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Abstract
As neural Text Generation Models (TGM) have become more and more capable of generating text indistinguishable from
human-written ones, the misuse of text generation technologies can have serious ramifications. Although a neural classifier
often achieves high detection accuracy, the reason for it is not well studied. Most previous work revolves around studying the
impact of model structure and the decoding strategy on ease of detection, but little work has been done to analyze the forms of
artifacts left by the TGM. We propose to systematically study the forms and scopes of artifacts by corrupting text, replacing
them with linguistic or statistical features, and applying the interpretable method of Integrated Gradients. Comprehensive
experiments show artifacts a) primarily relate to token co-occurrence, b) feature more heavily at the head of vocabulary, c)
appear more in content word than stopwords, d) are sometimes detrimental in the form of number of token occurrences, e) are
less likely to exist in high-level semantics or syntaxes, f) manifest in low concreteness values for higher-order n-grams.

Keywords: Natural Language Generation,Text categorisation,Corpus,Syntax,Semantics

1. Introduction
In recent years, neural Text Generation Models (TGM)
have grown by leaps and bounds with the support of
big data and escalating computing power (Brown et al.,
2020). State-of-the-art models can generate fluent and
genuine-looking text (Gehrmann et al., 2019; Dou et
al., 2021), thus we need to be especially wary of the
abuse of text generation techniques, such as produc-
ing fake news, impersonating others in email, phishing,
etc. (Jawahar et al., 2020).
Recently, Humans are worse at detecting synthetic text
than Machines (Gehrmann et al., 2019; Solaiman et
al., 2019) because Humans cannot properly perceive
the difference in data distribution, but rely more on se-
mantic errors or logical contradictions (Ippolito et al.,
2020). This phenomenon has spawned much work in-
vestigating the use of neural classifiers to detect syn-
thetic text, most of which analyze the impact of vari-
ables such as the structure of TGM, the decoding strat-
egy, and the sentence length (Tay et al., 2020; Ippolito
et al., 2020; Solaiman et al., 2019; Munir et al., 2021).
Besides, a small amount of work studies TGM’s prop-
erty through its left behind artifacts (detectable signa-
tures that originate from the TGM). (Tay et al., 2020)
reveals that TGMs of different decoding configurations
leave distinguishable artifacts when generating text,
proving artifacts are not correlated with word order.
Another work (Ippolito et al., 2020) claims artifacts ex-
ist in over-sampled high-likelihood words when TGM
adopts decoding strategies of top-k sampling. Despite
these sporadic findings, there is a lack of systematic
analysis of the forms in which artifacts exist.
To fill this void, we conduct an empirical study on three
datasets to reveal characteristics and possible manifes-
tations of artifacts. Specifically, we corrupt text in dif-
ferent ways or replace them with high-level linguis-
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tic/statistical features, retaining or corrupting certain
information of the text; we locate artifacts mainly based
on the performance variation of the classifier against
different corruptions. Besides, to track artifacts in
the details, we compute the contribution of tokens by
means of interpretable methods.
We summarize our contribution as follows:
- We open-sourced a Chinese Novel Dataset crAwled
fRom mIxed online sOurces (CnDARIO) for artifacts
discovery in the Chinese Literature domain.
- We offer empirical findings for artifacts: a) token co-
occurrence is the predominant form in which artifacts
exist, b) artifacts exist mainly at the head of the vocabu-
lary, c) content words contain more artifacts than stop-
words, d) the number of occurrences of tokens offers
limited or even detrimental artifacts, e) high-level se-
mantic/syntactic features contain much fewer artifacts
than shallow features, f) some artifacts are present in
higher-order n-grams in the form of low concreteness
values, g) pre-training is extremely helpful for effective
use of artifacts1.

2. Task Formulation
Though neural classifiers achieve extremely high ac-
curacy on discerning synthetic text, the reason for it
is not fully-studied. Our work attempts to explain
this phenomenon by unveiling the forms in which ar-
tifacts exist. To this end, we adopt several text cor-
ruption/replacement operations, which may retain or
corrupt certain linguistic or statistical information, as
surrogates for unraveling artifacts. Formally, given a
classification dataset D = (E1, . . . , En) containing
both Human and Machine excerpts2, we corrupt and

1Code is available at https://github.com/iamlx
b3/UMAMGT

2Each excerpt Ei contains m tokens, denoted as E =
(t1, . . . , tm)

https://github.com/iamlxb3/UMAMGT
https://github.com/iamlxb3/UMAMGT
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replace the original text in D with various operations.
For each operation CO, we train the neural classifier
fθ on the corrupted training set Dco

train, regarding the
accuracy variation of fθ on Dco

test as a sensitivity indi-
cator for the presence or the absence of certain linguis-
tic/statistical features associated with CO. The high
absolute value or the drastic change of accuracy helps
us to attribute artifacts to specific linguistic/statistical
features. This process can be comprehend as sensitivity
analysis (Saltelli, 2002; Saltelli et al., 2008) of corrup-
tion/replacement operations (input) on the generalisa-
tion performance of fθ (output). As a practical exam-
ple, suppose we apply the operation of ‘token shuffle’
to D, and fθ still manages to achieve high accuracy,
we can conclude token co-occurrences in the corrupted
Dco contains enough distinguishable artifacts. Con-
versely, if there is a significant drop in accuracy, it is
evident that the token order has detectable artifacts and
there are relatively small differences in the distribution
of word co-occurrence between genuine and synthetic
text. Furthermore, we use interpretable methods based
on Influence Functions (Koh and Liang, 2017) to di-
rectly analyze the connection between the classifier’s
decisions and the properties of the n-grams.

3. Text Corruption Operations
We define the corruption/replacement operation as
CO : E → Eco, where Eco is a corrupted excerpt; we
keep the length variable fixed, adding [MASK] token
to Eco when necessary. All text corruptions operate
within the scope of E, with the token being the basic
operating unit. Operations in the following sections are
selected to cover as many forms in which artifacts may
exist as possible.

3.1. Corruptions in the text form
Deduplicate tokens Given the original excerpt E,
the deduplicate operation only keeps the first occur-
rence of token t, replacing all subsequent occurrences
of t with the [MASK] token.

Shuffle tokens Given the original novel excerpt E,
the shuffle operation produces a new excerpt Eco with
random token orders, i.e., ∀t ∈ E, t has a different
position in Eco.

Retain only (non)-stopwords Stopwords3 are the
most common words, and they are considered to re-
tain abstract author signatures for Human authorship
attribution (Rajkumar et al., 2009). We are curious
whether the inclusion or exclusion of stopwords helps
to attribute a Machine author—the TGM, too.

3For Chinese stopwords, we adopt the Baidu stopword
list https://github.com/goto456/stopwords,
while for English, we combine the Baidu stopword list with
NLTK stopword list https://gist.github.com/se
bleier/554280.

Retain tokens in high/low frequency regions To in-
vestigate the differences in token frequency between
Human and Machine text, we design the frequency gap
score as

scoreg =
Freq(ti, Dm)− Freq(ti, Dh)

Freq(ti, Dm)

, where Freq(t,D) is the frequency of a token t in the
corpus D and Rank(t,D) is the frequency rank of t
in descending order. Dh and Dm are subsets of D,
containing Human written and Machine generated text
respectively. Figure 1 shows that the frequency distri-
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Figure 1: Differences in unigram token frequency dis-
tribution between Human and Machine text. Scores are
smoothed over a window size of 50. The protruding
dropping line around Rank 3000 of the Grover dataset
corresponds to the token ‘Opinion:’.

bution between Human text and Machine text differs in
each of the three datasets. Human and Machine use of
high-frequency tokens is broadly similar on CnDARIO
but Humans use low-frequency tokens more frequently,
while the Writing Prompt dataset shows an opposite
trend. On the CNN/Daily Mail dataset, the difference
of token usage between Humans and Machines is con-
sistently small across all frequency ranks.
We introduce two corruption operations to further study
the effect of retaining tokens within a certain frequency
range. The operation to constrain tokens of Eco in the
high-frequency region satisfies

tcoi =

{
ti if Rank(ti, D) < ρ
[MASK] if Rank(ti, D) ⩾ ρ

, where ti and tcoi are the i-th token in E and Eco,
ρ ∈ N is the rank threshold to split the high and

https://github.com/goto456/stopwords
https://gist.github.com/sebleier/554280
https://gist.github.com/sebleier/554280
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Origin1 It is believed Congress is going to finish its authorization of NASA’s budget.

Replace with likehood rank8 509 469 330 5299 4168 285 263 13 2537 695 23919 288 263 ...
Replace with POS9 PRON AUX VERB PROPN AUX VERB PART VERB PRON NOUN ...
Replace with Dep. Tree10 nsubjpass 0 6 auxpass 3 6 ROOT 6 6 nsubj 15 27 aux 24 27 ccomp 27 6 ...
Replace with Cons. Tree11 (S(NP(PRP))(VP(VBZ)(VP(VBN)(SBAR(S(NP(NNP))(VP(VBZ)(VP(VBG) ...
Replace with NE12 ORG 15 23 ORG 64 68

Table 1: An concrete example of how a piece of text is replaced. Some replaced text are shortened for the sake of
presentation. We have sub-scripted each operation to be consistent with Section 4.3 and Table 4.

low frequency region. Constraining tokens in the low-
frequency region is defined oppositely.

3.2. Operations by replacing text with
different forms

(Gehrmann et al., 2019) shows that highlighting text
passages according to tokens’ likelihood rank greatly
improves the Human detection rate of synthetic text.
Moreover, (See et al., 2019) finds synthetic text can
be syntactically repetitive even if they are not textually
repetitive. These evidences motivate us to test how the
classifier performs with mere high-level linguistic or
statistical features. We purpose to replace the original
text with other linguistic forms or statistical values. To
simplify experiments, all replaced forms are regarded
as strings, tokenized, and trained as ordinary text.

Replace text with likelihood ranks One of the char-
acteristics of Human language is that it intermittently
dips in and out of low probability zones (Holtzman et
al., 2019). Inspired by this, we propose to replace text
with likelihood ranks to verify whether the classifier
can exploit this distinctiveness. The likelihood rank of
an excerpt E can be obtained by querying a TGM. Con-
cretely, at each position i, the TGM produces a prob-
ability distribution P (ti | E1...i−1) of token ti, from
which we obtain the likelihood rank ri of ti, constitut-
ing Eco = (r1, . . . , ri, . . . ). For Out-Of-Vocabulary
tokens, we use the rank of [UNK] for substitution.

Replace text with specific linguistic features To test
whether Machine-generated text differs significantly
from Human text in certain linguistic features, we re-
place the original text form with part-of-speech, De-
pendency Trees and Constituent Trees. In experi-
ments, Linguistic features of POS and Dependency
Trees are obtained by spaCy 4, while the Constituent
Tree of text is parsed by Berkeley Neural Parser
(benepar) (Kitaev et al., 2019). We adopt specific mod-
els of en_core_web_sm and zh_core_web_sm
in spaCy, and benepar_en3 and benepar_zh2 in
benepar.

◦ Part of Speech A part-of-speech (POS) is a category
of words that have similar grammatical properties. It
has been shown the distribution of POS n-grams is a
useful feature to represent the textual style (Roemmele

4https://spacy.io

et al., ; Ireland and Pennebaker, 2010), and the distribu-
tion of POS is different between real and fake text (Vi-
jayaraghavan et al., 2020; Pérez-Rosas et al., 2018).
These findings inspire us to test the effect of replacing
the original text input T with a a list of POS, denoted as
Eco = (pos1, . . . , posi, . . . ), posi ∈ Vpos, where posi
is a POS and the size of POS Vocabulary Vpos is 36.

◦ Dependency Trees Dependency parsing is a syn-
tactical parsing technique used to identify semantic
relations between words in a sentence (Kübler et al.,
2009). Such relations form a tree, with each word
having exactly one head. We parse the original text
input T into a list of dependency relations, with each
followed by the position of its head word and tail word.
The list of Dependency Trees is defined as Eco =
(dp1, head1, tail1, . . . , dpi, headi, taili . . . ), dpi ∈
Vdp, where dpi is a dependency relation, headi and
taili are the positions of head and tail word of dpi.
The size of dependency relation Vocabulary Vdp is 45.

◦ Constituent Trees Constituency parsing is another
type of syntactical parsing, based on the formalism of
context-free grammars. In the constituency parse tree,
a sentence is divided into constituents of a specific cat-
egory in the grammar, such as Verb phrase (VP) and
Noun phrase (NP) (Jurafsky, 2000). We transform the
original text input E into a string-form constituency
parse tree Eco, where only constituent categories and
the tree structure are available. The vocabulary size of
constituents is 136.

◦ Named Entities Named entities often include per-
son names, organizations, locations, and etc. (Sekine
and Ranchhod, 2009). We extract all named en-
tities from the text with corresponding span loca-
tions. Given the original text input E, we ex-
tract named entities and form a NE list Eco =
(ne1, spl1, spr1, . . . , nei, spli, spri . . . ), nei ∈ Vne,
where nei is a named entity, spli and spri are the left
and right position index of the span of entity nei. The
total number of named entities Vne is 18.

4. Experiment
4.1. Dataset
We collect and generate datasets of paired samples
of Human-written and Machine-generated text from
three sources. The first source is the CNN/Daily Mail

https://spacy.io
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Dataset Source (Parameters) N. Sample N. Unigram Avg.Len. Distinct-1/2/3

CnDARIO Human 12661 4767 103 0.682 / 0.925 / 0.960
GPT-2 (1.5 billion) 12661 5111 103 0.794 / 0.958 / 0.971

CNN/Daily Mail Human 29610 356189 363 0.634 / 0.945 / 0.983
Grover Mega (1.5 billion) 29610 379309 366 0.604 / 0.917 / 0.962

Writing Prompt Human 8945 43499 156 0.594 / 0.908 / 0.957
Fusion Model (255.4 million) 8945 8392 149 0.432 / 0.753 / 0.866

Table 2: Basic data analysis. Abbreviations of N. Sample, N. Unigram, and Avg.Len. stands for the number of
samples, the number of unique unigram tokens and the average excerpt length in a dataset respectively. Distinct-
1/2/3 is the Distinct value (Li et al., 2015) for unigram, bigram and trigram.

dataset (Nallapati et al., 2016), from which we ran-
domly select the headline and the three subsequent sen-
tences as the prefix. With the prefix, we use Grover-
Mega (Zellers et al., 2019) to generate an excerpt by
nucleus sampling (p = 0.95, t = 1.0) (Holtzman et al.,
2019), pairing it with the original subsequent text. Sim-
ilarly, we collected the readily available synthetic and
Human excerpts from the second source — the Writing
Prompt dataset (Fan et al., 2018), with synthetic text
generated by the Fusion Model (Fan et al., 2018). The
third source is CnDARIO dataset, the size of which is
30 gigabytes. We first solidly train the GPT-2 (Rad-
ford et al., 2019) on this dataset, with a vocabulary size
of 13,762 and a context length of 1,024. Afterward,
we query the pre-trained GPT-2 to generate synthetic
novel excerpts. The length of the prefix and continua-
tion is randomly chosen between 3 and 5. For the con-
struction of all datasets, we include a post-processing
step to ensure the genuine and the synthetic excerpt of
the same prefix contains roughly the same amount of
tokens, with a length difference of 10 tokens or less.
We also provide the likelihood rank of the TGM when
decoding each token for the CNN/Daily Mail and Cn-
DARIO dataset.
In summary, we provide carefully constructed datasets
of paired samples from three different domains: Online
Forum, News, and Literature5. We believe these read-
ily available datasets are friendly for students and labs
with fewer computing resources. It is also worth noting
that we provide an alternative form of data—likelihood
ranks—that corresponds to the token, which allows re-
searchers to easily investigate the effect of using likeli-
hood rank to distinguish synthetic text.

4.2. Experimental setup
We adopt Roberta-base (Liu et al., 2019) as the clas-
sifier 6 because Roberta has been proved to be highly
effective in detecting synthetic text and author attribu-

5The dataset is available at https://drive.google
.com/file/d/1xA9TtDYJE9BEwecL8QJ5d0LTytn
5hhBr

6Chinese Roberta: https://huggingface.co/h
fl/chinese-roberta-wwm-ext. English Roberta:
https://huggingface.co/roberta-base

tion (Uchendu et al., 2021; Uchendu et al., 2020). We
choose subword (Byte-Pair-Encoding (Gage, 1994))
and character tokenization for English and Chinese text
respectively. We split all datasets into three parts, 80%
for training, 10% for validation, and the rest 10% for
testing. We determine the best model based on its ac-
curacy on the validation set, then report its performance
on the test set. For every corruption or replacement op-
eration, we repeat the training and evaluation process
15 times with different random seeds, with each seed
controlling the data split, the shuffle order, the initial-
ized parameters of the non-pre-trained model, etc.

4.3. Effect of corruptions and replacements
We define the abbreviations of corruptions and re-
placements as follows: (1) origin: the original text;
(2) dedup.: token deduplication; (3) shuf.: token shuf-
fling operation; (4) shuf.dedup.: combined operations
of token shuffling and deduplication; (5) in.stop.: only
include stopwords; (6) ex.stop.: exclude stopwords;
(8) like.rank: replace tokens with likelihood ranks of
TGM; (9) POS.: replace tokens with POS; (10) Dep.:
replace text with Dependency trees; (11) Cons.: replace
text with Constituent Trees; (12) NE.: replace text with
extracted Named entities.

4.3.1. Effect of text corruption operations
From Table 3, we summarise the following key find-
ings. Erasing information on the number of occur-
rences of token hardly hurts the performance and
even greatly improves the accuracy of the non-pre-
trained classifier. For all datasets, the difference in
accuracy between classifiers trained on Dedup. and
origin data is minimal. Interestingly, when the clas-
sifier is not pre-trained, the accuracy of Dedup. is
much higher than the accuracy of origin on the Cn-
DARIO and CNN/Daily Mail dataset. We speculate
that Dedup. operation simplifies the text and reduces
the interference of the number of token occurrences,
making it easier for the classifier to concentrate on to-
ken co-occurrences.
The Boolean BOW features are sufficient for the
classifier to detect synthetic text. The shuffle oper-
ation disrupts the semantic and syntactic structure of

https://drive.google.com/file/d/1xA9TtDYJE9BEwecL8QJ5d0LTytn5hhBr
https://drive.google.com/file/d/1xA9TtDYJE9BEwecL8QJ5d0LTytn5hhBr
https://drive.google.com/file/d/1xA9TtDYJE9BEwecL8QJ5d0LTytn5hhBr
https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/roberta-base
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Model Dataset origin1 dedup.2 shuf.3 shuf. dedup.4 in.stop.5 ex.stop.6

Pre. CnDARIO 0.955‡all 0.934‡{4,5,6}†{3} 0.931‡{4,5}†{6} 0.906†{6} 0.825 0.917†{4,5}

N.Pre. CnDARIO 0.845‡{3,5,6}↓ 0.892‡{1,3,5,6} 0.820‡{6}†{5} 0.891‡{1,3,5,6} 0.744 0.811‡{5}

Pre. CNN/D. 0.929‡all 0.878‡{2,3,4,5,6} 0.830‡{5}†{4} 0.782‡{5} 0.584 0.851‡{3,5}†{4}

N.Pre. CNN/D. 0.501↓ 0.635‡{1,3,5,6} 0.512‡{1,5} 0.630‡{3,5} 0.500 0.500

Pre. Writing P. 0.997‡{5}†{2,3,4,6} 0.995‡{5} 0.995‡{5}†{4} 0.992‡{5} 0.986 0.994‡{5}

N.Pre. Writing P. 0.988‡{6,4} 0.978‡{5}†{6} 0.986‡{5,6} 0.975‡{5,6} 0.894 0.947‡{5}

Table 3: Average accuracy of the classifier when text are applied with corruption operations. Standard deviation are
omitted for brevity. Pre. denotes the pre-trained LM while Not.Pre. denotes the non-pre-trained LM. CNN/D. and
Writing P. denote the dataset of CNN/Daily Mail and Writing Prompt. The best results of corruption operations
(origin is excluded) are in bold and the second bests are underlined. The down arrow ↓ indicates the classifier
trained on the original text perform even worse than that trained on text with corruption operations. We conduct
paired t-test (Kim, 2015) for each pair of corruption operations, with ‡ and † indicating p-value < 0.001 and p-
value < 0.05 respectively, for example, 0.917†{4,5} in the 1st row means ex.stop6 outperforms shuf.dedup.4 and
in.stop5 at a significance level of 0.05.

Model Dataset origin1 like.rank8 POS.9 Dep.10 Cons.11 NE.12

Pre. CnDARIO 0.955‡all 0.767‡{12} 0.799 0.814‡{8,9,11,12} 0.804‡{8,12}†{9} 0.556

Pre. CNN/D. 0.929‡all 0.922‡{9,10,11,12} 0.606†{12} 0.571 0.607†{8} 0.552

Pre. Writing P. 0.997‡all / 0.982‡{9,10,11,12} 0.938‡{12} 0.949‡{12}†{10} 0.797

Table 4: Average accuracy of the classifier when text are replaced with other forms.

the text, but even so, the performance loss of the clas-
sifier on two datasets is negligible. Decreased value of
accuracy on the CnDARIO and Writing prompt dataset
is merely 0.003 and 0.002 respectively, while the accu-
racy loss of 0.1 is significant on the CNN/Daily Mail
dataset. The insensitivity of token order has been men-
tioned in several works (Pham et al., 2020; Sinha et
al., 2021; Wang et al., 2018). Moreover, when we ap-
ply shuf. and Dedup. operations simultaneously, this
loss of accuracy is still minimal (CnDARIO, Writing
prompt) or acceptable (CNN/Daily Mail). The results
indicate that the current TGM-generated text can easily
be recognized by co-occurrence of tokens without us-
ing much advanced semantic and syntactic knowledge.
The content word contains more artifacts that can
be learned than the stopwords. As the CNN/Daily
Mail data has a large vocabulary, stopwords only ac-
count for a small percentage. When only retaining
stopwords, the effective length of the text is very
short, due to this, the classifier’s performance degrades
greatly. On the other two datasets, training the classi-
fier with merely stopword or content words both yield
acceptable accuracy, but the accuracy of in.stop is al-
ways lower than that of ex.stop.

4.3.2. Effect of constraining tokens in high/low
frequency region

The most important observations in Figure 2 is gen-
eralized as follows: sufficiently accurate differen-
tiation between Human and Machine-written text

requires only a fraction of the vocabulary. Fur-
thermore, on the CnDARIO and Writing Prompt
dataset, we find the classifier trained with Eco of high-
frequency tokens is comparable with or better than that
trained with Eco of low-frequency tokens, even when
the effective length of the former is much shorter. In
contrast, the classifier shows the opposite pattern on
the CNN/Daily mail dataset: the accuracy of the high-
frequency region is slightly lower than that of the low-
frequency region when the effective length of the high-
frequency region is longer (ρ = 400 and ρ = 800).
Despite the inconsistencies, all classifiers achieve sat-
isfactory accuracy (close to or significantly above 0.8)
when only a small portion of the vocabulary—0.0014,
0.00135, 0.0012 for CnDARIO, CNN/Daily mail, and
Writing Prompt respectively—is available.

4.3.3. Effect of text replacement operations
Based on the statistics in Table 2 and trends in Fig-
ure 1, we rank the quality and the complexity of text
on Writing Prompt, CnDARIO, and CNN/Daily Mail
from easy to difficult. Based on this quality ranking and
the results in Figure 4, we conclude the following pat-
tern: retaining only high-level semantic or syntactic
features reduces the classifier’s ability to recognize
synthetic text, with the decrease of accuracy propor-
tional to the text quality generated by TGM. Train-
ing with pure dependency trees and constituent trees
obtain comparable accuracy while training with POS
has mixed results on three datasets. Replacement with
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Figure 2: X-axis: Dividing threshold ρ between high and low frequency region; the numbers in parentheses
represent the proportion of vocabulary size of the high-frequency region to the total vocabulary size. Y-axis (Top):
Valid length of text (without [MASK]) when text are restricted to high or low frequency region. Y-axis (Bottom):
Accuracy of the classifier when training with text from high and low frequency region.

Named Entities achieve the worst result probably be-
cause the effective length of Eco is too short, with only
a few tokens in the text marked as Named Entities. No-
tably, the like.rank. operation has opposite results on
CnDARIO and CNN/Daily Mail. When replacing text
with likelihood ranks on CNN/Daily Mail data, the ac-
curacy of the classifier is almost identical to that of the
classifier trained from the original data, while replac-
ing text with likelihood ranks on CnDARIO reduces the
accuracy of the classifier by about 0.2. The low accu-
racy on CnDARIO is in better agreement with previous
works (Ippolito et al., 2020; Diwan et al., 2021), where
results show that likelihood rank is a poor feature for
neural classifiers to identify Machine-generated text.

4.3.4. Pre-training matters a lot
Model pre-training has become the preceding step for
almost all NLP tasks and this paradigm indeed proves
effective (Devlin et al., 2019; Liu et al., 2019; Qiu et
al., 2020). Our results in Table 2 once again confirm
the validity of pre-training. It is extremely helpful in
improving the accuracy of detecting synthetic text, and
the classifier without pre-training is even worse than
the pre-trained one by more than 0.2 on accuracy (e.g.
applying shuf. on CNN/Daily Mail data). (Aghajanyan
et al., 2020) provides a theoretical analysis of why pre-
training is so effective — attributing the benefits of pre-
training to minimized intrinsic dimension.

4.4. Interpretability analysis
In addition to exploring the existence of artifact forms
in a holistic manner, we also seek to find artifacts by
cutting through the more localized details. We em-
ploy the Integrated Gradients (IG)7 (Sundararajan et
al., 2017) approach to assign an interpretable attribu-
tion score for each token t in an excerpt E, rendering a

7We adopt the implementation of Captum (Kokhlikyan et
al., 2020) and set the step of approximation to 500.

list of attribution scores of (a1, . . . , ai, . . . ), where ai
is the sum of gradients of the classifier’s prediction out-
put to its embedding layer of ti. The higher the value
of ai, the greater the contribution of ti to the classifier’s
prediction of a particular class.

4.4.1. The relationship between term frequency
and attribution score

From Figure 2 we find that the classifier achieves high
performance with only a portion of high-frequency to-
kens, therefore we would like to further verify whether
classifiers assign higher attribution scores to high-
frequency tokens. For each dataset, we randomly sam-
pled 10, 000 excerpts and apply IG towards them. From
Figure 3, we can see that the classifier does not de-
liver higher attribution scores to high-frequency tokens,
instead, some of the tokens in the low-frequency re-
gion receive larger absolute values of the attribution
score, probably because the number of tokens in the
low-frequency region is much larger, leading to high
variance. In Figure 3(a), low-frequency tokens have a
positive attribution mean (around 0.1) for the Human
label; Human text of CnDARIO containing more low-
frequency words (Figure 1) may contribute to this par-
ticular result. In summary, except for CnDARIO’s Hu-
man label, attribution scores of unigram tokens basi-
cally maintain a normal distribution with zero as the
mean regardless of the frequency variation. The re-
sults also demonstrate that the classifier does not
pay special attention to a specific frequency band or
certain high frequency tokens, which further sup-
ports the view that token co-occurrence is the most
critical artifact.

4.4.2. Concreteness of highly attributed n-grams
We design experiments to explore whether n-grams to-
kens with high attribution values differ in concreteness.
The concreteness of a word is defined as ‘the degree
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(d) CnDARIO, label: Machine
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Figure 3: Univariate joint distribution of unigram token frequency (X-axis) and IG attribution score (Y-axis). The
probability density is estimated by kernel density (KDE) (Terrell and Scott, 1992).

to which the concept denoted by a word refers to a
perceptible entity’ (Brysbaert et al., 2014; See et al.,
2019). Words such as ‘soybean’ and ‘liquid’ have a
high concreteness of 4.82 and 4.72 while word such as
‘acceptableness’ has a low concreteness of 1.28. For
English, we adopt the concreteness ratings of 40,000
common English lemmas by (Brysbaert et al., 2014),
with words’ rating scaling from 1 to 5.14. For Chinese,
we adopt concreteness ratings of 9,877 two-character
Chinese words8 (Xu and Li, 2020). We use these rat-
ings to measure the total concreteness of an n-grams by
means of sliding windows (concreteness of tokens that
has no rating is set to zero).
We employ IG to calculate the attribution scores for all
n-grams in E, averaged over the entire training set, and
calculated the concreteness values for top attributed n-
grams in both classes (Human, Machine). In Figure 4,
we present the relationship between n-gram attribution
ranks and their concreteness values, finding little differ-
ence in the mean values of concreteness between Hu-
man and Machine text, especially for the CNN/Daily
Mail dataset. Moreover, we find an intriguing pattern
on the CnDARIO and CNN/Daily Mail datasets: for
top attributed n-grams, as n increases, the concrete-

8For consistency with the English concreteness rating
scale, we subtract the concreteness values of all Chinese two-
character from 6.

ness value of Machine text becomes lower and lower
with respect to the mean value, and the classifier in-
creasingly prefers lower concreteness values as cues
(artifacts) for Machine-generated text. However, on
the Writing Prompt dataset, we find that the concrete-
ness value is always around the mean, regardless of the
variation in n. We hypothesize that Human and Ma-
chine text on this dataset are already very different in
terms of shallow features, leading to the classifier not
learning more implicit features like concreteness.

5. Related work
The contrast of Humans’ inability of detecting syn-
thetic text and models’ impressive performance has
attracted many researchers. There are some detailed
works examining TGMs directly, in the direction of
repetition, rare words, decoding strategies, linguistic
novelty, etc. (McCoy et al., 2021; See et al., 2019)
Other works (Tay et al., 2020; Ippolito et al., 2020;
Solaiman et al., 2019; Munir et al., 2021) analyze how
neural classifiers perform the task of detecting syn-
thetic text, investigating the impacts of various vari-
ables: classifiers’ architecture, TGMs’ decoding strat-
egy, and excerpt length. (Jawahar et al., 2020) pro-
vides a survey on the automatic detection of Machine-
generated text. MAUVE (Pillutla et al., 2021) directly
compares the distribution of Machine and Human text
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Figure 4: X-axis: rank of n-grams with the highest attribution value for Human (blue solid line) and Machine
(orange dotted line) label, with attribution score descending from left to right. The concreteness score (Y-axis) is
averaged over a window size of 50. Horizontal lines represent the mean of the concreteness value of all n-grams.

using divergence frontiers. Shifting the analysis tar-
get, (Dugan et al., 2020) shows that Human annotators
mainly use logic inconsistency, token repetition, etc. as
cues for identifying synthetic text. The most relevant
work to us is the work of (Tay et al., 2020); it exclude
its presence of artifacts in word order but leaves other
presence forms of artifacts under-explored.

6. Limitations and Future Work
Most of the experiments we have designed revolve
around uncovering the form in which the artifacts of
synthetic text appear, but do not provide a good answer
as to why TGM generates certain forms of artifacts. In
addition, some of our findings are not agreed across all
datasets (e.g. replace with like.rank) and more detailed
experiments are needed for generalizable conclusions.
We study the attribution scores of continuous n-grams,
but there is still no practical solution for attributing
skipped n-grams through existing interpretable meth-
ods of Influence Functions9. As the experimental re-
sults indicate the co-occurrences of tokens suffices to
make a distinction, the explanation of how the classifier
works can start from pinpointing the decisive token set.
Besides, we call for new metrics for scoring synthetic

9The number of combinations grows exponentially with
n, for instance, the total number of combinations of select-
ing 3 tokens from a sequence of length 256 is as high as
2, 763, 520.

text (e.g. the degree to which synthetic text can be eas-
ily detected by simple structure models and BOW fea-
tures), new design of artifacts-inspired systems to aid
Human judgment (e.g. prompt the user when a large
number of n-grams of significantly lower concreteness
appear) and greater use of simple classifiers that rely
only on shallow features but are still effective—for de-
tecting synthetic text—to minimize carbon emissions.

7. Conclusion
Currently, neural classifiers are far more capable than
Humans at recognizing synthetic text. Most of the work
addressing this phenomenon has been around the im-
pact of factors such as TGMs’ structure and decod-
ing strategies on the ease of detection. Instead, we
systematically investigate the presence of artifacts di-
rectly from the generated text, which helps gain insight
into the TGMs. Detailed experiments on three datasets
show that artifacts exist mostly in the form of surface-
level semantics, and appear more in high-frequency to-
kens, but rarely present in the form of high-level se-
mantics or syntax. In addition, we unexpectedly found
artifacts in the form of concreteness in higher-order n-
grams using an interpretable approach.
For the dataset, we have open-sourced a high-quality
paired Chinese novel dataset and also supplemented the
CNN/Daily dataset with a new form of data, likelihood
ranks that stem from the Grover-Mega model.
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