Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 697-706
Marseille, 20-25 June 2022
© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

LESPELL — A Multi-Lingual Benchmark Corpus of Spelling Errors
to Develop Spellchecking Methods for Learner Language

Marie Bexte, Ronja Laarmann-Quante, Andrea Horbach, Torsten Zesch
Research Cluster “Digitalization, Diversity and Lifelong Learning — Consequences for Higher Education”,
FernUniversitét in Hagen, Germany

Abstract
Spellchecking text written by language learners is especially challenging because errors made by learners differ both quanti-
tatively and qualitatively from errors made by already proficient learners. We introduce LESPELL, a multi-lingual (English,
German, Italian, and Czech) evaluation data set of spelling mistakes in context that we compiled from seven underlying learner
corpora. Our experiments show that existing spellcheckers do not work well with learner data. Thus, we introduce a highly
customizable spell checking component for the DKPro architecture, which improves performance in many settings.

Keywords: spellchecking, error correction, language learner data, multilingual

1. Introduction

Learner texts often differ both in the quantity and qual-
ity of errors from texts written by native speakers (Rim-
rott and Heift, 2008 [Flor et al., 2015)). Consider the
following example, taken from the MERLIN-DE cor-
pus (see Section : Ich schuche 3-4 zimm in Dreter
Stock. The orthographically correct version would be
Ich suche 3-4 Zimmer in dritter Stock. (‘I am look-
ing for 3-4 rooms on third floor.”) Note that grammat-
ical errors are not of interest here. We can see that
all misspellings in this example have an edit distance
greater than 1 to their corrections. The pronunciation,
however, is often still very similar (e.g. Dreter [dre:te]
and dritter [drite]). Proficient writers, in contrast, of-
ten produce typos which result in misspellings such as
driktter, where an unrelated incorrect letter is intro-
duced.

Consequently, many downstream NLP tools are known
to decrease in performance when applied on non-
standard data such as learner language (Foster, 2010;
Keiper et al., 2016). Off-the-shelf spellchecking tools
are mostly targeted at errors of proficient writers and
fail to correct multi-edit errors produced by learners
(Rimrott and Heift, 2008)). Therefore, there have been
several attempts to build spellcheckers that are special-
ized in learner errors, both for second language (L2,
e.g. Boyd (2009)) and first language (L1) learners, i.e.
young children (e.g. Stiiker et al. (2011), Downs et al.
(2020)). The different approaches are hard to compare,
however, because they have been evaluated on different
data sets and partly on different languages. Therefore,
it has not yet been determined to what extent the ap-
proaches are transferable to other learner populations
and other languages.

In general, [Flor et al. (2019) noted that most
spellcheckers have been evaluated on either proprietary
or artificial data. Therefore, they released TOEFL-
Spell, a publicly available benchmark spelling data set
which is based on real errors from L2 learners of En-
glish. However, there is yet no comparable benchmark

697

set for other languages or even for multiple languages
sharing a common format.

Also, general-purpose spellcheckers have mostly been
evaluated and compared on English data only (see e.g.
Nather (2020) for a comparison of 14 spellcheckers on
artificially created English data). To begin with, only
few spellcheckers are freely available off-the-shelf for
several languages. Popular exceptions are Hunspel
and LanguageToolE] Some of the other available tools
have not been specifically designed for a particular lan-
guage. They claim to be transferable, but they have not
been trained and evaluated on non-English data (e.g.
NeuSpell (Jayanthi et al., 2020)) or only paid versions
of a spellchecker come with models for different lan-
guages (see Jamspell)E]

It is also an open question how well neural models
will work for learner data. Not only is data contain-
ing learner misspellings rare, it is also hard to synthe-
size. Even with a fine-tuned neural model available, a
drawback of it would still be that it is less transparent,
meaning that the main way of influencing its perfor-
mance is the choice of training data and that it is not
as straightforward to separately evaluate error detection
and correction.

Contributions Our goal is to foster comparable,
multilingual research on language learner errors as well
as easy integration of spellchecking methods for lan-
guage learners into NLP pipelines. To this end, our
paper makes the following contributions:

1. We introduce LESPELL, a multilingual data set of
spelling errors by language learners, which con-
sists of spelling errors in context taken from texts
of L1 and L2 learners of varying proficiency levels
from four different languages (English, German,
Italian and Czech). The data set is derived from
seven existing learner corpora and transferred to

"http://hunspell.github.io/
Zhttps://github.com/languagetool-org/languagetool
*https://jamspell.com

a uniform XML-format. We make all data pub-
licly availableﬂ In cases where the license of a
corpus does not allow re-distribution, we provide
the code to transform the original corpus into the
LESPELL format.

We release the highly-customizable spellcheck-
ing software used in our experiments as DKPro
Spelling, a Java-based toolkit which can be inte-
grated into any DKPro pipeline as well as used
as an independent preprocessing step for any
NLP project. Crucially, DKPro Spelling can be
used for spelling error detection and correction
in any language for which a dictionary, a tok-
enizer and a Named Entity Recognition (NER)
module are available. Our spellchecking toolkit
can be used in two ways: In the user mode,
one can easily apply the default setting via a
Java APL In the expert mode, the expert user
may supply their own resources (such as cus-
tomized cost matrices for Levenshtein distance or
their own language models) and directly integrate
the spellcheckers as components into their own
UIMA or DKPro Pipelines (Eckart De Castilho
and Gurevych, 2014).

. We evaluate DKPro Spelling against existing mul-
tilingual spellchecking tools (Hunspell and Lan-
guageTool) on our LESPELL data set. We dis-
cuss parameters that can be varied within a
spellchecker and analyze their influence on the
spellchecking performance. Our experiments lead
to a default configuration of DKPro Spelling
which outperforms both Hunspell and Language-
Tool in most settings, in particular for languages
other than English and learners with non-native
proficiency.

2. Multilingual Spelling Error
Benchmark Data Set

In order to construct the multilingual LESPELL bench-
mark data set for spelling error detection and correc-
tion, we extract misspelled words and their contexts
from a number of learner corpora that have been an-
notated for spelling errors. Our collection covers four
European languages (English, German, Italian, and
Czech), different modalities (hand- and typewritten),
and both L1 and L2 speakers. We are interested only
in orthographical errors and thus only consider corpora
that differentiate between orthographical and grammat-
ical errors. In the following, we briefly characterize the
corpora that make up the LESPELL data set and de-
scribe how we extracted the spelling errors.

2.1. Source Corpora

TOEFL-Spell (Flor et al.,, 2019) is based on
TOEFL11, the ETS Corpus of Non-Native Written En-
glish (Blanchard et al., 2013) and was introduced as a

*https://github.com/Itl-ude/Itl-spelling

698

benchmark corpus of English misspellings. It consists
of spelling errors found in argumentative essays writ-
ten by advanced L2 learners of English with different
language backgrounds. The essays were written for the
TOEFL® iBT test, which measures academic English
proficiency.

MERLIN-DE, MERLIN-IT, MERLIN-CZ (Wis-
niewski et al., 2018) consist of texts that were written
by L2 learners of German, Italian and Czech, respec-
tively. The texts were part of TELCE] language tests
(for German and Italian) and exams of the University
of Prague (for Czech) at the levels Al to C1 of the
Common European Reference Frame. We extracted all
errors that were annotated as orthography errors, cov-
ering spelling, capitalization and word-building (i.e.
missing and superfluous whitespaces between words)
problems.

Litkey (Laarmann-Quante et al., 2019) consists of
texts written by German primary school children be-
tween grades 2 and 4. The texts were produced freely
based on short picture stories. The corpus contains a
manually constructed target hypothesis which corrects
orthographic errors only.

SkaLa (Scholten-Akoun et al., 2014) results from a
test designed to assess first-year university students’
academic writing skills. Specifically, we use a set of
over 2000 essays written by students in a study pro-
gram for teachers in Germany, i.e. many of the test-
takers were native speakers. As this data set does not
come with error annotation, we collected 600 instances
of words not in a dictionary and manually annotated
them as spelling errors or not, including a manual cor-
rection. This means that no real-word errors are marked
in this data set.

CItA (Barbagli et al., 2016) contains texts produced
by Italian children during the first two years of lower
secondary school. The texts are based on different
writing prompts (e.g. narrative, argumentative, descrip-
tive). We normalize the set of different characters used
in the CItA corpus with respect to apostrophes and quo-
tation marks to ensure proper tokenization. We extract
as spelling errors all errors that have been manually an-
notated as orthographic, except for erroneous usages of
apostrophes.

2.2. Data Set Overview

Table|l| provides an overview of the individual subsets
in our benchmark spelling data set. Under modality,
we distinguish whether the original data was collected
hand- or computer-written. The average Levenshtein
distance refers to the distance between an erroneous
word and its gold correction. Errors in which a word
was erroneously split into two or more parts by the
writer are excluded from this statistic. The column split
words shows the proportion of errors that include such
an erroneous splitting of words.

Shttps://www.telc.net

Data Set Name Language Modality # Errors ¢ Levenshtein Error Rate Split Words
TOEFL-Spell English L2 typed 6,251 1.25 2.19% 0.5%
MERLIN-DE German L2 hand-written 5,366 1.34 6.94% 12.9%
Litkey German L1 hand-written 38,698 1.40 20.20% 11.0%
Skala German L1 typed 423 1.25 3.40% 0.9%
MERLIN-IT Italian L2 hand-written 2,137 1.18 3.22% 3.0%
CItA Italian L1 hand-written 1,431 1.14 0.39% 4.1%
MERLIN-CZ Czech L2 hand-written 4,807 1.35 9.95% 3.1%
Table 1: Source corpus information and statistics

We convert all corpora into a uniform XML-format.
Details about the format can be found in the documen-
tation that comes with the data set. Note that for all cor-
pora, correct sentences are included as well, so that our
data set can be easily used for developing and testing
spelling error correction methods that take the whole
text into account. We directly provide the benchmark
data for MERLIN (all languages) and Litkey. For the
other corpora, due to licensing issues, we only provide
the code for transforming the original format into the
XML format of the spelling error benchmark data set.

3. Experimental Setup

We now discuss individual preprocessing toolchains
per language, describe Hunspell and LanguageTool,
which we used as baseline systems, and then present
our own spellchecking toolkit DKPro Spelling.

3.1.

We use language-specific preprocessing tools provided
by DKPro where possible. For Czech, there is no seg-
menter and NER model available, so we use the En-
glish OpenNIp segmenter and the English NER model
instead. While there is no NER model available for
Italian either, there is an Italian POS model and we use
this to identify Named Entities (NEs) via the respective
POS tag. For the Litkey corpus, we use a whitespace
segmenter because it already comes in a tokenized for-
mat.

Preprocessing

3.2. Existing Multi-lingual Spellcheckers

Two popular spelling correction tools, which are freely
available for multiple languages, are Hunspell and
LanguageTool. In the following experiments, we ap-
ply Hunspell and LanguageTool to our multilingual
data set of language learner corpora. We then ex-
periment with various parameters that might influence
spellchecking performance.

The spelling correction process can be seen as divided
into two steps. The first one is to identify which words
of a corpus are considered to be misspellings by the
respective tool. In a second step, correction candidates
are then selected for the misspellings in a text.

To gain insight into how these two aspects affect the
performance of the spellchecking tools, we consider
them separately.

699

Hunspell can be used for any language for which a
dictionary is available. The dictionaries can contain
additional information about replacements of common
errors, keyboard layout, or pronunciation, hence the
tool’s spellchecking ability depends a lot on the qual-
ity of the dictionaryE] The tool uses a dictionary lookup
for spelling error detection and different means for gen-
erating correction candidates: applying manipulations
to the misspelled word itself and computing shared n-
grams between the misspelling and dictionary words.
Phonetic information is rarely present in the commonly
available dictionaries and therefore mostly not used. A
general limitation of Hunspell is that it only looks at in-
dividual words and does take neither frequency of cor-
rection candidates nor context into account.

LanguageTool currently supports language check-
ing including orthography, grammar and style for over
30 languages and language variants. It mainly relies
on hand-crafted rules which can take the local con-
text into account. Note that LanguageTool does not
support Czech yet, meaning that we cannot report its
spellchecking performance on MERLIN-CZ.

3.3. DKPro Spelling

We design our spellchecking tool as part of the DKPro
framework family. Its main feature is the customizabil-
ity according to the characteristics of the data that shall
be corrected. All language resources are configurable,
which makes the tool language-agnostic. Its function-
ality comprises non-word spelling error detection and
correction.

Our architecture follows earlier approaches like (Flor
and Futagi, 2012) in combining different candidate
generation methods and re-ranking the candidates by
looking at the context. However, our system is freely
available and our experiments evaluate it on non-
artificial multi-lingual data. Figure [1] illustrates the
pipeline, which we describe in the following.

Misspelling Detection The texts are first tokenized
and annotated for NEs, numerals and punctuation, all
of which are not considered as potential misspellings
in the default setting.

bsee Spylls (https:/github.com/zverok/spylls) and the corre-
sponding series of articles (https:/zverok.github.io/spellchecker.
html) for further information on Hunspell

https://github.com/zverok/spylls
https://zverok.github.io/spellchecker.html
https://zverok.github.io/spellchecker.html

Misspelling Detection

Tagging of
Named Comparison
I Tokenization M Entites, | against
Numbers, Dictionary
Punctuation
Custom
Dictionary

Candidate Selection

Missing Spaces

Figure 1: Overview of the DKPro Spelling pipeline.

Our toolkit uses existing tokenizers and NER sys-
tems provided by DKPro Core (Eckart de Castilho and
Gurevych, 2014). For the identification of numerals
and punctuation, it relies on regular expression match-
ing. A subsequent step compares the remaining words
against a full-form dictionary (or a set of dictionaries)
and marks all words which are not present in any of
them as misspellings. A number of heuristics is used to
allow capitalization of tokens at the beginning of sen-
tences, after line breaks, or after quotation marks.

We provide default dictionaries for English, German,
Italian, and Czech. A user can easily plug in their own
additional word lists for task-specific vocabulary or re-
place the dictionary altogether.

Candidate Selection Our toolkit integrates different
candidate generation approaches as separate modules,
which can be combined if needed. Each method ranks
the generated candidates and returns the best n, where
n can be set by the user. In case of ties, more than
n candidates may be returned to include all candidates
with equal rank. When inserting spaces, if any, there
are typically only a few candidates found, hence less
than the specified n candidates may be returned.

All Levenshtein-based methods (grapheme-, phoneme-
and keyboard-based) can be used with custom weight
or distance matrices. We provide English, German,
Italian, and Czech keyboard distances which contain
the number of keys between each pair of letters, with
adjacent keys having a distance of 1.

Candidate Re-ranking To re-rank the generated
candidates, the user can plug in any WeblT language
model or a list of unigram frequencies. The default
n-gram size to consider for this step is 3, but can be
changed by the user. If no re-ranking is desired, this
step can simply be skipped.

4. Misspelling Detection

Table [2] shows results for error detection using several
dictionary setups on the sub-corpora in our data set. We
report precision, recall and F-score for the class ‘error’.
Note that the SkalLa corpus is not included here because
we do not have gold-standard error annotations, as ex-
plained in Section

700

Grapheme Distance Language
Phonetic Distance | Mode.l ‘
Keyboard Distance Reranking
Levenshtein-based
T i
Custom Cuét!om
Weights LM
Lang Corpus Dict. Size P R F
TOEFL Lang-tool n/a 72 94 82
EN TOEFL Hun-tool na .81 99 .89
TOEFL Hun-dict 123k .52 .98 .68
MERLIN Lang-tool n/a .69 59 .64
MERLIN Hun-tool na .64 .62 .63
MERLIN childLex 45k 37 .64 47
DE MERLIN Hun-dict 727k .44 .73 .55
Litkey Lang-tool n/a .70 .66 .68
Litkey Hun-tool n/a 74 72 .73
Litkey childLex 45k 77 74 76
Litkey Hun-dict 727k .84 .75 .79
MERLIN Lang-tool n/a 55 .64 .59
MERLIN Hun-tool na 53 .69 .60
IT MERLIN Hun-dict 396k .38 .56 .46
CItA Lang-tool n/a .12 44 .18
CItA Hun-tool n/a .11 47 .18
CItA Hun-dict 396k .15 .45 .23
c7 MERLIN Hun-tool n/a .67 .82 .74
MERLIN Hun-dict 313k .66 .82 .73
Table 2: Error Detection Results

In the column dictionary, Hun-tool denotes the appli-
cation of Hunspell on a word to check whether it is
deemed correct or notIZ]

Similarly, Lang-tool indicates the use of Language-
Tool to determine whether or not a word is marked as a
misspelling, which we operationalize as one of its rules
of type misspelling firing.

Hunspell dictionaries are designed with proficient writ-
ers in mind. However, both children and language
learners have a restricted vocabulary. Hence, very rare
or specialized words, which are contained in Hunspell,
may rather be real-word errors, i.e. misspellings of
more frequent words. For example, Spas in a child’s
text might likely be a misspelling of Spaf3 ‘fun’ rather
than the plural of the word Spa ‘spa’. Therefore we
run our tool with a dictionary more suited to L.1 Ger-
man language learners. The childLex (Schroeder et

"For our experiments, we use the Hunspell dictionaries
provided at |https:/github.com/wooorm/dictionaries.

https://github.com/wooorm/dictionaries

al., 2015) dictionary comes as a full-form word list and
consists of 45k types found in 500 children’s books.
We hypothesize that using this dictionary to detect er-
rors yields a higher recall and comparable precision
for Litkey and potentially also MERLIN-DE. Note that
there are differences in the acquisition order of vo-
cabulary between L1 and L2 learners (Brysbaert et
al., 2021), therefore our intuitions about the effect of
childLex on MERLIN-DE are less clear.

A Hunspell dictionary comes as a combination of a dic-
tionary (.dic) and an affix (.aff) file, which allows to
create inflected and derived forms of a word (e.g. show,
shows, showing, showed). Because the childLex dic-
tionary is a word list, we create full-form dictionar-
ies out of the .dic- and .aff-files to use these in our
tool as another baseline to compare the performance on
the full-form childLex dictionary to. To estimate how
much improvement using Hunspell itself gives over us-
ing the full-form Hunspell wordlist, we do this for all
languages. We create these full-form Hunspell dictio-
naries using Hunspell’s wordforms command. The re-
sulting dictionaries are described as Hun-dict in Ta-
ble 2l Note that these dictionaries do not include all
compounds that can be built from the words in the orig-
inal Hunspell dictionary file.

Discussion We observe that Hunspell-tool and Lan-
guageTool perform similarly on all corpora, the only
exceptions being TOEFL-Spell and the Litkey corpus,
for which Hunspell-tool achieves higher scores. Both
LanguageTool and Hunspell-tool outperform Hunspell-
dict on TOEFL-Spell, Merlin-DE, and MERLIN-IT.
On MERLIN-CZ, using Hunspell-tool over the full-
form Hunspell dictionary only gives a minor increase
of .01 in precision.

Using the more learner-suited childLex instead of
Hunspell-tool or LanguageTool yields much lower pre-
cision on MERLIN-DE, but increases performance on
the Litkey corpus. What increases performance on
the Litkey corpus further is to use Hunspell-dict, as it
leads to an increase in precision. The childLex dic-
tionary therefore seems too small, thus erroneously
flagging tokens not contained in it as errors, which
are however contained in Hunspell-dict. The reason
for both our approaches (childLex and Hunspell-dict)
outperforming LanguageTool and Hunspell-dict on the
Litkey corpus is due to the fact that we do not consider
Named Entities as possible misspellings. A protago-
nist in the Litkey texts is named ‘Dodo’, which leads to
around 7000 false positives for both LanguageTool and
Hunspell-tool. Filtering Named Entities can also ex-
plain the slightly better performance of our Hunspell-
dict on the CItA corpus.

Overall, we see a large variance in error detection per-
formance between the different data sets. The highest
F-Score achieved is .89 for the English TOEFL-Spell
corpus and the lowest F-Score is .23 for the Italian CItA
corpus. There is also a large variance between corpora
of the same language.

701

As one would expect, among the false positives for
Hunspell-tool, i.e. correct words erroneously flagged
as errors, we find undetected NEs (e.g. Ghandi [CItA],
Dodo [Litkey], Frauenkirche MERLIN-CZ]), segmen-
tation errors (e.g. 28.maggio [MERLIN-IT], 4years
[TOEFL-Spell]) as well as foreign words, colloquial
terms, abbreviations or interjections not covered by the
respective dictionary (e.g. baby-sitter [MERLIN-IT],
nix [Litkey], CO2 [TOEFL-Spell], hahaha [CItA]). For
German, there are still compounds that were not recog-
nized as such (e.g. Spielzeugkiste “toy box” [Litkey],
Au-pair-Agentur “au pair agency”’ [MERLIN-DE]).
Some words are flagged as misspellings by the system
though they are not annotated as orthographic errors in
the corpora but rather as grammatical errors. These are
counted as false positives as well. This accounts for
11% of the false positives in CItA and 32% in Litkey.
There are particularly many false positives for the Ital-
ian CItA corpus. Partly, this is due to annotation prob-
lems in the original corpus, i.e. misspellings that were
not marked by the original annotators (accounting for
about one third of 100 randomly selected instances
marked as false positives). In addition, there are sev-
eral English words, proper names and colloquial terms
in the texts that were also not covered by the dictionary.
The false negatives, i.e. erroneous words nevertheless
occurring in the dictionary, constitute real-word er-
rors. In the German corpora, many real-word errors
are caused by learners splitting up a compound (e.g.
Praktikum Stelle for Praktikumsstelle). For Italian and
Czech, we often find missing or wrong accents leading
to another existing grammatical form of a word (e.g.
penso vs. penso [MERLIN-IT], libi vs. libi [MERLIN-
CZ]). For the English TOEFL-Spell corpus, several
false negatives are errors within NEs, which our tool
by default never considers as spelling errors. In some
cases, the misspelling of a capitalized sentence-initial
non-NE word confused the NE recognition and led to
similarly unrecognized errors.

Our overall findings are as follows: Error detection for
languages other than English works considerably less
reliably across data sets and dictionaries. When using
a dedicated dictionary geared towards children, perfor-
mance is higher than that of Hunspell-tool on the Litkey
corpus, which contains children’s texts, but beat by us-
ing a full-form dictionary and NE-filtering. For L2
learner language, using childLex leads to a decrease in
performance compared to all other dictionaries. While
the performance drop itself was unexpected, the order
between the two data sets confirms that words known
by L1 and L2 language learners are substantially dif-
ferent.

5. Error Correction

For error correction, we assume gold standard error de-
tection, i.e. we use every spelling error that is annotated
in a corpus instead of those found by the error detection
component.

Hunspell LangTool DKPro DKPro

w/io w w/o w wo w ‘ Upper
Corpus reranking reranking reranking Bound
TOEFL 68 75 75 79 60 70| .94
MERLIN-DE 36 47 46 46 .55 .59 78
Litkey 31 37 36 24 25 42 .80
SkalLa 69 56 73 54 37 40 79
MERLIN-IT 49 59 38 .54 41 .72 .83
CItA 35 47 27 37 30 .50 78
MERLIN-CZ .23 54 - - 22 61| .86

Table 3: Error correction results. We report recall@ 1
based on gold detection results and compare perfor-
mance without and with re-ranking candidates using
WeblT. Best results per data set with and without
reranking in bold. Note that we use a probabilistic re-
call@1 when re-ranking.

5.1.

First, we compare Hunspell and LanguageTool against
a simple edit-distance baseline. For that, we use the
full-form hunspell dictionaries to select correction can-
didates with a minimum Damerau-Levenshtein dis-
tance to a misspelling. The upper bound for the correc-
tion performance is determined by the dictionary. Cor-
rections which are not in the dictionary cannot be found
by the spellchecking component. This applies, for ex-
ample, to some proper names (Dhirubhai), compound
words (self-satisfaction) or technical vocabulary (geo-
morphology). Table [3| shows correction results mea-
sured in recall@1, meaning that any misspelling for
which the respective method returned the desired cor-
rection as the top candidate was counted towards this
metric.

Baseline Comparison

Discussion While Hunspell outperforms Language-
Tool on the Italian corpora, LanguageTool performs
better on English and German data. Our toolkit is
mostly outperformed by both Hunspell and Language-
Tool, with the exception of the German MERLIN cor-
pus, where it performs better than both Hunspell and
LanguageTool. We see, however, that the upper bound
for the correction performance of our toolkit is way
above the actual performance of any tool, which means
that there is still a lot of room for improvement.

In this experiment, Hunspell and our toolkit consider
the misspellings isolated from their context. The con-
text can however influence the likelihood of a certain
correction candidate being the desired one. Take for
example she loves riding her horase, where the mis-
spelled horase requires one Damerau-Levenshtein edit
to be changed to hoarse or horse, with only the latter
fitting into the context.

5.2. Re-ranking Candidates

To take context information into account, we calculate
the language model probability of each suggested cor-

702

rection. We use WeblIT (Brants, 2006) trigrams, as
Webl1T is available for all four languages in our data
set. If all candidates have the same probability under
the trigram language model (which mostly happens if
one of the context words was not seen in the training
data of the language model), a back-off strategy to a
lower order n-gram model is used.

Results are reported in Table This time, we also take
into account when multiple candidates end up in the
same rank. Because of such ties, we compute recall@1
in a probabilistic way. For example, if there are four
candidates at the top rank, one of them being the de-
sired one, the value for this particular misspelling is
not 1 nor 0 but 0.25.

Discussion Generally, re-ranking the candidates is
beneficial for most corpora, especially Merlin-CZ,
where the correction performance without re-ranking
is the worst among all corpora (.30) while the perfor-
mance with trigram-model-reranking is the third best
(.60). The best performance could be reached for
MERLIN-IT (.72) and TOEFL-Spell (.70). By con-
trast, the scores for Litkey remain particularly weak.
The results also show that language model re-ranking
is in fact not always beneficial for all tools and all cor-
pora. For example, the texts in the Skal.a corpus (pro-
ficient native speakers of German) are best corrected
by LanguageTool without language-model re-ranking.
This may have to do with the large number of erro-
neously concatenated words in the corpus.

With the added language model reranking, Hunspell
works better than LanguageTool for all corpora but the
English one. Our toolkit outperforms Hunspell and
LanguageTool on all corpora except for TOEFL-Spell
and Skal.a. Both consist of texts written by advanced
learners or native speakers. This suggests that com-
pared to the established tools, our toolkit is better at
handling errors from learners with lower proficiency
and corpora with more varying proficiency levels such
as MERLIN.

Similar to our motivation to include childLex in error
detection in Section[4] it might be beneficial to base the
reranking on a language resource that is more resem-
blant of learner language. To this end, we follow up
with an experiment that uses such resources instead of
the Web1T frequencies.

5.3. Re-ranking with Learner-focused
Resources

Since it is possible that language learners produce
many ungrammatical or uncanonical sentences which
are better covered by language models built from spo-
ken language, we carry out another experiment where
we use Subtlex to rerank correction candidates. Subtlex
contains unigram frequencies created from movie sub-
titles and is available for English (Brysbaert and New,
2009), German (Brysbaert et al., 2011), and Italian
(Crepaldi et al., 2015). For German, we additionally
investigate re-ranking with unigram frequencies based

3 candidates per method

10 candidates per method

WeblT WeblT childLex subtlex WeblT WeblT childLex subtlex

3-gram 1-gram 1-gram I-gram 3-gram 1-gram 1-gram 1-gram
TOEFL-Spell .70 48 - 47 .58 27 - 26
MERLIN-DE .59 41 .38 41 .54 .28 24 .28
Litkey 42 29 34 32 .34 18 23 21
SkaLa 40 28 27 .26 .34 17 15 15
MERLIN-IT 72 .50 - .58 .66 37 - 46
CItA .50 27 - 31 44 .16 - .19
MERLIN-CZ .61 42 - - .55 29 - -

Table 4: Error correction results with learner-focused re-ranking. We compare generating three vs. ten candidates

to re-rank. Reported values are recall@]1.

on childLex. Especially for the Litkey corpus, the word
frequencies found in children’s books may work even
better than Subtlex.

In comparison to a trigram model, working with un-
igrams has the drawback of missing out on the con-
text. In order to have a fairer comparison with Web1T,
we therefore also perform re-ranking with Web1T uni-
grams.

In addition to using different resources to re-rank, we
also explore how the results are affected by using either
the top 3 or top 10 correction candidates.

As our approach outperformed both Hunspell and Lan-
guageTool on the majority of the corpora in the previ-
ous experiment, we only perform this one within our
own toolkit.

Results are displayed in Table 4] To account for ties
we again report probabilistic recall@1, just like in the
previous experiment.

Discussion We find that across all corpora and all
language models, using 3 correction candidates for re-
ranking outperforms 10 candidates. This indicates that
when too many candidates are generated, the language
model may easily favor a wrong one, overriding differ-
ences in edit-distance.

Furthermore, the Web1T trigram model yields the best
result for all corpora. This means that the context pro-
vided by a trigram model outweighs the benefits of un-
igram frequencies that are more learner-specific.

Among the different unigram models, Subtlex outper-
forms Web1T in most cases, indicating that frequencies
from spoken language are indeed often a better choice
for language learners than frequencies from the web, if
only unigram frequencies are available. For Litkey, the
childLex model outperforms the other unigram models,
which indicates that children’s word frequencies are
best covered by children’s books. However, one also
has to note that for some corpora (MERLIN-DE, CItA,
TOEFL-Spell), re-ranking with unigram frequencies is
not beneficial at all.

703

5.4. Other Methods to Generate Correction
Candidates

All experiments so far focused on using our toolkit
to generate correction candidates based on their
Damerau-Levenshtein distance to the respective mis-
spelling on the grapheme level. For learners, it could be
beneficial to consider phonetics (see e.g. Boyd (2009),
Stiiker et al. (2011)), Downs et al. (2020)). Further-
more, for typed texts, the keyboard layout could be a
valuable source of information (see e.g. |[Ahmad and
Kondrak (2005)). Words may also be falsely concate-
nated. In our next experiment, we therefore analyze the
following alternatives for the generation of correction
candidates:

Phoneme-Based Levenshtein calculates the dis-
tances based on phonetic transcriptions, which are
obtained from the web service G2P of the Bavarian
Archive of Speech Signals (BAS) (Reichel, 2012; Re-
ichel and Kisler, 2014)E] Our hypothesis regarding this
method is that it works best for texts written by young
children (Litkey and CItA), who often produce phonet-
ically motivated misspellings. The idea behind this is
that a misspelling that is pronounced the same or simi-
lar to the correct spelling of the intended word but looks
very different to it on the surface level (e.g. peases for
pieces) would have a rather large Levenshtein distance
to its correct spelling on the character level so that the
intended word may not be among the correction candi-
dates. Transcribing both into their phonetic representa-
tion would however lead to two strings with a smaller
Levenshtein distance, which would thus be a benefit for
finding the correct spelling of the misspelled word.

Keyboard Distance makes adjustments to the costs
of the edit operations based on the (physical) distance
that the affected letters have on a keyboard.

Our hypothesis regarding this method is that it works
best for typed texts (TOEFL-Spell and Skal.a) because
it captures typos.

§ https://clarin.phonetik.uni-muenchen.de/BASWebServices/
interface/Grapheme2Phoneme

https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/Grapheme2Phoneme
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/Grapheme2Phoneme

=

g

E ¢ T 3

) =) =)

= 5] =3 8 2 [

= = = o 3])

£ £ 7 & =|E E

Corpus O B M wn < | O P
TOEFL 70 55 51 .02 63| .81 .94
MERLIN-DE .59 .54 45 .00 .56 | .68 .78
Litkey 42 37 25 01 36| .52 .80
Skal.a 40 33 31 28 39 |.71 .79
MERLIN-IT .72 .65 46 .01 .66 | .80 .33
CItA 50 49 30 .03 46| .60 .78

MERLIN-CZ .61 .61 .34 .00 .59 ‘ 70 .86

Table 5: Comparison of our four different methods
of correcting misspellings. Oracle counts a misspelling
as corrected whenever any of the methods yields the
desired correction. Reported values are recall@1.

Missing Spaces This module looks for missing
spaces within tokens to find corrections in cases where
whitespace between tokens was omitted, e.g. thereis for
there is.

All In this condition, we combine the candidates
from all four generation methods prior to re-ranking.

In this experiment, we compare the performance of
the newly considered methods to that of the grapheme-
based Levenshtein method used in previous experi-
ments. All experiments use re-ranking with Web1T
trigrams, as this proved to be the best-performing ap-
proach. In Table[5] we report probabilistic recall@1 re-
sults for generating three candidates per method. Note
that there are often more than three candidates for eval-
uation because in case of ties, all generated candidates
are kept and then re-ranked.

Discussion We can observe that the grapheme-based
Levenshtein module always outperforms the phoneme-
based and keyboard-distance-based Levenshtein mod-
ules, which falsifies our assumptions that phonetic cor-
rection would be better for texts written by children and
that keyboard-based correction would be superior for
typed texts. For most corpora, grapheme-based Lev-
enshtein alone even yields better results than the all
condition, where candidates from all methods are com-
bined prior to re-ranking. This indicates that the other
correction methods primarily introduce incorrect can-
didates. Recall that the phoneme-based module relies
on an automatic phonetic transcription, which some-
times produces false results, which can cause coun-
terintuitive correction candidates. Using keyboard dis-
tance always performs worst, which is unexpected for
typed texts (Skala and TOEFL-Spell). For these texts,
the difference in performance between keyboard dis-
tance and the other methods is not as large as for the
hand-written corpora, but still, there is no benefit in us-
ing this method.

704

5.5. Oracle Condition

Although none of the methods investigated in the pre-
vious experiment outperformed the grapheme-based
baseline, manual inspection still found local improve-
ments from each method. We therefore perform an
analysis in an oracle condition, also displayed in Ta-
ble 5} where we assume that the right correction is
found if it is top-ranked by any of the correction meth-
ods after candidate re-ranking. With this oracle con-
dition we want to know how well words could be cor-
rected if we knew in advance which correction method
was the most suitable one.

The oracle condition yields the best results across all
corpora, which means that if we knew which correction
method was best for a particular word, we could im-
prove correction performance substantially. Note that
oracle performance still has a widely varying perfor-
mance gap to the upper bound across the different cor-
pora. While for MERLIN-IT, oracle performance al-
most reaches the upper bound, there is a large gap be-
tween the two for the Litkey corpus.

Since we as of yet do not have the ability to do know
which method gives the correct candidate for a mis-
spelling of interest, we find that for all corpora, the
grapheme-based Levenshtein distance with 3 correc-
tion candidates and the Webl1T trigram model for re-
ranking worked best. We therefore declare this as the
tool’s default setting.

6. Summary & Future Work

Detecting and correcting spelling errors made by learn-
ers remains challenging. Our newly compiled evalu-
ation data set provides a multi-lingual benchmark for
fostering the development of customized spellcheck-
ers. Our highly customizable spellchecking extension
for the DKPro architecture makes first steps in that di-
rection, as it makes it easy to include other languages,
dictionaries or language models and thus enables evalu-
ating the effect different adaptions have on spellcheck-
ing performance.

One takeaway of our oracle experiment is that there is
room for improvement if a system knew which method
for candidate generation to apply for a particular in-
correct word. Future work could therefore investigate
whether there are any hints in a misspelled word that
would allow us to choose the best correction method a
priori. We also see mixed results of re-ranking, but our
evaluation dataset allows for future experiments with
better language models. It also allows to test whether
neural spellcheckers have any advantages in a multi-
lingual setting with learner data where training data is
usually limited.

7. Acknowledgments

This work was conducted in the framework of the
Research Cluster D?L? “Digitalization, Diversity and
Lifelong Learning — Consequences for Higher Ed-

ucation” of the FernUniversitdt in Hagen, Germany
(https://e.feu.de/english-d212).

8. Bibliographical References

Ahmad, F. and Kondrak, G. (2005). Learning a
spelling error model from search query logs. In Pro-
ceedings of Human Language Technology Confer-
ence and Conference on Empirical Methods in Nat-
ural Language Processing, pages 955-962, Vancou-
ver, British Columbia, Canada, October. Association
for Computational Linguistics.

Blanchard, D., Tetreault, J. R., Higgins, D., Cahill,
A., and Chodorow, M. (2013). Toefll1: A corpus
of non-native english. ETS Research Report Series,
2013:15.

Boyd, A. (2009). Pronunciation modeling in spelling
correction for writers of English as a Foreign Lan-
guage. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, Companion Volume: Student Re-
search Workshop and Doctoral Consortium, pages
31-36, Boulder, Colorado, June. Association for
Computational Linguistics.

Brysbaert, M. and New, B. (2009). Moving beyond
Kucera and Francis: A critical evaluation of current
word frequency norms and the introduction of a new
and improved word frequency measure for ameri-
can english. Behavior research methods, 41(4):977-
990.

Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs,
A. M., Bolte, J., and Bohl, A. (2011). The word
frequency effect. Experimental psychology.

Brysbaert, M., Keuleers, E., and Mandera, P. (2021).
Which words do english non-native speakers know?
new supernational levels based on yes/no decision.
Second Language Research, 37(2):207-231.

Crepaldi, D., Amenta, S., Pawel, M., Keuleers, E.,
and Brysbaert, M. (2015). Subtlex-it. subtitle-based
word frequency estimates for italian. In Proceedings
of the Annual Meeting of the Italian Association For
Experimental Psychology, pages 10—12.

Downs, B., Anuyah, O., Shukla, A., Fails, J. A,
Pera, S., Wright, K., and Kennington, C. (2020).
KidSpell: A child-oriented, rule-based, phonetic
spellchecker. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 6937—
6946, Marseille, France, May. European Language
Resources Association.

Eckart de Castilho, R. and Gurevych, 1. (2014). A
broad-coverage collection of portable NLP compo-
nents for building shareable analysis pipelines. In
Proceedings of the Workshop on Open Infrastruc-
tures and Analysis Frameworks for HLT, pages 1—
11, Dublin, Ireland, August. Association for Com-
putational Linguistics and Dublin City University.

Flor, M. and Futagi, Y. (2012). On using context for
automatic correction of non-word misspellings in

705

student essays. In Proceedings of the Seventh Work-
shop on Building Educational Applications Using
NLP, pages 105-115, Montréal, Canada, June. As-
sociation for Computational Linguistics.

Flor, M., Futagi, Y., Lopez, M., and Mulholland, M.
(2015). Patterns of misspellings in 12 and 11 english:
A view from the ets spelling corpus. Bergen Lan-
guage and Linguistics Studies, 6.

Flor, M., Fried, M., and Rozovskaya, A. (2019). A
benchmark corpus of English misspellings and a
minimally-supervised model for spelling correction.
In Proceedings of the Fourteenth Workshop on Inno-
vative Use of NLP for Building Educational Appli-
cations, pages 76-86, Florence, Italy, August. Asso-
ciation for Computational Linguistics.

Foster, J. (2010). “cba to check the spelling”: in-
vestigating parser performance on discussion forum
posts. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 381-384.

Jayanthi, S. M., Pruthi, D., and Neubig, G. (2020).
NeuSpell: A neural spelling correction toolkit. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 158-164, Online, October.
Association for Computational Linguistics.

Keiper, L., Horbach, A., and Thater, S. (2016). Im-
proving POS tagging of German learner language in
a reading comprehension scenario. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 198—
205.

Nither, M. (2020). An in-depth comparison of 14
spelling correction tools on a common benchmark.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 1849-1857, Mar-
seille, France, May. European Language Resources
Association.

Reichel, U. D. and Kisler, T. (2014). Language-
independent grapheme-phoneme conversion and
word stress assignment as a web service. In R. Hoff-
mann, editor, Elektronische Sprachverarbeitung:
Studientexte zur Sprachkommunikation 71, pages
42-49. TUDpress.

Reichel, U. D. (2012). PermA and Balloon: Tools
for string alignment and text processing. In INTER-
SPEECH, Portland, Oregon.

Rimrott, A. and Heift, T. (2008). Evaluating auto-
matic detection of misspellings in german. Lan-
guage Learning & Technology, 12(3):73-92.

Scholten-Akoun, D., Mashkovskaya, A., and Tis-
chmeyer, D. (2014). Language competencies of
future teachers—design and results of an empirical
study. Applied Linguistics Review, 5(2):401-423.

Schroeder, S., Wiirzner, K.-M., Heister, J., Geyken, A.,
and Kliegl, R. (2015). childLex: A lexical database

of German read by children. Behavior Research
Methods, 47(4):1085-1094.

Stiiker, S., Fay, J., and Berkling, K. (2011). Towards
context-dependent phonetic spelling error correction
in children’s freely composed text for diagnostic and
pedagogical purposes. In Twelfth annual conference
of the international speech communication associa-
tion.

9. Language Resource References

Barbagli, Alessia and Lucisano, Pietro and
Dell’Orletta, Felice and Montemagni, Simon-
etta and Venturi, Giulia. (2016). CItA: an LI Italian
Learners Corpus to Study the Development of Writ-
ing Competence. European Language Resources
Association (ELRA).

Brants, Thorsten. (2006). Web IT 5-gram Version 1.

Eckart De Castilho, Richard and Gurevych, Iryna.
(2014). A broad-coverage collection of portable
NLP components for building shareable analysis
pipelines.

Laarmann-Quante, Ronja and Ortmann, Katrin and
Ehlert, Anna and Masloch, Simon and Scholz,
Doreen and Belke, Eva and Dipper, Stefanie. (2019).
The Litkey Corpus: A richly annotated longitudinal
corpus of German texts written by primary school
children.

Wisniewski, Katrin and Abel, Andrea and Vodic¢kova,
Katefina and Plassmann, Sybille and Meurers, Det-
mar and Woldt, Claudia and Schone, Karin and
Blaschitz, Verena and Lyding, Verena and Nicolas,
Lionel and Vettori, Chiara and Peceny, Pavel and
Hana, Jirka and éurdové, Veronika and gtindlové,
Barbora and Klein, Gudrun and Lauppe, Louise and
Boyd, Adriane and Bykh, Serhiy and Krivanek, Ju-
lia. (2018). MERLIN Written Learner Corpus for
Czech, German, Italian 1.1.

706

	Introduction
	Multilingual Spelling Error Benchmark Data Set
	Source Corpora
	Data Set Overview

	Experimental Setup
	Preprocessing
	Existing Multi-lingual Spellcheckers
	DKPro Spelling

	Misspelling Detection
	Error Correction
	Baseline Comparison
	Re-ranking Candidates
	Re-ranking with Learner-focused Resources
	Other Methods to Generate Correction Candidates
	Oracle Condition

	Summary & Future Work
	Acknowledgments
	Bibliographical References
	Language Resource References

