting that pretraining is beneficial for
learning to generate mechanisms.
Number of Epochs: We also compare the impact of the
amount of pretraining on the number of epochs needed
for convergence in fine-tuning. Figure 5 compares pre-
trained models with different number of pretraining
epochs (x-axis) in terms of their overall effectiveness
(BLEURT score bars) and the number of epochs to con-
vergence (Finetuning epochs curve). The figure shows
that when we continue pretraining, not only does the
resulting model performs better, but it also converges
sooner taking fewer number of epochs to reach higher
effectiveness. Together these results suggest potential
for the auxiliary data available in the SuMe dataset.

5.4. Modeling Supporting Sentences
Will it help to model the subset of sentences within
the inputs sentences that provide the best support for
generating the mechanism sentence? This kind of an ex-
tractive step has been used previously in summarization
tasks to reduce the amount of irrelevant information in
the input (Narayan et al., 2018; Liu and Lapata, 2019).
To understand the utility of this, we built a pseudo-oracle
that finds the sentences that have the best overlap (mea-
sured via BLEURT score (Sellam et al., 2020)) with
the output mechanism sentence. Then, we trained the
SciFive model and pretrained version to only use the top
few sentences according to BLEURT score such that in-
put size is now half of the original input size. Using this
subset instead of the entire subset provides BLEURT
score improvements only for the basic SciFive model
and the gains reduce when we use the pretrained model.
Unlike standard summarization tasks there are fewer
completely unrelated sentences in the abstracts and gen-
erating the mechanism sentences remains challenging
even when we are able to identify the most relevant
sentences within this set. This suggests that the task
remains hard even when the most important sentences
are somehow known to the model.

Supporting Set BLEURT Rouge-L
SciFive 47.81 43.31
+Oracle 49 43.07

+Pretraining 49.05 43.72
+Pretraining+Oracle 49.64 43.81

Table 4: The effect of selecting supporting sentences
with highest BLEURT score.

5.5. Manual Evaluation
We also conduct a manual evaluation of the outputs
from the best model — the SciFive model that was pre-
trained with the conclusion generation task. We asked
three biomedical experts to evaluate output sentences
for 100 instances and answer three questions (It took
∼ 5 minutes per expert per instance):

1. Does the generated sentence contain a mechanism
that explains the relation between the two main
entities?

2. Is the information in the generated mechanism sup-
ported by the information contained in the support-
ing set of sentences?

3. Is the generated mechanism factually correct?
The results show that the model learns to generate some
mechanism sentence that connects the main entities for
most of the instances (79%). It also produces output
for which there is support in the input sentences in a
majority of the cases (53%). Last, experts found that the
output statements to be scientifically correct in many
cases (58%). In summary, however, only 32% of the out-
puts were acceptable for all questions, and were deemed
to be good mechanism sentences. This again highlights
the significant challenge posed by this task.

5.6. Error Analysis
To understand the frequent failure modes of the model,
we manually categorized the errors in 100 outputs that
had the worst BLEURT scores with the reference mech-
anism sentences.

1. Missing Entities (35%) – The most prevalent issue
is the absence of one of the main entities in the
generated sentence. Despite this being a necessary
feature in all of the mechanism sentences in the
training data, the prevalence of this error shows that
models find it difficult to track the main entities
during generation.

2. Incorrect Mechanism (24%) – The model is
unable to generate the correct mechanism even
though it is able to identify the correct relation and
fills in some information that is either unrelated to
or unsupported by the input sentences.

3. Flipped Relation (19%) – The model predicts
the incorrect relation and generates a mechanism
that is faithful to this incorrect relation. Improving
relation generation is thus an important step for
improving mechanism generation.

4. Non Mechanisms (11%) – While the model learns
to generate mechanism like sentences for the most
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Gold Mechanism Generated Mechanism
On the basis of these observations, we conclude that IL-
18 induces MCP-1 production through the PI3K/Akt and
MEK/ERK1/2 pathways in macrophages.

In conclusion, IL-18 induces MCP-1 produc-
tion in macrophages through the PI3K/Akt and
MEK/ERK1/2 pathways.

Taken together, we conclude that DeltaNp73 negatively reg-
ulates NGF-mediated neuronal differentiation by transre-
pressing TrkA.

In conclusion, our results indicate that DeltaNp73
negatively regulates NGF-mediated neuronal dif-
ferentiation by transcriptionally repressing the ex-
pression of TrkA.

In conclusion, the increase in SNGFR caused by ANF is
associated with an increase in glomerular capillary hydraulic
pressure and with a blunted maximal tubuloglomerular feed-
back response.

We conclude that ANF inhibits maximal tubu-
loglomerular feedback by increasing glomerular
capillary hydraulic pressure and by decreasing
SNGFR.

We conclude that, without modulatory factors which play
a role in vivo, NGF can enhance the synthesis of tyrosine
hydroxylase n sympathetic ganglia in vitro, provided organ
culture conditions which permit optimal survival of adrener-
gic neurons are selected.

This conclusion was further supported by pulse-
labeling of tyrosine hydroxylase with [3H]leucine,
which showed that NGF increased synthesis of
tyrosine in sympathetic ganglia by approximately
50%.

We conclude that 20 mm alcohol/submaximal CCK as well
supramaximal CCK stimulation can trigger pathologic baso-
lateral exocytosis in pancreatic acinar cells via PKC alpha-
mediated activation of Munc18c , which enables Syntaxin-4
to become receptive in forming a SNARE complex in the
BPM.

We conclude that alcohol can induce a clinically
relevant form of pancreatitis by blocking apical
exocytosis and redirecting exocytosis to less effi-
cient BPM, mimicking supramaximal CCK stimu-
lation.

We conclude that in the presence of high doses of insulin,
FSH decreases aromatase activity, and an uncoupling of
P450 aromatase mRNA and aromatase activity occurs.

In conclusion, insulin stimulates aromatase activ-
ity in bovine granulosa cells at low doses but fails
to stimulate activity at higher doses of insulin.

Table 5: Examples of the generated outputs by the model. The first three are good outputs where the mechanism is a
simple paraphrase of the expected gold mechanism, while the next three illustrate the types of semantic errors we
observe. The main entities are makred in Italics. The phrase explaining the mechanism in gold data is in blue, in
good generation is in green, and in bad generation is in red.

part, it sometimes still fails to produce sentences
that contain any mechanism at all.

5. Multiple pieces of information (11%) – Some
complex mechanisms require combining bits of
information from different input sentences. The
model generates only a part of such mechanisms.

5.7. Word Analysis
We further analyzed the unigrams of the supporting
sentences corresponding to the instances where the
model was most confident in its generated mecha-
nism and where it was least confident. The analysis
shows that when the words ’binding’, ’caused’, ’demon-
strated’, ’dose dependent’, ’investigated’, ’result’, and

’performed’ are available in the supporting sentences the
model can generate explanation sentences with higher
quality. This shows that when the supporting sentences
convey causal relation and reasoning the model is most
confident about generating mechanisms.
Table 5 shows example generated mechanisms. The
first three showcase good outputs whereas the next three
are examples of incorrect ones. In the good ones, the
first is a generated mechanism that is almost identi-
cal to the gold mechanism with only a slight syntactic
change. The second is a generated mechanism which
also conveys the gold mechanism accurately but with
a paraphrasing that expands the technical term TRANS-

PRESSING. In the last three examples with incorrect
information, the first shows a bad output which contains
a mechanism but not of the relation connecting the main
entities. The next is a case where the information is cor-
rect but it does not even mention the main entities. The
last one is an example one of the entities are missing
(FSH) and the generated text is about another relation.

6. Conclusions
We introduced SuMe, a dataset for biomedical mech-
anism summarization. This dataset is coupled with a
challenging summarization task, which requires the gen-
eration of the relation between main entities as well as
a textual summary of the mechanism which explains
the reason behind the underlying relation. This dataset
is collected using the sentences from actual publica-
tion abstracts. We also introduce an easier and scalable
pretraining task which improves the baselines by aug-
menting a larger set of sentences to the main dataset.
We evaluated the complexity of the task using multiple
state-of-the-art transformer based models. Our evalua-
tion suggests that the proposed task is learnable, but we
are far from solving it. The expert analysis also suggests
the difficulty and importance of the task.
All in all, we believe that SuMe dataset and associated
task are a useful step towards building true information-
access applications for the biomedical literature.
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