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Abstract
This article presents SSR7000, a corpus of synchronized ultrasound tongue and lip images designed for end-to-end silent
speech recognition (SSR). Although neural end-to-end models are successfully updating state-of-the-art technology in the
field of automatic speech recognition, SSR research based on ultrasound tongue imaging has still not evolved past cascaded
DNN-HMM models due to the absence of large datasets. In this study, we constructed a large dataset, namely SSR7000,
to exploit the performance of end-to-end models. The SSR7000 dataset contains ultrasound tongue and lip images of 7484
utterances by a single speaker. It contains more utterances per person than any other SSR corpus based on ultrasound imaging.
We also describe preprocessing techniques to address the data variances that are inevitable when collecting a large dataset and
present benchmark results using an end-to-end model. The SSR7000 corpus is publicly available under the CC BY-NC 4.0
license.
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1. Introduction
A silent speech interface (SSI) (Denby et al., 2010) en-
ables us to speak or use voice interfaces without utter-
ing an audible sound. The essential purpose of SSI is
to expand the range of applications of voice interfaces
in computing. Voice interfaces (Porcheron et al., 2018;
Seaborn et al., 2021) based on automatic speech recog-
nition (ASR) are intuitive interfaces that most people
can use without training. It is like asking someone else
to do things for us. However, the intrinsic nature of
vocalization presents various constraints. For exam-
ple, it is difficult to use in noisy environments. Caution
is also warranted when handling information that may
jeopardize privacy or confidentiality. The SSI removes
this limitation by enabling non-voice interactions. It
also allows communication for users in hands-busy set-
tings or for those with a low voice or no voice due to
tracheostomy, amyotrophic lateral sclerosis (ALS), or
dysarthria.
The key technology for implementing SSI is silent
speech recognition (SSR). Silent speech is defined as
involving only articulatory movements without vocal-
ization or the use of vocal cords. Traditionally, sen-
sors such as surface electromyography (Maier-Hein et
al., 2005; Kapur et al., 2018), electroencephalography
(Porbadnigk et al., 2009), a front camera for lip read-
ing (Wand et al., 2016; Assael et al., 2016b; Sun et al.,
2018), and ultrasound imaging (Kimura et al., 2019;
Cai et al., 2011; Ji et al., 2018a) have been used for
SSR. Among these, ultrasound imaging is superior as a
non-invasive and safe means of obtaining detailed im-
ages of the body, as it is also used during pregnancy
(Denby et al., 2010). It can capture tongue movements,
which play a vital role in articulation. In addition, the
ultrasound probe, the sensor for ultrasound imaging,
can be flexible and miniaturized (approx. 1 cm × 2
cm). These are essential factors for future use in wear-

able applications.
Several studies have focused on SSR based on ultra-
sound tongue imaging (UTI), and the current state-of-
the-art (SOTA) method (Ji et al., 2018b) for this task
uses the cascaded DNN-HMM model of speech recog-
nition (Ji et al., 2018a). On the other hand, in the field
of ASR, end-to-end models (Kim et al., 2017; Chiu and
others, 2018) based on connectionist temporal classi-
fication (CTC) (Graves and Jaitly, 2014) or attention-
based encoder-decoder (Chan et al., 2016) have be-
come mainstream due to their significantly better per-
formance for large speech corpora. Some of these
techniques have also been adopted in the field of lip
reading (Assael et al., 2016a; Afouras et al., 2018),
which is similar to silent speech recognition tasks,
and have achieved SOTA performance with large-scale
datasets (Chung and Zisserman, 2016; Alghamdi et al.,
2018).The emergence of large datasets has attracted
many researchers to the field of lip reading and accel-
erated research in this area. However, the benchmark
dataset of the UTI-based SSR, the Silent Speech Chal-
lenge (SSC) dataset (Denby et al., 2013), is relatively
small compared with the corpora used for other speech
recognition tasks. It is therefore not suitable to exploit
performance from end-to-end models.
In this study, we constructed SSR7000, a large-scale
corpus of synchronized ultrasound tongue and lip im-
ages designed for end-to-end UTI-based SSR. Our
dataset comprises approximately 7484 UTI and lip im-
ages of silent speech by a single native speaker of En-
glish. Table 1 presents a comparison of SSR7000 with
other corpora for UTI-based SSR. Our dataset is char-
acterized by a large sample size for a single speaker
and a realistic variance among samples, assuming the
stories using end-to-end models. The SSR7000 ap-
pears to be an extension of SSC (Denby et al., 2013).
It shares the same number of speakers and part of the
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Table 1: A comparison of UTI-based corpora. Our SSR7000 corpus is characterized by the maximum number of
utterances per person. It is approximately three times bigger than SSC (Denby et al., 2013). The TaL (Ribeiro et
al., 2021) corpus and SSR7000 used the same hardware and software system.

SSR7000 SSC TaL UltraSuite
Silent speech Yes Yes Almost No No
Lip camera Yes Yes Yes No
Number of speakers 1 1 81 113
Max utterances per person (training data) 7384 2342 1582 500
Corpus to read TIMIT+WSJ0 TIMIT+WSJ0 Mixture Mixture

corpus but is essentially different. Our dataset has ap-
proximately three times the number of sentences and
a relatively larger variance among samples compared
with SSC (Denby et al., 2013). This is primarily due
to the fact that we did not perform a strict calibra-
tion to suppress variance, unlike SSC, for each col-
lecting session, considering that calibration will be a
barrier when collecting samples even larger than the
SSR7000 or when collecting from multiple speakers in
a future study. Additionally, for the application used
in wearable computing, calibration is not practical for
each instance. SSR7000 also provides a preprocess-
ing challenge to reduce data variance, and this paper
presents a benchmarking method for this. The Ultra-
Suite repository (Eshky et al., 2018) contains ultra-
sound and speech data from 58 children with normal
development and from 28 children with speech disor-
ders receiving speech therapy. The most recent TAL
corpus (Ribeiro et al., 2021) consists of TaL1, a set
of six recording sessions of one male native English
speaker who is a professional voice talent, and TaL80,
a set of 81 recording sessions of a male native English
speaker with no professional voice talent experience.
The TaL corpus is similar to SSR7000 in that it uses
the same fixing device and recording software. How-
ever, the TaL corpus is not strictly a silent speech cor-
pus (participants uttered voice), as it is also intended
for use in articulatory-to-speech mapping (Hueber et
al., 2011; Porras et al., 2019), language learning (Wil-
son and Gick, 2006; Gick et al., 2008), and phonetics
research. Our dataset contains the largest number of
utterances per speaker.

Our main contribution is as follows: 1) we have de-
signed and constructed a new dataset “SSR7000” for
SSR using end-to-end models, 2) we describe a strat-
egy for recording a large-scale SSR dataset and pre-
processing techniques to handle data variances, and 3)
we present benchmark results using an end-to-end ASR
model. In Section 2, we delineate the data collection
method, the characteristics of the data, the preprocess-
ing techniques based on the data properties. In Sec-
tion 3, we demonstrate how to extract features from
the preprocessed data and benchmark the recognition
of these features using ESPnet (Watanabe et al., 2018),
a speech recognition toolkit. The raw image data, the
preprocessed data, and the feature extracted data of
the dataset have been packaged and made public. The

recognition part of the dataset is available in a form that
anyone can reproduce using Google Colab1.

2. SSR7000
2.1. Dataset Collection
Our SSR7000 corpus is a recording set consisting
of 7484 utterances by a single male native English
speaker. In this paper, we split the dataset into 7384
training data (100 for validation) and 100 testing data.
All utterances were recorded in a silent manner, where
the participant did not speak aloud but only moved
his articulatory organs. We used an UltraFit sys-
tem (Spreafico et al., 2018) (Fig. 1) for data acquisition.
The system is comprised of a 3D-printed adjustable
helmet housing a convex-array ultrasound probe (open-
ing angle: 104°, frequency range: 5–10 MHz, and
piezo elements: 128) to the chin of the participant and
an NTSC micro-camera for capturing from the front so
that the participant’s lips were entirely visible in the
image.
The Articulate Assistant Advanced (AAA) soft-
ware (Articulate Instruments Ltd, 2021) was used to
record and synchronize the dataset. Ultrasound im-
ages were recorded with a field of view of 92 degrees,
outputting videos with a resolution of 640 × 445 pix-
els at 63.51 fps. Lip images were recorded using the
micro-camera, outputting videos with a resolution of
640 × 480 pixels at 59.94 fps (greyscale interlaced).
The two video streams were synchronized using the
SynchBrightUp unit, which is triggered by an audio
beep that superimposes a white mark on the video sig-
nal and generates a pulse on the audio channel, thereby
aligning the first few frames.
Given that the fatigue of the participant could affect the
articulation, we limited the collection time to 1 h per
session and 3 h per day. We also avoided collecting
data for more than 3 days in a row. In addition, we re-
moved the equipment every time we took a break. Be-
tween sessions, we did a simple check to ensure that the
tongue and lips were visible to the sensors (camera and
probe). The SSC (Denby et al., 2013) data collection
included a recalibration process to adjust the tongue
and lip positions interactively using modules provided
by Ultraspeech for each session to make the positioning

1https://github.com/supernaiter/
ssr7000

https://github.com/supernaiter/ssr7000
https://github.com/supernaiter/ssr7000
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consistent. Consistent positioning with strict recalibra-
tion is important to achieve high accuracy on the test
set, but we omitted it based on the story the SSR7000
supposes, the large dataset for end-to-end models. For
this reason, SSR7000 has a larger variance than SSC.
This can be observed in the difference in clarity be-
tween the SSR7000 ”average faces” (Fig. 4-A) and the
SSC ”average faces” (Fig. 6). This is an important
property difference between SSC (Denby et al., 2013)
and SSR7000.

Figure 1: UltraFit stabilizing helmet, which fixes the
video camera in front of the participant and fixes an ul-
trasound probe to the chin of the participant. The same
system was used for UltraSuite (Eshky et al., 2018) and
TaL (Ribeiro et al., 2021).

For the recording prompts, we chose the TIMIT cor-
pus (Garofolo et al., 1992) as the SSC (Denby et al.,
2013) because it includes phonetically balanced 2342
sentences and is suitable for training data. To further
extend this, 5042 new sentences were selected from
wsj0 (Garofalo et al., 2007) corpus, adding up to 7384
sentences (50 sentences from each corpus are used for
validation). For the test set, we selected the same 100
sentences as SSC from the wsj0 (Garofalo et al., 2007).
The sentences for the test data are fully independent of
the 7384 sentences in the training and validation data.
Since the scripts from the WSJ corpus are generally
longer than those from TIMIT, we set a maximal dura-
tion of 12 s for the recordings compared to the 8 s used
in the SSC dataset (Denby et al., 2013). All 7484 sen-
tences were captured in approximately 50 sessions. As
mentioned above, the camera and the probe positions
differed slightly for each session.

2.2. Ultrasound Tongue Images (UTIs)
Fig. 2 depicts samples of the captured ultrasound
tongue image (UTI) sequences. UTIs were captured
using a high-gain setting. As with a normal RGB
camera, a high-gain setting on the ultrasound imag-
ing probe will make the image brighter, while a low
gain setting will make it darker. Since it is difficult
to always guarantee the right gain setting in a large
dataset, we used a high-gain setting to reliably cap-
ture the tongue throughout many sessions over several
weeks. Although this high-gain setting resulted in sub-
stantial white noise, as the first row of Fig. 2 shows, in
all sessions, we were able to avoid the worst-case sce-
nario in which the gain was too low to capture the tar-

get tongue. However, the second row of Fig. 2 indicate
that when we applied feature extraction using discrete
cosine transform (DCT), there was a minimal differ-
ence between the reconstructed images, meaning that
DCT did not extract important features. Therefore, we
designed a filter that removes white noise and empha-
sizes only the target tongue.

Figure 2: Ultrasound tongue images (UTIs) and recon-
structed images using discrete cosine transform (DCT).
The first row shows the raw images of the UTIs, which
were captured at a high-gain setting and had white
noise. The second row shows reconstructed images
of those from the first row. The third row shows the
UTIs after applying moving average filtering. The re-
constructed images in the fourth row are increasingly
distinguishable from those without filtering.

2.2.1. Filtering UTI
In still images, white noise is difficult to distinguish
from the tongue. However, since white noise is incon-
sistent over time, it is easy to distinguish the two in
video. Therefore, we set a high brightness threshold
for each image and performed moving average filter-
ing to emphasize the consistent capture of the tongue
over time. Fig. 2 compares filtered (the third row) and
raw data (the first row). Considering the frame rate of
the ultrasound videos (60 fps), we set the slide window
size to 5 and discovered that the noise reduced substan-
tially. The images in the second and fourth rows are
the reconstructed images extracted using DCT. In the
filtered images, the white noise almost disappears, and
the tongue features are emphasized. The fourth row
in Fig. 2 shows that filtering succeeded in emphasizing
the important DCT features.

2.3. Lip Images
In the top row of Fig. 3, raw lip images taken from dif-
ferent sessions are depicted. The lip positions changed
observably in each session. Fig. 4. shows the “aver-
age face” from the training data, which is calculated by
aggregating the first frame from each of the 7384 ut-
terances and then dividing their sum by the number of
utterances (7384). The “average face” in the first frame
of the training data is highly blurred. This means that
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Figure 3: The visualization of cropping for lip videos. We detected ROIs in lip videos using a neural image tracking
algorithm and cropped them out for better recognition results.

the lip positions varied and that there was a high vari-
ance in the raw data. When comparing average faces
from the training data (Fig. 4.A) to those from the test
data (Fig. 4.B), it is evident that the test data were not
in the distribution of the training data.

2.3.1. Detecting Region of Interest and Cropping
Based on the above observations, we found it neces-
sary to locate the lips and cut out the region of interest
(ROI) to improve recognition results. To determine the
ROI in the lip videos, we employed a deep-learning im-
age tracking algorithm, GOTURN (Held et al., 2016),
to estimate the position of the lips for each frame. For
each of the lip videos, we first computed a video-level
lip-bounding box by averaging the tracking results at
each frame. Subsequently, the bounding box was re-
sized to 80 × 120 and finally fine-tuned manually to
ensure that the lips were located approximately at the
center. Fig. 3 illustrates how the lip ROIs were de-
tected and cropped out. Fig. 4.C shows the ”average
face” from the training data with the detection of the
ROI and cropping, while Fig. 4.D shows that of the test
data. The average training face became much clearer
without ROI-cropping (A). The face from the training
data (C) and the test data (D) also became more similar.

2.4. Dataset
The SSR7000 is publicly available2 and it is the first
to provide raw data without any preprocessing, which
is useful for those interested in improving preprocess-
ing. For those more interested in the recognizer rather
than the preprocessing, we have provided the prepro-
cessed data described in this paper. The corpus is pub-
licly available under the CC BY-NC4.0 license.

3. Experiments
3.1. Recognition Pipeline
Our recognition pipeline uses a hybrid CTC/attention-
based end-to-end ASR model (Watanabe et al., 2017).
We implemented this model based on the VoxForge
recipe of ESPnet (Watanabe et al., 2018) with some

2https://github.com/supernaiter/
ssr7000

Figure 4: The “average face” of our SSR7000 dataset,
which was calculated by adding up the first frame from
each of the utterances, then dividing it by the number of
utterances. A) shows the ”average face” from the train-
ing data without cropping or preprocessing. B) shows
that from the test data without preprocessing. C) shows
that from the training data with preprocessing, and D)
shows that from the test data with preprocessing. The
more blurred the average face, the greater the variance
in the data.

modifications. The detailed model architecture, param-
eter settings, and configurations are publicly available
in the repository alongside the dataset.
As indicated in Fig 5, we utilized the DCT features as
inputs to the network. We used SpecAugment (Park et
al., 2019) to apply temporal and frequency augmenta-
tion, which includes a random time warp (shifting the
data sequence along the time axis) for up to five frames,
two random time masks (replacing the data in a random
time range with zeros) with a length of up to 40, and
two random frequency masks (replacing the data in a
random frequency range with zeros) up to a width of 5
for DCT 20, 10 for DCT 30, 30 for DCT 60, and DCT
120, respectively.

3.2. Training
The training was run on Ubuntu 18.04 with a
GTX1080Ti GPU and converged in approximately 4 h.
The model that had the highest accuracy on the valida-
tion set was applied to the test data and to calculate the
error rates.

https://github.com/supernaiter/ssr7000
https://github.com/supernaiter/ssr7000
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Figure 5: Our recognition pipeline using an end-to-end ASR model. Note that after the feature extraction step, we
show images reconstructed from DCT features instead of DCT features themselves for visualization. The lip and
tongue images are reconstructed using 30 DCT coefficients.

3.3. Results
We used word error rate (WER) and character error rate
(CER) as metrics. While the phoneme level result has
been indicated along with WER in past studies on SSR
based on UTI, we show CER instead because our rec-
organizer uses characters as tokens.

3.3.1. Comparison of Preprocessing
Table 2 shows a comparison of the preprocessing per-
formed. Evidently, each preprocessing improved the
results as expected. The improvements in preprocess-
ing were substantial (7% with ROI-C, 4% improvement
with filtering on both DCT-60 and DCT30 condition),
while the change in the error rate was quite minimal
when employing various E2E models. This suggests
that the main focus of SSR7000 is preprocessing. In
particular, ROI-cropping was done semi-automatically
by OpenCV, so it can be expected to be greatly im-
proved by aligning the ROI by hand or by inventing
superior methods.

Table 2: Comparison of the preprocessing results. ROI-
C means ROI-cropping, which is explained in 2.3.1.

Raw ROI-C ROI-C + Filter

DCT30 CER 32.1 25.8 18.1
WER 59.4 50.4 40.1

DCT60 CER 24.0 18.4 17.6
WER 48.9 41.2 37.6

3.3.2. Number of Data
Table 3 shows the results of investigating the effect of
the number of data on the recognition. For the exper-
iments, 60 DCT features were used. Subsets of 1000,
3000, and 5000 data were randomly selected from all
training data. We repeated the random sampling and
training process several times to diminish the noise in
the results. Overall, we can see a linear improvement in
the error rate as the amount of training data increases.
This supports our idea of increasing the number of data
for the E2E model. The decrease in the error rate has
not yet converged, suggesting that adding more data
may increase the accuracy. Data augmentation of raw

image data as well as SpecAug should be also effective.

Table 3: Comparison of Number of Data
1000 3000 5000 7284 (all)

CER 51.5 47.4 23.7 17.6
WER 89.5 81.0 50.0 37.6

3.3.3. Number of DCT Dimensions
Table 4 shows the variation in the error rate according
to the number of dimensions of the features obtained
by DCT. We first attempted 20, 30, and 60 dimensions,
and found that the error rate tended to decrease as the
number of dimensions increased. When we tried 120
dimensions, however, the error rate increased. Ji et.al
(Ji et al., 2018a) reported that 30 dimensions is optimal
for the SSC dataset, but when using a more expressive
end-to-end model with a large amount of data, as in our
current experiment, it is suggested that a larger number
of DCT dimensions is appropriate. Based on this result,
we set the DCT dimension to 60 in the other compari-
son experiments.

Table 4: Comparison of the number of DCT dimen-
sions

20 30 60 120
CER 27.0 18.1 17.6 37.5
WER 62.9 40.1 37.6 67.4

3.3.4. The Lip and Tongue
Table 5 indicates the results of the recognition exper-
iments with lip images and UTIs alone (DCT-60 was
used). The lip images and UTIs have been prepro-
cessed respectively. As the ”Lip and UTI” column
shows, the two modalities were synergistic and had a
better error rate than those of UTI or the lip images
alone. The lip images alone had a good error rate of
22.7% CER and 46.1% WER. On the other hand, as in
Table 5, UTIs alone had a high error rate;72.0% WER.
However, considering that the UTIs had greater accu-
racy than the lip images when tested alone in the TaL
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corpus (Ribeiro et al., 2021), the gain might have been
set too high.

Table 5: A comparison of lip images, UTIs, and both.
UTIs Lip Lip and UTIs

CER 40.7 22.7 17.6
WER 72.0 46.1 37.6

4. Discussion
4.1. Comparison with SSC
Although the SSC dataset and the SSR7000 were cre-
ated using different equipment and under different con-
ditions, the test sentences are the same; thus, our re-
sults with SSR7000 can be fairly compared to that
of previous work with SSC. We previously performed
recognition tasks on the SSC dataset using the same
pipeline and recorded an error rate of 10.1% CER and
20.5% WER (Kimura et al., 2020) (The best result
6.4% WER is reported by Ji et.al (Ji et al., 2018a)).
This is about half the error rate of the SSR7000’s best
results of 17.6% CER and 37.6% WER, even though
the SSR7000 contains roughly three times as much
training data. We tried not only the hybrid ctc/attention
model (Watanabe et al., 2017), but also the pure at-
tention architecture with the same hyperparameters,
and the former model produced the best result above.
Therefore, the causes of discrepancy should lies before
the recognizer.
Fig. 6 which shows that the lip positions are quite con-
sistent through training data, and it seems quite similar
with that of test data. On the other hand, the SSR7000
average face shown in Fig. 4-A is very blurry. This is
due to the fact that the lip position is different for each
session, as shown in Fig. 3. The preprocessed image
of the SSR7000 shown in Fig. 4-C is somewhat clearer
than the raw image, but still blurrier than the SSC im-
age (Fig. 6). This strongly depends on the quality of
the calibration during the session; how rigorous the cal-
ibration is depends on the story the dataset is supposed
to tell. The SSR7000 was intended to be the first model
on a large dataset to exploit the performance of endto-
end ASR models, so only a simple calibration was per-
formed.
There is also room for improvement in the fixation de-
vices for the ultrasound probe and camera. The 3D
printed helmet-type fixation device used in this study
could not hold the sensors in the same position for a
long period of time, and the positions of the sensors
moved even during the single session. If we can de-
velop a fixation device that can be easily installed in
the same position every time, t will help the calibration
between sessions.
Compared to the SSR7000, the SSC (Denby et al.,
2013) has a wider angle lens positioned closer to the
lips; the SSC is thereby able to successfully capture the
frontal tongue movement in addition to the lip move-

ment. The discrepancy between SSR7000 and SSC
may propose to adopt SSC’s style to capture lip images.

Figure 6: ”Average faces (lips)” of the SSC dataset.
That of the training data is clearer than that of
SSR7000, and the training data and test data are sur-
prisingly similar.

4.2. Preprocessing
As mentioned above, our dataset has a large variance in
lip position, which introduces a challenge regarding the
method to suppress it (ROI-cropping). We have shown
a first benchmark using an existing algorithm provided
by OpenCV (GOTURN (Held et al., 2016)). The lip
tracing was done automatically, except for the manual
adjustment of the few sessions. In order to get the best
offline results, it would be useful to use a crowd worker
to mark the coordinates of the corners of the mouth for
all images. This allows normalization of rotations and
size changes, which was difficult to do with GOTURN.

4.3. Feature Extraction
We used the discrete cosine transform used in Ji et al.’s
work (Ji et al., 2018a) and TaL (Ribeiro et al., 2021)
for feature extraction, but there is still room to exper-
iment with various feature extraction methods; for ex-
ample, principal component analysis is the first other
method to consider. More recent methods, such as us-
ing an auto encoder and a variational auto-encoder us-
ing neural networks, are good candidates. The use of
pre-trained weights (Feng et al., 2020) for the lip im-
ages established in the field of lip reading may also be
useful.

4.4. Channel Attention
In this pipeline, the lip image features and the UTI
features were just stacked and fed into the recognizer
(for example, when using DCT-60, the stacked features
were 120 dimensions). However, the lip image and the
UTI should have different pronunciation strengths. For
example, ”p”, ”b”, and ”m” are not observable from the
UTI, but can be inferred from the lip images. On the
other hand, pronunciations that mainly use the tongue,
such as ”r” and ”l”, cannot be observed from outside
the body, so the UTI is important. To reflect these char-
acteristics in the recognizer, it may be effective to train
different recognizers for each feature in advance and
integrate them afterwards, or to incorporate a mecha-
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nism such as a channel attention module (Woo et al.,
2018).

5. Conclusion
This paper presented a large dataset for the end-to-
end speech recognition model, SSR7000, which com-
prises 7484 silent speech utterances synchronized with
UTIs and Lip Image. Among existing UTI-based cor-
pora, our SSR7000 has the largest number of utter-
ances per person. We also introduced a benchmark
preprocessing method and included preprocessed im-
ages from the dataset. Silent speech recognition exper-
iments using the E2E model of hybrid CTC/attention
were performed and benchmarked. This model will be
released with SSR7000. The model will be released to-
gether with the SSR7000 so that people who are inter-
ested in preprocessing, recognizers, or other techniques
can try them without the difficulty of implementing the
pipeline.
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