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Abstract
Low-resource machine translation research often requires building baselines to benchmark estimates of progress in translation
quality. Neural and statistical phrase-based systems are often used with out-of-the-box settings to build these initial baselines
before analyzing more sophisticated approaches, implicitly comparing the first machine translation system to the absence
of any translation assistance. We argue that this approach overlooks a basic resource: if you have parallel text, you have a
translation memory. In this work, we show that using available text as a translation memory baseline against which to compare

machine translation systems is simple, effective, and can shed light on additional translation challenges.
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1. Introduction

The goal of machine translation (MT) is to take as
input heretofore unobserved sequences of text in the
source language and produce as output accurate and
fluent translations of that same text in the target lan-
guage. When it comes to low-resource language pairs,
this is an especially challenging task. When building
supervise machine translation systems or introducing
a new dataset for a low-resource language pair, the typ-
ical approach is to build baseline systems using well-
known neural or phrase based statistical machine trans-
lation architectures using all available parallel text in
the languages (perhaps aside from a held-out test and/or
validation set). For some language pairs, this could be
on the order of just thousands of sentence pairs. While
the field continues to progress, automatic and human
evaluations of many low-resource machine translation
systems demonstrate that they are still far from reach-
ing the point where they can be consistently useful for
machine translation’s downstream applications: com-
prehension, communication, or publication.

Very low-resource machine translation is often of too
low quality to use directly, without any sort of interven-
tion or improvement. Consequently, researchers might
hope that an initial machine translation system could be
useful to human translators as part of a computer aided
translation (CAT) pipeline (i.e., post-editing, interac-
tive translation, etc.). When we build a first machine
translation baseline, that first baseline is implicitly
compared against having no translation assistance at
all. However, many translators working in CAT work-
flows do have access to translation tools: dictionaries,
spell checkers, and translation memories. A transla-
tion memory (TM) is a collection of source-target seg-

'In this work, we focus only on supervised machine trans-
lation, not the scenario where there is no parallel text avail-
able.

ment pairs which are (human-produced and/or human-
validated) translations of one another. When preparing
to translate a novel sentence, the CAT tool can present
translations of similar sentences from the TM to the
translator, which they can then modify.

If you have parallel text suitable for machine transla-
tion, you have a translation memory. (Though of course
this may not be a well-curated translation memory; it
may be noisy, or may contain text that translators would
not have chosen to keep in a translation memory, etc.)
In order to see how much a machine translation sys-
tem might contribute to a computer aided translation
pipeline, comparing a machine translation system to a
translation memory baseline is a fairer comparison than
comparing it against no assistance. As such, we pro-
pose that researchers compare against a TM baseline,
in addition to any desired machine translation base-
lines and as a complement to human evaluation and
analysis. At the AmericasNLP Shared Task (Mager et
al., 2021), TM baselines proved to be strong baselines
across several languages, even outperforming (accord-
ing to automatic metrics) some trained systems that in-
corporated additional data, but falling short of the state
of the art systems. We also demonstrate that a simple
TM baseline can provide information about similarities
and differences between available training and testing
data, which can be useful in determining appropriate al-
gorithms and preprocessing. We argue that examining
datasets through a translation memory lens can provide
a way of categorizing different types of low-resource
tasks. Finally, we take a fine grained look at how TM
baselines can help us conceptualize the potential use-
fulness (or lack thereof) of a given machine translation
system on a per-sentence basis, showing how trans-
lation systems may succeed or fail to generalize well
from the available data. We demonstrate this using data
across a range of recent low-resource language transla-
tion tasks.
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Langs. | Train | Dev. | Test
hch-es 9k | 994 | 1003
tar-es 15k 995 | 1003
nah-es 16k | 672 995
gn-es 26k 995 | 1003
hsb-de 147k | 2000 | 2000
iu-en 1300k | 5173 | 2971

Table 1: Lines of training (rounded to the nearest
1000), development, and test data for language pairs.

2. Data

We explore the idea of TM baselines across datasets
from several shared tasks on low-resource machine
translation. We use the language codes correspond-
ing to the files provided by the various datasets: de
German, hsb Upper Sorbian, en English, iu Inukti-
tut, hch Wixdrika, tar Raramuri, nah Nahuatl, gn
Guarani, es Spanish.

The AmericasNLP 2021 Shared Task on Open Ma-
chine Translation for Indigenous Languages of the
Americas (Mager et al., 2021) included translation
from Spanish into 10 Indigenous languages of the
Americas. The training and test data for some of these
languages differed quite noticeably, including some sit-
uations with different dialects or spelling conventions.
Combined with the very small data sizes, it is unsur-
prising that resulting human evaluations of even the
best systems found their output to be mostly inadequate
(with mixed fluency results). We examine a subset of
four of the language pairs in this work.

Translation between Upper Sorbian and German was
part of the Very Low Resource Supervised MT track
at both WMT 2020 and WMT 2021 (Fraser, 2020; [Li-
bovicky and Fraser, 2021). In contrast to the Americas-
NLP shared task, the train and test data for these tasks
were very closely matched, resulting in exceptionally
high automatic metric scores for a low-resource task.
We use the 2021 training data, development data, and
devel_test (which we refer to here as test) for this work.
Unfortunately, no human evaluations are available for
the systems produced for these tasks.
Inuktitut-English MT was included in the News Trans-
lation shared task at the Fifth Conference on Machine
Translation (WMT 2020, Barrault et al. (2020)). The
parallel training data available for this task consisted
mainly of sentence pairs from the Nunavut Hansard 3.0
data release of text from the Proceedings of the Legisla-
tive Assembly of Nunavut (Joanis et al., 2020). The test
data was half parliamentary text (from recent sessions
that were not included in the earlier data release) and
half news data, from Nunatsiaq News (used with per-
mission). There was also development/validation data
provided from both domains. Human evaluation data
was collected for both translation directions [

However, [Knowles (2021) notes that the English—
Inuktitut human system ranking table in|Barrault et al. (2020)
may not reflect the final and complete data collection.

While all of these tasks were described as “low re-
source” tasks, they are in fact quite varied in data size.
Table [T shows how the training data range in size from
just under 9000 to approximately 1.3 million lines,
while the development data are between 672 and 5173
lines, and the test data range from 995 lines to 2971.
The values are listed as described in the papers describ-
ing the datasets (Mager et al., 2021; Libovicky and
Fraser, 2021; Joanis et al., 2020), with test sets mea-
sured separately.

What we have is a huge range of what may count as
“low resource” for machine translation. Due to differ-
ences in language typology, it is not necessarily as sim-
ple as looking only at number of lines of training data;
one may also wish to consider morphological complex-
ity or other linguistic features. For example, Inuktitut
is known to be highly morphologically complex, re-
sulting in many words (defined as space/punctuation-
separated) that appear just once or only a few times,
even in such a large corpus. There is also the question
of dialect, orthography, and domain matches. Knowles
et al. (2021) compare these three tasks, and place them
in a 2-by-2 matrix based on “match” vs. “mismatch”
and “low-resource” vs. “mid-resource”, which we re-
produce here in Table[2]

Domain Match Mismatch
Low-Res. | Upper Sorbian AmericasNLP
Mid-Res. | Inuktitut Hansard | Inuktitut News

Table 2: Comparison of three recent shared tasks on
low-resource machine translation.

In this work, we expand upon these distinctions and
their consequences for low resource machine transla-
tion research. |V et al. (2020) point out that there are
many aspects to low-resourcedness beyond data. This
work is not a substitute for the participatory research
that they propose, but provides a complementary way
to examine different kinds of low-resourcedness within
data, which can then be explored in-depth with lan-
guage experts.

3. TM Baselines

Given a new sentence to translate, a CAT tool that in-
corporates a TM typically uses a “fuzzy match” score
to find the most similar source segment in the TM,
along with its translation. We follow|Simard and Fujita
(2012)) in using MT evaluation metrics as simple fuzzy
match scores in our translation memory process. We
use BLEU (Papinent et al., 2002) and CHRF (Popovic,
2015)) as implemented in sacrebleu (Post, 2018) to
compute the fuzzy match scores and to evaluate the
resulting dataﬂ While there may be benefits to using
trained (i.e., embedding-based) metrics in many cases,

SFor scores over full test sets, signatures are as:
nrefs:1,case:mixed,eff:no,tok:13a,smooth:exp,version:2.0.0
(BLEU) and nrefs:1,case:mixed,eff:yes,nc:6,nw:0,space:no,
version:2.0.0 (CHRF)
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in the low-resource scenarios that we are examining,
there is a risk of introducing confounds due to the lim-
ited data available to train the embeddings (and the
likelihood of overlap with the data used for machine
translation), so we use just these two metrics.

3.1. TM Definitions and Experimental Setup

Given an input sentence s in our test set (with refer-
ence translation t), we find the source sentence s’ in
our TM that maximizes M (s’, s) where M is a func-
tion that measures similarity between two strings (in
practice, BLEU or CHRF). For MT evaluation metrics
that are not symmetric, like BLEU, where the length of
the reference is used in computation, we use s as the
“reference” and treat s’ as a “hypothesis” to maintain
consistency. We then return ¢’ (the translation of s’)
as a hypothesis translation of s. We can then compute
our MT evaluation metric of choice, comparing each
reference ¢ to its corresponding hypothesis ¢’ (over the
full development or test set). When computing met-
ric scores for evaluation over the full development or
test set, we use the corpus-level versions of the metrics.
When computing metric similarity scores for M(s’, s)
we do this on a single-sentence basis, and for BLEU
we set ef fective_order=True as recommended
for sentence-level BLEU.

Typically, in real use with human translators, a TM
may employ a match threshold, below which a sen-
tence pair will not be returned. Our initial experi-
ments using MT evaluation metrics forgo such a thresh-
old, with the intention of comparing against MT with-
out quality estimation. We also compare against
the FuzzyMatch-cli implementation of Xu et al.
(2020), which uses edit distance and suffix arrays to
efficiently produce fuzzy matches from a TM.

The default setting of FuzzyMatch-c1li does incor-
porate a threshold of a score of 0.8, along with minimal
subsequence length of 3 and minimal subsequence ra-
tio of 0.3. In many low-resource settings, these will
not be met, resulting in no sentence pairs returned from
the TM for a given source query. Thus we include in
our initial experiments both a FuzzyMat ch-default
setting (as described above), and a FuzzyMatch-
permissive setting, with a threshold of 0.0, a mini-
mum subsequence length of 1, and a minimal subse-
quence ratio of 0.0. In practice, these parameters would
likely result in useless sentence pairs being shown to
the translator; here we use them to get a sense of just
how low (according to automatic metrics) that quality
may be. We also note that FuzzyMatch-cli is de-
signed to be quite efficient; lowering these thresholds
noticeably slows performance, which is another reason
it would not be preferred in a real-life use case (or with
larger datasets).

Due to the small size of most of our datasets, we forgo
most optimizations in our BLEU and CHRF-based ex-
periments. The only two optimizations that we employ
are that we do deduplicate the translation pairs in the

Version BLEU | CHRF
FuzzyMat ch-default 0 6.3
FuzzyMatch-permissive 14.3 28.8
BLEU 16.3 31.9
CHRF 12.2 38.2
Oracle BLEU 22.3 36.1
Oracle CHRF 13.8 44.0

Table 3: Effect of different approaches to TM fuzzy
matching, as measured by automatic metrics. The
TM used is the DE-HSB training data, and results are
scored against the DE-HSB test (devel_test) data. The
final two lines show oracle performance.

TM and, in the case of Inuktitut, we split the TM into
smaller components, score them in parallel, and then
recombine them.

3.2. TM Metrics and Evaluation

In their work, Simard and Fujita (2012) found a clear
link between the MT metric used for TM similarity and
the one used on the returned target language data for
evaluation. That is to say, if one plans to evaluate with
BLEU, it is typically best to use BLEU as the similarity
metric for the TM extraction (or CHRF and CHRF, etc.).
Our results replicate those findings.

The top portion of Table [3]shows the example of treat-
ing the de—hsb training data as the TM and extracting
matches for the test data. The FuzzyMat ch-default
scores are so low because the vast majority of the sen-
tences do not meet the threshold of 0.8; no match is
returned for 1895 out of 2000 test sentences, whereas
only one sentence does not have a match returned un-
der the permissive setting. Consistent with Simard and
Fujita (2012), the highest BLEU score occurs when us-
ing BLEU as the similarity function, while the highest
CHRF score occurs when using CHRF as the similar-
ity function. In our initial experiments across language
pairs, this was typical; either the metric-matched ver-
sion performed best, or they were tied. The one excep-
tion noted was from Inuktitut into English, where using
CHRF as the similarity metric resulted in the highest
BLEU score. This may be due to the morphological
complexity of Inuktitut, which results in particularly
low n-gram matches (but potentially high numbers of
long sequences of matching characters).

3.3. Oracle

So far, we have compared source sentences s from
the test set to source sentences s’ from the TM, using
their translations as the hypothesis ¢’ (to be compared
against the reference t). Of course, there is no guar-
antee that ¢’ is in fact the sentence in the target side
of the TM that is the closest to the reference ¢. For
example, even if s and s’ are identical, we could imag-
ine a scenario where each word in ¢’ is a paraphrase
of a word in ¢, resulting in no overlap, such that there
might be some other sentence in the TM that is closer
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to t. In real-life TM use, ¢ is unknown (it is what is
being produced by the translator). However, in these
experiments, we can produce an oracle, i.e., the sen-
tence ¢’ that is closest to ¢ according to the metric being
used. This gives us a bit more insight into the perfor-
mance of the TMs. As we see in Table[3] the oracles all
outperform their realistic counterparts, to varying de-
grees (e.g., the oracle score using BLEU outperforms
the realistic approach with BLEU by 6 BLEU points).
It is worth noting, however, that the oracle experiments
reinforce the finding that metric-matched scores out-
perform metric-mismatched scores: scoring the oracle
BLEU output with CHRF results in a score (36.1) lower
than that of scoring the non-oracle CHRF output with
CHRF (38.2), and vice versa. In the following sec-
tions we will examine how the oracle and standard TM
scores can help us examine mismatches between train-
ing, development, and test data.

4. Machine Translation Systems

We use existing machine translation systems to com-
pare against the TM baselines. We make a distinction
here between systems built using only the training data
for the given language pair, those that incorporate the
development data as well, and those that incorporate
additional data.

For translation between Upper Sorbian and German,
we use the “Bitext Baseline” systems described in
Knowles and Larkin (2021). These are Transformer
models (Vaswani et al., 2017) built using Sockeye
(Hieber et al., 2018) with shared subword vocabular-
ies of 10k and 15k subwords.

For the AmericasNLP language pairs, we use systems
from [Knowles et al. (2021), also Transformer models
built using Sockeye. We look at that paper’s baseline
models (built using only the training data for a given
language pair). In Section [6| we also examine multilin-
gual finetuned models trained on the full training data
(called S.1), and ensembled multilingual finetuned sys-
tems that also trained on the development data (called
S.0). The multilingual systems all incorporate data
from the four language pairs, but no other external data
beyond the training and development data provided by
the task organizers.

We also compare against state of the art (SOTA) sys-
tems, all of which incorporated additional data beyond
that which was available to the TMs. The SOTA sys-
tem is defined as the one that performed highest on the
stated metric for the task (CHRF for AmericasNLP, a
combination of metrics for Upper Sorbian and German,
and human rankings for Inuktitut and English, with a
caveat that the English to Inuktitut rankings are incom-
plete and were run only on Hansard data). The Amer-
icasNLP SOTA systems are all from [Vazquez et al.
(2021)), the Upper Sorbian systems are from |[Knowles
and Larkin (2021)), the Inuktitut to English systems are
from Zhang et al. (2020) and the English to Inuktitut
systems were from [Hernandez and Nguyen (2020).

S. Analyzing Train/Dev/Test Mismatch

When training data, development data, and test data are
all sampled from the same distribution, they would be
considered well-matched. In that situation, we would
reasonably expect that treating the (larger) training data
as a TM would typically result in higher scores than
treating the (smaller) development set as a TM, simply
because there is a larger set of data to match against.
We can examine this with both oracles and with the
realistic, non-oracle, setting. In Table E], the TM rows
show CHRF scores for realistic TM baselines built from
development data (dev), training data (train), or their
combination (all). For the well-matched case of HSB
and DE, we see a large gap between the TM (dev)
and TM (train) scores, with the larger TMs resulting
in higher CHRF scores. The TM (all) score just slightly
outperforms the TM (train). We also find this to be the
case in the oracle setting, where oracle CHRF scores
drop from 44.0 to 28.8 and from 46.2 to 32.7, respec-
tively, when switching from the full train TM to the
development set as TM.

There is a similar pattern for English and Inuktitut
Hansard data, with the TM (train) outperforming the
TM (dev), and no difference between the TM (all) and
the TM (train). However, when looking at news data
for this language pair, the TM (dev) scores actually
outperform the TM (train) scores, indicating a closer
match between the development data and test data than
between the training data and the test data. This reflects
the difference in domain — even though there is much
more data available in the training set, it is not as well
matched or may be missing certain vocabulary items,
expressions, or structures that appear in the domain-
matched development data.

In the AmericasNLP shared task, these differences are
sometimes even more extreme. For the two languages
with the smallest datasets, Raramuri and Wixarika, the
development data TMs outperform the training data
TMs by 8.7 and 6.2 CHRF, respectively. We observe
a similar pattern in the oracle setting (not shown in the
table). We also note that the (non-oracle) development
set TMs outperform the combined train and develop-
ment set TMs for all four of these language pairs, with
larger differences observed in the lower-resource pairs.
Importantly, this indicates that for at least some of the
sentence pairs in the test data, there exists a source sen-
tence in the training data TM which is closer to the test
sentence than any source sentence in the development
data, but for which the target side is a worse match.
This reflects the range of challenges in low resource
machine translation, which are not perfectly correlated:
data size, domain differences, and dialect differences.
While we would expect domain differences to be con-
sistent on both the source and target side of a TM, di-
alect, orthography, or tokenization differences could af-
fect just one language.

Through this simple lens, we can see that even though
all of these are “low-resource machine translation”,
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there is quite a bit of variation about what that means.

Table [ shows TM and MT (including both base-
line and state-of-the-art) CHRF scores. Notably, when
training Transformer models on just the training data
used to build the TM (train), we see that in the well-
matched scenarios (Upper Sorbian and German), the
MT baseline improves dramatically over the TM, while
in the mismatched scenarios (AmericasNLP) the base-
line struggles to improve or even falls below some of
the TM scores. In all cases, the state of the art sys-
tems incorporated additional monolingual or bilingual
training data, so it is not immediately possible to tease
apart model, architecture, and training improvements
and data size increases (we discuss this in Section [7)).

6. Fine Grained Analysis

Now we consider a fine-grained analysis of the transla-
tion of individual sentences. Using a TM (in the realis-
tic, rather than oracle, setting), we can start to examine
how well our machine translation systems are able to
generalize. We typically evaluate our machine transla-
tion systems over a full test set, rather than looking at
the performance of individual sentences.

6.1.

Here we’ll consider each source sentence s in the test
set, its corresponding hypothesis ¢’ from the TM (in this
section, we use the best-performing TM for the given
language pair, namely the TM using training and de-
velopment data for DE-HSB and the development data
TM for ES-TAR), and the output ¢ of a machine trans-
lation system. Given the reference ¢, we can compute
the difference M(t",t) — M(¥',t). A positive result
indicates that the machine translation system outper-
formed the TM, a difference of zero means they per-
formed equivalently, and a negative score indicates that
the TM output outperformed the MT for the given sen-
tence.

In our well-matched scenario (DE-HSB), simply train-
ing a baseline system results in the vast majority of dif-
ferences being positive. Even for sentences that had
very low match scores from the TM, we are able to pro-
duce improved translations. This means that the MT
system has successfully generalized from the training
data to novel sentences. Figure [T] shows this. Given a
TM consisting of training data and development data,
93.9% of the time, the baseline MT output is as good
as or better than the TM fuzzy match (as measured by
CHRF); these are represented by all dots at or above 0
on the y-axis.

However, for the least well-matched scenario, Spanish-
Raramuri (ES-TAR), that is not the case. A baseline
system trained on the training data only scores better
than (or equal to) the TM 12.0% of the time, meaning
that more than 8 times out of 10, you would be bet-
ter off choosing the TM output than the MT output.
Training a multilingual model and finetuning (without
use of development data, the S.1 model) improves on
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Figure 1: Difference between sentence-level CHRF

scores for MT baseline and TM matches, by source
side match score, German to Upper Sorbian. Greater
x values indicate higher source side similarity accord-
ing to CHRF, while greater y values indicate a greater
improvement of the MT system over the TM output.
(Negative y values indicate that the TM output scored
higher than the MT. Note that for higher source match
scores, there is typically less room for improvement.)

this somewhat, with the MT system performing equiv-
alently to or better than the TM 16.9% of the time. In-
corporating the development data into the training (S.0
model) improves things; the new MT system outper-
forms or equals the TM on 62.7% of the sentences in
the test set. This still means that in more than 1/3 cases,
it would have been better to choose the output of the
TM.

The CHRF scores of those systems are as follows: base-
line 14.0, S.1 model 14.3, and S.0 model 24.7. We
note that this S.0 model (the best for which we had
the MT output available) is the third-best system sub-
mitted to the AmericasNLP task for this language pair,
outperformed by 1.1 CHRF by the top-performing sub-
mission (Vazquez et al., 2021)), which incorporated ad-
ditional external parallel Spanish-Rardmuri data. Fig-
ure [2] shows both the baseline and S.0 models, with the
tail of each arrow starting at the baseline point and the
arrow head at the S.0 model value, showing the trend
of improvement at the sentence level. There is no clear
correlation between source metric scores and whether
it would be better to use TM or MT output, even for the
Spanish-Rardmuri system trained solely on the training
data.

6.2. Discussion

Of course, the real proof of this would be to perform
human evaluations comparing the usefulness of MT
and TM output. There are various reasons to expect
that such an experiment may not be perfectly correlated
with these automatic results. First, scoring individual
sentences (as opposed to full test sets) is known to be
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] System

| es-hch | es-tar | es-nah | es-gn [ hsb-de | de-hsb [ iu-en (H) [ en-iu (H) [ iu-en (N) | en-iu (N) |

TM (dev) 252 21.0 232 | 202 27.7 23.9 | 28.7/21.3 | 19.6/15.0 | 25.0/22.8 | 19.1/14.6
TM (train) 19.0 12.3 20.0 17.3 40.6 38.2 32.7 21.8 24.8 15.8
TM (all) 24.4 18.3 214 19.0 40.7 383 32.7 21.8 26.0 16.9
Base. MT 20.5 14.0 19.1 223 74.7 74.8 - - - -
SOTA MT 36.0 25.8 30.1 37.6 79.8 79.6 50.9 35.0 254 30.0

Table 4: TM systems (using CHRF for source similarity over the training data or the training data and the develop-
ment data; non-oracle) scored using CHRF, along with baseline and state of the art (SOTA) MT output. Note that
hsb-de and de-hsb scores are for the devel_test set, rather than the test set (the SOTA MT system is the one that
performed best on test at the shared task, used here to decode devel_test).

_40 .

_60 .

Difference in MT and TM score (chrF)
o

10 20 30 40

50 60 70 80

Source score (chrF)

Figure 2: Improvement in difference between MT output and TM match of S.0 MT system over baseline at the
sentence level, by source side match score (CHRF) for Spanish-Rardmuri. Pink (arrows pointing up) indicate
positive improvement, cyan (arrows pointing down) indicate lowered performance.

quite difficult and noisy. Second, individual translators
vary greatly in what tools they find helpful, both in the
sense that translators often want computer aided trans-
lation interfaces that they can customize to their own
preferences (Moorkens and O’Brien, 2017; |Cadwell et|
and in the sense that inter-translator differ-
ences in the usefulness of machine translation (e.g., for
post-editing) are often greater than the differences be-

tween several machine translation systems (Koehn and
Germann, 2014)). Finally, there are likely to be qualita-

tive differences between the MT and TM output — we
expect the TM to contain fluent sentences only, for ex-
ample, while low resource MT may not be fluent (see
[Mager et al. (2021)) for example).

Other ways that researchers can make use of TM
outputs is through various analysis and visualization
tools, like Compare-MT (Neubig et al., 2019) and MT-
ComparEval (Klejch et al., 2015). In scenarios where
researchers speak only the source language, looking at
the source side TM matches can also provide, to some
extent, a qualitative upper bound on the possible quality
of output. For example, if the TM quality and MT qual-
ity perform poorly, by automatic metrics, a researcher
could examine the source side TM matches. This could
provide insight as to whether the matches are seman-
tically related, or simply happen to have coincidental

matching strings (as seen in the appendix of

etal. (2021)).

There are limitations to this TM-based approach. It
is computationally expensive as compared to simpler
monolingual comparisons like n-gram overlap or lan-
guage model perplexities (though not necessarily more
so than building MT baselines). In this work, we
have focused on language pairs with relatively small
datasets, which renders this more manageable; for
large datasets, one might wish to use a more highly-
optimized tool like FuzzyMatch-cli. There are
also no guarantees that it will capture all potential
dataset problems.

We argue that viewing translation improvements over
TM output — while an insufficient replacement for hu-
man evaluation — provides an additional perspective
that can help researchers understand the gains that their
MT systems are making (or the lack thereof).

7. Recommendations

We suggest that shared task organizers may wish to
produce TM baselines, for several reasons. Compared
to most machine translation systems, TM baselines that
use an evaluation metric as a similarity measure are
(nearly) non-parametric. If a shared task plans to use a
particular metric for evaluation, we suggest using that
exact metric (in the configuration that will be used for
evaluation, along with any tokenization/detokenization
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that will be used in evaluation) for building a TM base-
line ]

This is certainly not to discourage the use of additional
machine translation baselines, but it could help con-
trol for a number of issues in machine translation base-
lines. In particular, it avoids the issue of “lucky” or
“unlucky” runs and initializationsE] Additionally, it has
less of a risk of variance based on the baseline builder’s
experience (e.g., someone with much expertise in pa-
rameter tuning building an impossible-to-beat baseline
vs. someone with less experience building a baseline
that is “too easy” to beat).

Over time, TM baselines with a fixed metric used
for similarity scores would also help to elucidate dif-
ferences between algorithm-based and data-based im-
provements to MT quality. For example, if a task is
repeated several years in a row, are improvements in
baseline scores due primarily to increases in data, im-
provements to machine translation algorithms, or some
combination of the two? Similarly, in shared tasks
where additional data collection is allowed, partici-
pants could also compute TM baselines over their data
collections, providing additional insight into the value
of the data resources they have built. These could then
be more easily compared across participants, without
the confounds of different training and modeling deci-
sions.

8. Conclusions

We propose translation memory baselines as a comple-
ment to machine translation baselines and human anal-
ysis. Human evaluations are, of course, a more mean-
ingful way to measure improvements in machine trans-
lation, particularly for low resource languages. How-
ever, it can be challenging to perform human evalu-
ations, and if translation quality is extremely low, it
may be quite difficult to accurately judge MT adequacy
(e.g., output may be too disfluent for the concept of ad-
equacy to be applied). Comparing against a translation
memory baseline could have several benefits: it can
provide insights about mismatches between datasets,
it is more appropriate than comparing against a base-
line of “nothing”, and it can provide rough estimates of
how an MT system might perform against a translation
memory in a CAT setting.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments and suggestions. We thank our colleagues
Chi-kiu Lo and Michel Simard for discussion, Gabriel

*If translation is only being performed in one direction,
and there are reasons to differ in metric parameters across
languages, one could either choose to use an oracle TM or
choose reasonable parameters for the source side. Either way,
this is likely to have fewer parameters to manage and report
than a machine translation baseline.

>Though the standard response to this is to train multiple
baselines, this may not always be possible.

Bernier-Colborne for his comments on the paper, and
Darlene Stewart and Samuel Larkin for their contribu-
tions to the previously-published MT systems used in
these experiments.

9. Bibliographical References

Barrault, L., Biesialska, M., Bojar, O., Costa-jussa,
M. R., Federmann, C., Graham, Y., Grundkiewicz,
R., Haddow, B., Huck, M., Joanis, E., Kocmi, T,
Koehn, P, Lo, C.-k., Ljubesi¢, N., Monz, C., Mor-
ishita, M., Nagata, M., Nakazawa, T., Pal, S., Post,
M., and Zampieri, M. (2020). Findings of the 2020
conference on machine translation (WMT20). In
Proceedings of the Fifth Conference on Machine
Translation, pages 1-55, Online, November. Asso-
ciation for Computational Linguistics.

Cadwell, P., O’Brien, S., and Teixeira, C. S. C. (2018).
Resistance and accommodation: factors for the (non-
) adoption of machine translation among profes-
sional translators. Perspectives, 26(3):301-321.

V, Nekoto, W., Marivate, V., Matsila, T., Fasubaa,
T., Fagbohungbe, T., Akinola, S. O., Muhammad,
S., Kabongo Kabenamualu, S., Osei, S., Sackey,
F., Niyongabo, R. A., Macharm, R., Ogayo, P,
Ahia, O., Berhe, M. M., Adeyemi, M., Mokgesi-
Selinga, M., Okegbemi, L., Martinus, L., Tajudeen,
K., Degila, K., Ogueji, K., Siminyu, K., Kreutzer, J.,
Webster, J., Ali, J. T., Abbott, J., Orife, 1., Ezeani,
I., Dangana, 1. A., Kamper, H., Elsahar, H., Duru,
G., Kioko, G., Espoir, M., van Biljon, E., White-
nack, D., Onyefuluchi, C., Emezue, C. C., Dossou,
B. F. P, Sibanda, B., Bassey, B., Olabiyi, A., Ramk-
ilowan, A., Oktem, A., Akinfaderin, A., and Bashir,
A. (2020). Participatory research for low-resourced
machine translation: A case study in African lan-
guages. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 2144-2160,
Online, November. Association for Computational
Linguistics.

Fraser, A. (2020). Findings of the WMT 2020 shared
tasks in unsupervised MT and very low resource su-
pervised MT. In Proceedings of the Fifth Confer-
ence on Machine Translation, pages 765-771, On-
line, November. Association for Computational Lin-
guistics.

Hernandez, F. and Nguyen, V. (2020). The ubiqus
English-Inuktitut system for WMT20. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 213-217, Online, November. Association for
Computational Linguistics.

Hieber, F., Domhan, T., Denkowski, M., Vilar, D.,
Sokolov, A., Clifton, A., and Post, M. (2018).
The sockeye neural machine translation toolkit at
AMTA 2018. In Proceedings of the 13th Conference
of the Association for Machine Translation in the
Americas (Volume 1: Research Track), pages 200—
207, Boston, MA, March. Association for Machine
Translation in the Americas.

6765



Joanis, E., Knowles, R., Kuhn, R., Larkin, S., Littell,
P., Lo, C.-k., Stewart, D., and Micher, J. (2020).
The Nunavut Hansard Inuktitut—English parallel cor-
pus 3.0 with preliminary machine translation results.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 2562-2572, Mar-
seille, France, May. European Language Resources
Association.

Klejch, O., Avramidis, E., Burchardt, A., and Popel,
M. (2015). MT-compareval: Graphical evalua-
tion interface for machine translation development.
The Prague Bulletin of Mathematical Linguistics,
(104):63-74.

Knowles, R. and Larkin, S. (2021). NRC-CNRC sys-
tems for Upper Sorbian-German and Lower Sorbian-
German machine translation 2021. In Proceedings
of the Sixth Conference on Machine Translation,
pages 999-1008, Online, November. Association for
Computational Linguistics.

Knowles, R., Stewart, D., Larkin, S., and Littell, P.
(2021). NRC-CNRC machine translation systems
for the 2021 AmericasNLP shared task. In Proceed-
ings of the First Workshop on Natural Language Pro-
cessing for Indigenous Languages of the Americas,
pages 224-233, Online, June. Association for Com-
putational Linguistics.

Knowles, R. (2021). On the stability of system rank-
ings at WMT. In Proceedings of the Sixth Confer-
ence on Machine Translation, pages 464-477, On-
line, November. Association for Computational Lin-
guistics.

Koehn, P. and Germann, U. (2014). The impact of
machine translation quality on human post-editing.
In Proceedings of the EACL 2014 Workshop on
Humans and Computer-assisted Translation, pages
38-46, Gothenburg, Sweden, April. Association for
Computational Linguistics.

Libovicky, J. and Fraser, A. (2021). Findings of the
WMT 2021 shared tasks in unsupervised MT and
very low resource supervised MT. In Proceedings of
the Sixth Conference on Machine Translation, pages
731-737, Online, November. Association for Com-
putational Linguistics.

Mager, M., Oncevay, A., Ebrahimi, A., Ortega, J.,
Rios, A., Fan, A., Gutierrez-Vasques, X., Chiruzzo,
L., Giménez-Lugo, G., Ramos, R., Meza Ruiz,
I. V., Coto-Solano, R., Palmer, A., Mager-Hois, E.,
Chaudhary, V., Neubig, G., Vu, N. T., and Kann, K.
(2021). Findings of the AmericasNLP 2021 shared
task on open machine translation for indigenous lan-
guages of the Americas. In Proceedings of the First
Workshop on Natural Language Processing for In-
digenous Languages of the Americas, pages 202—
217, Online, June. Association for Computational
Linguistics.

Moorkens, J. and O’Brien, S. (2017). Assessing user
interface needs of post-editors of machine transla-
tion. Human issues in translation technology, pages

109-130.

Neubig, G., Dou, Z., Hu, J., Michel, P., Pruthi, D.,
Wang, X., and Wieting, J. (2019). compare-mt: A
tool for holistic comparison of language generation
systems. CoRR, abs/1903.07926.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.
(2002). Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics, pages 311-318, Philadelphia, Pennsyl-
vania, USA, July. Association for Computational
Linguistics.

Popovi¢, M. (2015). chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Post, M. (2018). A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium, October. Association for
Computational Linguistics.

Simard, M. and Fujita, A. (2012). A poor man’s trans-
lation memory using machine translation evaluation
metrics. In Proceedings of the 10th Biennial Confer-
ence of the Association for Machine Translation in
the Americas. Association for Machine Translation
in the Americas.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. (2017). Attention is all you need. In Isabelle
Guyon, et al., editors, Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA, pages 5998—
6008.

Vazquez, R., Scherrer, Y., Virpioja, S., and Tiedemann,
J. (2021). The Helsinki submission to the Americas-
NLP shared task. In Proceedings of the First Work-
shop on Natural Language Processing for Indige-
nous Languages of the Americas, pages 255-264,
Online, June. Association for Computational Lin-
guistics.

Xu, J., Crego, J., and Senellart, J. (2020). Boost-
ing neural machine translation with similar trans-
lations. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1580-1590, Online, July. Association for
Computational Linguistics.

Zhang, Y., Wang, Z., Cao, R., Wei, B., Shan, W., Zhou,
S., Reheman, A., Zhou, T., Zeng, X., Wang, L.,
Mu, Y., Zhang, J., Liu, X., Zhou, X., Li, Y., Li, B,
Xiao, T., and Zhu, J. (2020). The NiuTrans machine
translation systems for WMT20. In Proceedings of
the Fifth Conference on Machine Translation, pages
338-345, Online, November. Association for Com-
putational Linguistics.

6766



10. Language Resource References

Joanis, Eric and Knowles, Rebecca and Kuhn, Roland
and Larkin, Samuel and Littell, Patrick and Lo,
Chi-kiu and Stewart, Darlene and Micher, Jef-
frey. (2020). The Nunavut Hansard Inuktitut—
English Parallel Corpus 3.0 with Preliminary Ma-
chine Translation Results. European Language Re-
sources Association.

Libovicky, Jindfich and Fraser, Alexander. (2021).
Findings of the WMT 2021 Shared Tasks in Unsu-
pervised MT and Very Low Resource Supervised MT.
Association for Computational Linguistics.

Mager, Manuel and Oncevay, Arturo and Ebrahimi,
Abteen and Ortega, John and Rios, Annette and
Fan, Angela and Gutierrez-Vasques, Ximena and
Chiruzzo, Luis and Giménez-Lugo, Gustavo and
Ramos, Ricardo and Meza Ruiz, Ivan Vladimir
and Coto-Solano, Rolando and Palmer, Alexis and
Mager-Hois, Elisabeth and Chaudhary, Vishrav and
Neubig, Graham and Vu, Ngoc Thang and Kann,
Katharina. (2021). Findings of the AmericasNLP
2021 Shared Task on Open Machine Translation for
Indigenous Languages of the Americas. Association
for Computational Linguistics.

6767



	Introduction
	Data
	TM Baselines
	TM Definitions and Experimental Setup
	TM Metrics and Evaluation
	Oracle

	Machine Translation Systems
	Analyzing Train/Dev/Test Mismatch
	Fine Grained Analysis
	Experiments
	Discussion

	Recommendations
	Conclusions
	Bibliographical References
	Language Resource References

